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Abstract. We study the double obstacle problem on a metric measure space equipped with a
doubling measure and supporting a p-Poincaré inequality. We prove existence and uniqueness. We
also prove the continuity of the solution of the double obstacle problem with continuous obstacles
and show that the continuous solution is a minimizer in the open set where it does not touch the
two obstacles. Moreover we consider the regular boundary points and show that the solution of
the double obstacle problem on a regular open set with continuous obstacles is continuous up to
the boundary. Regularity of boundary points is further characterized in some other ways using the
solution of the double obstacle problem.

1. Introduction

Let 1 < p < ∞ and X = (X, d, µ) be a complete metric space endowed with a
metric d and a positive complete Borel measure µ which is doubling, i.e. there exists
a constant C > 0 such that for all balls B = B(x, r) := {y ∈ X : d(x, y) < r} in X
we have

0 < µ(2B) ≤ Cµ(B) < ∞,

where 2B = B(x, 2r).
In a metric space the gradient has no obvious meaning as in domains in Rn.

Therefore the concept of an upper gradient was introduced in Heinonen–Koskela [7]
as a substitute for the modulus of the usual gradient. This makes it possible to define
and study the Sobolev type spaces N1,p(X) (called Newtonian spaces) in metric
spaces which enables us to study variational integrals in metric spaces and to build
a nonlinear potential theory for minimizers of the variational integral

(1)
∫

gp
u dµ,

where gu denotes the minimal p-weak upper gradient of u, see Shanmugalingam [12]
and [13]. Indeed, in Kinnunen–Shanmugalingam [10] it was shown that under cer-
tain conditions on the space X, the minimizers of (1) satisfy the Harnack inequal-
ity and the maximum principle, and are locally Hölder continuous. The Dirichlet
problem for p-harmonic functions was studied e.g. in Björn–Björn [2], Björn–Björn–
Shanmugalingam [5] and Shanmugalingam [13]. The single obstacle problem in metric
spaces has been studied in Kinnunen–Martio [9]. In this note we study the double
obstacle problem in metric spaces. Our work extends some results from [9] and [2] in
which similar investigations were undertaken for the case of a single obstacle problem.
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Since the single obstacle problem is a special case of the double obstacle problem,
one cannot expect better results in the latter case. One significant difference between
the single and double obstacle problems is that the solution of the single obstacle
problem turns out to be a superminimizer whereas this is no longer true in the double
obstacle situation. This does not allow for the use of the weak Harnack inequality
for superminimizers, which was a main tool in the analysis of the single obstacle
problem. However we are still able to obtain many useful results for the double
obstacle problem.

Let Ω be a bounded open subset of X. We study the double obstacle problem of
the type

Kψ1,ψ2,f (Ω) = {v ∈ N1,p(Ω) : v − f ∈ N1,p
0 (Ω) and ψ1 ≤ v ≤ ψ2 q.e. in Ω},

where f ∈ N1,p(Ω) and ψj : Ω → R, j = 1, 2. A function u ∈ Kψ1,ψ2,f (Ω) is a solution
of the Kψ1,ψ2,f (Ω)-obstacle problem if∫

Ω

gp
u dµ ≤

∫

Ω

gp
v dµ for all v ∈ Kψ1,ψ2,f (Ω),

where gu is the minimal p-weak upper gradient of u.
In the Euclidean case the double obstacle problem was studied e.g. in Kilpeläinen–

Ziemer [8], Dal Maso–Mosco–Vivaldi [6] and Li–Martio [11].
This paper is organized as follows. In Section 2, we define Newtonian spaces, the

Sobolev type spaces considered in metric spaces, and give some of their properties.
In Section 3, we define the double obstacle problem, and prove that there exists a
unique solution (up to sets of capacity zero) of the Kψ1,ψ2,f (Ω)-obstacle problem. We
also show that there is a continuous solution of the double obstacle problem provided
the two obstacles are continuous, in this case we also prove that the solution is a
minimizer in the open set where the continuous solution does not touch the two
obstacles.

We end this paper, in Section 4, with boundary regularity for the double obstacle
problem, and prove that under certain conditions the solution of the obstacle problem
is continuous up to the boundary. Finally we give two new characterizations of regular
boundary points.

2. Notation and preliminaries

A nonnegative Borel function g is said to be an upper gradient of an extended
real-valued function f on X if for all rectifiable curves γ : [0, lγ] → X parameterized
by arc length ds, we have

(2) |f(γ(0))− f(γ(lγ))| ≤
∫

γ

g ds

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
∫

γ
g ds = ∞ otherwise. If g is

a nonnegative measurable function on X and if (2) holds for p-almost every curve,
then g is a p-weak upper gradient of f .

By saying that (2) holds for p-almost every curve we mean that it fails only for a
curve family with zero p-modulus, see Definition 2.1 in Shanmugalingam [12]. If f has
an upper gradient in Lp(X), then it has a minimal p-weak upper gradient gf ∈ Lp(X)
in the sense that for every p-weak upper gradient g ∈ Lp(X) of f , gf ≤ g a.e., see
Corollary 3.7 in Shanmugalingam [13].
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The operation of taking the upper gradient is not linear. However, we have the
following useful property. If a, b ∈ R and g1 and g2 are upper gradients of u1 and u2

respectively, then |a|g1 + |b|g2 is an upper gradient of au1 + bu2.
In Shanmugalingam [12], upper gradients have been used to define Sobolev type

spaces on metric spaces. We will use the following equivalent definition.

Definition 2.1. Let u ∈ Lp(X), then we define

‖u‖N1,p(X) =

(∫

X

|u|p dµ +

∫

X

gp
u dµ

)1/p

,

where gu is the minimal p-weak upper gradient of u. The Newtonian space on X is
the quotient space

N1,p(X) =
{
u : ‖u‖N1,p(X) < ∞}

/ ∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.
The space N1,p(X) is a Banach space and a lattice, see Theorem 3.7 and p. 249

in Shanmugalingam [12]. We also have the following lemma about minimal p-weak
upper gradients, see Björn–Björn [1], Corollary 3.4.

Lemma 2.2. If u, v ∈ N1,p(X), then

gu = gv a.e. on {x ∈ X : u(x) = v(x)}.
Moreover, if c ∈ R is a constant, then gu = 0 a.e. on {x ∈ X : u(x) = c}.

Definition 2.3. The capacity of a set E ⊂ X is defined by

Cp(E) = inf
u
‖u‖p

N1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.

We say that a property holds quasieverywhere (q.e.) in X, if it holds everywhere
except on a set of capacity zero. Newtonian functions are well defined up to sets of
capacity zero, i.e. if u,v ∈ N1,p(X) then u ∼ v if and only if u = v q.e. Moreover,
Corollary 3.3 in Shanmugalingam [12] shows that if u, v ∈ N1,p(X) and u = v a.e.,
then u = v q.e.

From now on we assume that X supports a p-Poincaré inequality, i.e. there exist
constants C > 0 and λ ≥ 1 such that for all balls B(x, r) in X, all integrable functions
u on X and all upper gradients g of u we have

∫

B(x,r)

|u− uB(x,r)| dµ ≤ Cr

(∫

B(x,λr)

gp dµ

)1/p

,

where uB(x,r) :=
∫

B(x,r)
u dµ.

For Ω ⊂ X open we define the space N1,p(Ω) with respect to the restrictions of
the metric d and the measure µ to Ω. It is well known in the field that the restriction
to Ω of a minimal p-weak upper gradient in X remains minimal with respect to Ω.

A function u is said to belong to the local Newtonian space N1,p
loc (Ω) if u ∈ N1,p(A)

for every open A b Ω, where by A b Ω we mean that the closure of A is a compact
subset of Ω.

To be able to compare the boundary values of Newtonian functions we need to
define a Newtonian space with zero boundary values outside of Ω as follows

N1,p
0 (Ω) =

{
f |Ω : f ∈ N1,p(X) and f = 0 q.e. in X \ Ω

}
.
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The following lemma is useful for proving that a function belongs to N1,p
0 (Ω), see

Lemma 5.3 in Björn–Björn [2].

Lemma 2.4. Let u ∈ N1,p(Ω) be such that v ≤ u ≤ w q.e. in Ω for some
v, w ∈ N1,p

0 (Ω). Then u ∈ N1,p
0 (Ω).

Under our assumptions, Lipschitz functions with compact support are dense in
N1,p

0 (Ω), see Shanmugalingam [13]. Moreover the proof of this result in [3] shows
that if 0 ≤ u ∈ N1,p

0 (Ω), then we can choose the Lipschitz approximations to be
nonnegative.

We shall need the following Poincaré type inequality. For a proof, see e.g.
Kinnunen–Shanmugalingam [10], Lemma 2.1.

Lemma 2.5. Assume that Ω ⊂ X is a nonempty bounded open set with Cp(X \
Ω) > 0. Then there exists a constant C > 0 such that for all u ∈ N1,p

0 (Ω) we have∫

Ω

|u|p dµ ≤ C

∫

Ω

gp
u dµ.

We shall use the following lemma. For a proof, see Björn–Björn–Parviainen [4].

Lemma 2.6. Assume that gj is a p-weak upper gradient of uj, j = 1, 2, . . . ,
and that both sequences {uj}∞j=1 and {gj}∞j=1 are bounded in Lp(X). Then there
are u, g ∈ Lp(X), convex combinations vj =

∑Nj

i=j aj,iui with p-weak upper gradients
ḡj =

∑Nj

i=j aj,igi and a strictly increasing sequence of indices {jk}∞k=1, such that
(a) both ujk

→ u and gjk
→ g weakly in Lp(X);

(b) both vj → u and ḡj → g in Lp(X);
(c) vj → u q.e.;
(d) g is a p-weak upper gradient of u.

3. The double obstacle problem

Recall that we assume in this paper that X is a complete metric measure space
supporting a p-Poincaré inequality and that µ is doubling.

Throughout the rest of this paper we make the additional assumptions that
Ω ⊂ X is a nonempty bounded open set such that Cp(X \ Ω) > 0. Also the letter C
represents various constants and can change even within the same line of a calculation.

Let V ⊂ X be a nonempty bounded open set with Cp(X \V ) > 0, let ψ : V → R
and f ∈ N1,p(V ). In Kinnunen–Martio [9] the single obstacle problem (denoted by
K̃ψ,f (V )) is defined as follows

K̃ψ,f (V ) =
{
v ∈ N1,p(V ) : v − f ∈ N1,p

0 (V ) and v ≥ ψ a.e. in V
}

and u ∈ K̃ψ,f (V ) is a solution of the K̃ψ,f (V )-obstacle problem if
∫

V

gp
u dµ ≤

∫

V

gp
v dµ for all v ∈ K̃ψ,f (V ).

As the Newtonian functions are defined up to sets of capacity zero we see that
it is natural to consider the obstacle problem up to sets of capacity zero instead of
sets of measure zero and therefore define the double obstacle problem with a slightly
different notation from Kinnunen–Martio [9] as follows.
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Definition 3.1. Let V ⊂ X be a nonempty bounded open set such that Cp(X \
V ) > 0, let f ∈ N1,p(V ) and ψi : V → R, i = 1, 2. Then we define

Kψ1,ψ2,f (V ) =
{
v ∈ N1,p(V ) : v − f ∈ N1,p

0 (V ) and ψ1 ≤ v ≤ ψ2 q.e. in V
}
.

Furthermore, a function u ∈ Kψ1,ψ2,f (V ) is a solution of the Kψ1,ψ2,f (V )-obstacle
problem if ∫

V

gp
u dµ ≤

∫

V

gp
v dµ for all v ∈ Kψ1,ψ2,f (V ).

We also let Kψ1,ψ2,f = Kψ1,ψ2,f (Ω), Kψ,f (V ) = Kψ,∞,f (V ) and Kψ,f = Kψ,f (Ω).

The distinction between the two definitions becomes important e.g. when solving
the single obstacle problem with obstacle χK and boundary values zero where K ⊂ Ω
is a compact set with positive capacity and zero measure. In this case the KχK ,0-
obstacle problem leads to a p-harmonic function in Ω \K with boundary values 1 on
K and zero on ∂Ω, whereas the K̃χK ,0-obstacle problem has the trivial solution. In
particular this is evident if K is an (n− 1)-dimensional sphere contained in Ω ⊂ Rn.

At the same time our definition is stronger than the definition used in Kinnunen–
Martio [9] and it is possible to have no solution of the Kψ,f -obstacle problem whereas
there exists a solution of the K̃ψ,f -obstacle problem as the following example shows.
If Ω = B(0, 1) ⊂ Rn (with the Lebesgue measure), Sn = ∂B(0, 1 − 1/n) and E =⋃∞

n=2 Sn. Then E has measure zero and positive capacity. Therefore, the obstacle
problem K̃χE ,0 has the trivial solution. On the other hand there is no solution for
the Kψ,f -obstacle problem, since no Newtonian function with zero boundary values
on ∂B(0, 1) will be above χE. We also remark here that the proofs of all the results
which we use from Kinnunen–Martio [9] can be modified to fit our definition.

A function u ∈ N1,p
loc (Ω) is a minimizer in Ω if it is a solution of the K−∞,u(Ω

′)-
obstacle problem for every open Ω′ b Ω. Similarly, a function u ∈ N1,p

loc (Ω) is a
superminimizer in Ω if it is a solution of the Ku,u(Ω

′)-obstacle problem for every
open Ω′ b Ω. A solution of the Kψ,f -obstacle problem is a superminimizer in Ω, but
the converse is not true in general. However, if u ∈ N1,p(Ω) and u is a superminimizer
in Ω, then u is a solution of the Ku,u(Ω)-obstacle problem.

The following theorem is a generalization of Theorem 3.2 from Kinnunen–Mar-
tio [9], where existence and uniqueness was proved for the single obstacle problem.

Theorem 3.2. Let f ∈ N1,p(Ω) and ψi : Ω → R, i = 1, 2. If Kψ1,ψ2,f is nonempty,
then there is a unique solution (up to equivalence in N1,p(Ω)) of the Kψ1,ψ2,f -obstacle
problem.

Proof. Let

I = inf
v∈Kψ1,ψ2,f

∫

Ω

gp
v dµ.

Since Kψ1,ψ2,f 6= ∅, we have 0 ≤ I < ∞. Let {uj}∞j=1 ⊂ Kψ1,ψ2,f be a minimizing
sequence such that ∫

Ω

gp
uj

dµ ↘ I.

As ‖guj
‖p

Lp(Ω) ≤ ‖gu1‖p
Lp(Ω), the sequence {guj

}∞j=1 is bounded in Lp(Ω). Since Ω is
bounded, Cp(X \ Ω) > 0 and uj − f ∈ N1,p

0 (Ω), it follows from Lemma 2.5 that
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∫

Ω

|uj − f |p dµ ≤ C

∫

Ω

gp
uj−f dµ ≤ C

∫

Ω

gp
uj

dµ + C

∫

Ω

gp
f dµ,

and

‖uj‖N1,p(Ω) ≤ ‖uj‖Lp(Ω) +
∥∥guj

∥∥
Lp(Ω)

≤ ‖uj − f‖Lp(Ω) + ‖f‖Lp(Ω) +
∥∥guj

∥∥
Lp(Ω)

≤ C ‖f‖N1,p(Ω) + C ‖gu1‖Lp(Ω) .

Hence {uj}∞j=1 is bounded in N1,p(Ω). Using Lemma 2.6 we can find convex combi-
nations vj =

∑Nj

k=j aj,kuk with p-weak upper gradients gj =
∑Nj

k=j aj,kguk
and limit

functions v, g such that vj → v and gj → g in Lp(Ω), vj → v q.e. and g is a p-weak
upper gradient of v. It follows that v ∈ N1,p(Ω). Let

Ej = {x ∈ Ω : vj(x) < ψ1(x) or vj(x) > ψ2(x)} , j = 1, 2, . . . ,

E =
∞⋃

j=1

Ej.

Since ψ1 ≤ vj ≤ ψ2 q.e. in Ω, we have Cp(Ej) = 0 for all j. By the countable
subadditivity of Cp, we get Cp(E) = 0 and ψ1 ≤ v ≤ ψ2 q.e. on the complement of
E. Thus ψ1 ≤ v ≤ ψ2 q.e. in Ω.

Let further wj := vj − f ∈ N1,p
0 (Ω). We can consider wj to be zero outside of Ω.

Let also w = v− f , g′j = gj + gf and g′ = g + gf , where all three are considered to be
identically zero outside of Ω. Then wj → w, g′j → g′ in Lp(X) and wj → w q.e. in X.
By Lemma 2.6, g′ is a p-weak upper gradient of w. Hence w ∈ N1,p(X). As w = 0
outside of Ω, we have v − f ∈ N1,p

0 (Ω), and thus v ∈ Kψ1,ψ2,f (Ω). Since

I ≤
∫

Ω

gp
v dµ ≤

∫

Ω

gp dµ = lim
j→∞

∫

Ω

gp
j dµ

≤ lim
j→∞

Nj∑

k=j

aj,k

∫

Ω

gp
uk

dµ ≤ lim
j→∞

∫

Ω

gp
uj

dµ = I,

we conclude that v is a solution of the Kψ1,ψ2,f -obstacle problem.
For uniqueness assume that u1 and u2 are two solutions. Then

∫

Ω

gp
u1

dµ =

∫

Ω

gp
u2

dµ

and u′ = 1
2
(u1 + u2) ∈ Kψ1,ψ2,f . Since gu′ ≤ 1

2
(gu1 + gu2), we have

‖gu1‖Lp(Ω) ≤ ‖gu′‖Lp(Ω) ≤ 1
2
‖gu1‖Lp(Ω) + 1

2
‖gu2‖Lp(Ω) ≤ ‖gu1‖Lp(Ω).

Hence gu1 = gu2 a.e. in Ω by the strict convexity of Lp(Ω).
Let c ∈ R, and

u = max {u1, min {u2, c}} .
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Then u ∈ N1,p(Ω), by the lattice property of N1,p(Ω). Let

E = {x ∈ Ω : u(x) < ψ1(x) or u(x) > ψ2(x)} ,

Ei = {x ∈ Ω : ui(x) < ψ1(x) or ui(x) > ψ2(x)} , i = 1, 2,

A1 = {x ∈ Ω : u(x) = u1(x)} ,

A2 = {x ∈ Ω : u(x) > u1(x)} .

It is clear that A1 ∩E ⊂ E1 and hence Cp(A1 ∩E) = 0. If x ∈ A2 ∩E then either we
have ψ1(x) > u(x) > u1(x) or u2(x) ≥ u(x) > ψ2(x). Thus A2 ∩ E ⊂ E1 ∪ E2 and

Cp(E) ≤ Cp(A1 ∩ E) + Cp(A2 ∩ E) = 0.

It follows that ψ1 ≤ u ≤ ψ2 q.e. in Ω. Also

u− f ≤ max{u1, u2} − f = max{u1 − f, u2 − f} ∈ N1,p
0 (Ω)

and u − f ≥ u1 − f ∈ N1,p
0 (Ω). Lemma 2.4 shows that u − f ∈ N1,p

0 (Ω) and hence
u ∈ Kψ1,ψ2,f .

Let Vc = {x ∈ Ω : u1(x) < c < u2(x)} , then Vc ⊂ {x ∈ Ω : u(x) = c} and hence
gu = 0 a.e. in Vc, by Lemma 2.2. On Ω\Vc either we have u1 ≥ c or u2 ≤ c. Thus, in
the first case we get u = u1 and Lemma 2.2 implies that gu = gu1 a.e. In the second
case we have u = max{u1, u2} and by Lemma 2.2 we obtain

gu = gu1χ{u1>u2} + gu2χ{u2≥u1} = gu1 ,

since gu1 = gu2 . Thus gu = gu1 = gu2 a.e. in Ω \ Vc. The minimizing property of gu1

then implies that

(3)
∫

Ω

gp
u1

dµ ≤
∫

Ω

gp
u dµ =

∫

Ω\Vc

gp
u dµ =

∫

Ω\Vc

gp
u1

dµ,

and we conclude that gu1 = gu2 = 0 a.e. in Vc for all c ∈ R. Now

{x ∈ Ω : u1(x) < u2(x)} ⊂
⋃
c∈Q

Vc

and hence gu1 = gu2 = 0 a.e. in {x ∈ Ω : u1(x) < u2(x)}. Similarly, if we define v =
max {u2, min {u1, c}}, we get gu1 = gu2 = 0 a.e. in the set {x ∈ Ω : u2(x) < u1(x)}.
It follows that

gu1−u2 ≤ (gu1 + gu2)χ{x∈Ω:u1(x)6=u2(x)} = 0 a.e. in Ω.

By Lemma 2.5,

‖u1 − u2‖p
Lp(Ω) ≤ C

∫

Ω

gp
u1−u2

dµ = 0.

It follows that u1 = u2 a.e. in Ω and hence u1 = u2 q.e. in Ω. ¤

Remark 3.3. The solution of the double obstacle problem need not be locally
bounded. However, one can easily see that, if the upper obstacle is essentially locally
bounded from above and the lower obstacle is essentially locally bounded from below,
then the solution of the obstacle problem is essentially locally bounded.

That u is locally bounded in Ω is defined by saying that for every x ∈ Ω there is
rx such that u is bounded in B(x, rx). This is however equivalent to saying that u is
bounded in Ω′ for every Ω′ b Ω. By saying that u is essentially locally bounded we
allow for an exceptional set of measure zero.
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The following lemma is a generalization of Lemma 5.4 in Björn–Björn [2], where
they have ψ2 = ψ′2 ≡ ∞.

Lemma 3.4. Let f, f ′ ∈ N1,p(Ω) and ψj, ψ
′
j : Ω → R, j = 1, 2. Assume that

ψ1 ≤ ψ′1 and ψ2 ≤ ψ′2 q.e. in Ω and that (f − f ′)+ ∈ N1,p
0 (Ω). Let u be a solution of

the Kψ1,ψ2,f -obstacle problem and u′ be a solution of the Kψ′1,ψ′2,f ′-obstacle problem.
Then u ≤ u′ q.e. in Ω.

Proof. Let v = min{u, u′} and w = max{u, u′}. Let also
E1 = {x ∈ Ω : v(x) < ψ1(x) or v(x) > ψ2(x)},
E2 = {x ∈ Ω : w(x) < ψ′1(x) or w(x) > ψ′2(x)},
E = {x ∈ Ω : u(x) < ψ1(x) or u(x) > ψ2(x)},
E ′ = {x ∈ Ω : u′(x) < ψ′1(x) or u′(x) > ψ′2(x)},
A1 = {x ∈ Ω : v(x) = u(x)},
A2 = Ω \ A1 = {x ∈ Ω : v(x) < u(x)}.

Then it follows that E1 ∩ A1 ⊂ E and hence Cp(E1 ∩ A1) = 0. Note also that for
q.e. x ∈ E1 ∩A2 either u′(x) = v(x) < ψ1(x) ≤ ψ′1(x) or u(x) > v(x) > ψ2(x), which
implies that E1 ∩ A2 ⊂ E ∪ E ′, and hence Cp(E1 ∩ A2) = 0. Thus Cp(E1) = 0 and
ψ1 ≤ v ≤ ψ2 q.e. in Ω. Similarly we see that Cp(E2) = 0 i.e. ψ′1 ≤ w ≤ ψ′2 q.e. in Ω.

Let h := u− f − (u′ − f ′) ∈ N1,p
0 (Ω). It follows that

h ≥ min{f ′ − f, h} ≥ −(f ′ − f)− − h− = (f − f ′)+ − h− ∈ N1,p
0 (Ω).

By Lemma 2.4 we have min{f ′ − f, h} ∈ N1,p
0 (Ω) and thus

v − f = min{u′ − f, u− f} = u′ − f ′ + min{f ′ − f, h} ∈ N1,p
0 (Ω),

w − f ′ = max{u′ − f ′, u− f ′} = u− f + max{−h, f − f ′}
= u− f −min{f ′ − f, h} ∈ N1,p

0 (Ω).

Hence v ∈ Kψ1,ψ2,f and w ∈ Kψ′1,ψ′2,f ′ . Since u′ is a solution of the Kψ′1,ψ′2,f ′-obstacle
problem, we have

∫

Ω

gp
u′ dµ ≤

∫

Ω

gp
w dµ =

∫

A1

gp
u′ dµ +

∫

A2

gp
u dµ.

Thus ∫

A2

gp
u′ dµ ≤

∫

A2

gp
u dµ,

which implies that
∫

Ω

gp
v dµ =

∫

A1

gp
u dµ +

∫

A2

gp
u′ dµ ≤

∫

A1

gp
u dµ +

∫

A2

gp
u dµ =

∫

Ω

gp
u dµ.

Since u is a solution of the Kψ1,ψ2,f -obstacle problem, also v is a solution of the
Kψ1,ψ2,f ′-obstacle problem. By uniqueness, u = v = min{u, u′} q.e. in Ω, and thus
u ≤ u′ q.e. in Ω. ¤

Theorem 3.5. The solution of the Kψ1,ψ2,f -obstacle problem is a superminimizer
if and only if it is a solution of the Kψ1,f -obstacle problem.
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Proof. Let u be a solution of the Kψ1,ψ2,f -obstacle problem. If u is a solution of
the Kψ1,f -obstacle problem, then u is a superminimizer and one direction is proved.
As for the other direction, assume that u is a superminmizer and let u′ be a solution
of the Kψ1,f -obstacle problem, then the comparison Lemma 3.4 implies that u ≤
u′ q.e. in Ω. Since u is a solution of the Ku,u-obstacle problem another application of
the comparison Lemma 3.4 shows that u′ ≤ u q.e. in Ω and hence u = u′ q.e. in Ω.
Thus u is a solution of the Kψ1,f -obstacle problem. ¤

The following localization lemma is sometimes useful.

Lemma 3.6. Let ψi : Ω → R, i = 1, 2, and f ∈ N1,p(Ω). Let u be a solution of
the Kψ1,ψ2,f -obstacle problem and let Ω′ ⊂ Ω be open. Then u is a solution of the
Kψ1,ψ2,u(Ω

′)-obstacle problem.

Proof. Let v ∈ Kψ1,ψ2,u(Ω
′), then we have to show that

∫

Ω′
gp

u dµ ≤
∫

Ω′
gp

v dµ.

Since v − u ∈ N1,p
0 (Ω′) ⊂ N1,p(Ω) and v = (v − u) + u ∈ N1,p(Ω) we can define

v(x) = u(x) when x ∈ Ω \ Ω′. It follows that ψ1 ≤ v ≤ ψ2 q.e. in Ω, since ψ1 ≤ v ≤
ψ2 q.e. in Ω′ and v = u in Ω \ Ω′. Also

v − f = (v − u) + (u− f) ∈ N1,p
0 (Ω).

Thus, v ∈ Kψ1,ψ2,f and using that u is a solution of the Kψ1ψ2,f -obstacle problem we
get ∫

Ω

gp
u dµ ≤

∫

Ω

gp
v dµ.

Lemma 2.2 implies gu = gv a.e. in Ω \ Ω′ and we obtain
∫

Ω′
gp

u dµ ≤
∫

Ω′
gp

v dµ.

Thus, u is a solution of the Kψ1,ψ2,u(Ω
′)-obstacle problem. ¤

Proposition 3.7. Let ψj : Ω → R, j = 1, 2, and f ∈ N1,p(Ω). Let u be a
solution of the Kψ1,ψ2,f -obstacle problem, V ⊆ Ω be open and r ∈ R. Then

(a) If ψ2 ≥ r q.e. in V , then ur = min{u, r} is a superminimizer in V .
(b) If ψ1 ≤ r q.e. in V , then ur = max{u, r} is a subminimizer in V .
Here a function w is a subminimizer if −w is a superminimizer.

Proof. We shall prove (a) and using that −u is a solution of the K−ψ2,−ψ1,−f -
obstacle problem, we see that (b) will immediately follows.

Let Ω′ b V , v ∈ N1,p(Ω′), v ≥ ur and v − ur ∈ N1,p
0 (Ω′). To show that

∫

Ω′
gp

ur
dµ ≤

∫

Ω′
gp

v dµ,

let vr = min{v, r} and ṽ = max{vr, u}, then ṽ ∈ N1,p(Ω′). It follows from Lemma 2.2
that

gur =

{
gu a.e. on {x ∈ Ω′ : u(x) < r},
0 a.e. on {x ∈ Ω′ : u(x) ≥ r}.
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Thus, gur ≤ gu a.e. in Ω′ and similarly gvr ≤ gv a.e. in Ω′. Also

gṽ =

{
gvr a.e. on {x ∈ Ω′ : vr(x) ≥ u(x)} =: A,

gu a.e. on {x ∈ Ω′ : vr(x) < u(x)}.
Furthermore,

ψ1 ≤ u ≤ ṽ ≤ max{r, u} ≤ ψ2 q.e. in V

and

0 ≤ ṽ − u ≤ max{v, u} − u = max{v − u, 0}
≤ max{v − ur, 0} = v − ur ∈ N1,p

0 (Ω′).

By Lemma 2.4, ṽ − u ∈ N1,p
0 (Ω′), and hence ṽ ∈ Kψ1,ψ2,u(Ω

′). Thus, using that u is
a solution of the Kψ1,ψ2,u(Ω

′)-obstacle problem, we obtain
∫

Ω′
gp

u dµ ≤
∫

Ω′
gp

ṽ dµ =

∫

A

gp
vr

dµ +

∫

Ω′\A
gp

u dµ.

It follows that ∫

A

gp
u dµ ≤

∫

A

gp
vr

dµ,

and hence

(4)
∫

A

gp
ur

dµ ≤
∫

A

gp
u dµ ≤

∫

A

gp
vr

dµ ≤
∫

A

gp
v dµ.

Note also that for x ∈ Ω′ \ A either we have u(x) > vr(x) = r, which implies
that ur(x) = r, or u(x) > vr(x) = v(x), which also implies that ur(x) = r, since
otherwise we would get ur(x) = u(x) > v(x) a contradiction. Thus we conclude that
Ω′ \A ⊂ {x ∈ Ω′ : ur(x) = r} and that gur = 0 a.e. on Ω′ \A. Together with (4) this
yield ∫

Ω′
gp

ur
dµ =

∫

A

gp
ur

dµ ≤
∫

A

gp
v dµ ≤

∫

Ω′
gp

v dµ,

i.e. ur is a superminimizer in V . ¤
From Theorem 3.5 and Proposition 3.7 we obtain the following immediate corol-

lary.

Corollary 3.8. Let r ∈ R, f ∈ N1,p(Ω) and ψ : Ω → R. Assume that u is a
solution of the Kψ,r,f -obstacle problem, then u is a superminimizer in Ω. Moreover
u is a solution of the Kψ,f -obstacle problem.

Next we prove that the solution of the double obstacle problem is continuous
provided both obstacles are continuous. It generalizes Theorem 5.5 in Kinnunen–
Martio [9], where a similar result was proved for the single obstacle problem Kψ,f .

Theorem 3.9. Let ψ1 : Ω → R and ψ2 : Ω → R. Assume that ψ2 is continuous.
Let also f ∈ N1,p(Ω) and u be a solution of the Kψ1,ψ2,f -obstacle problem. Then the
function u∗ : Ω → R defined by

u∗(x) = ess lim inf
y→x

u(y) = lim
r→0

ess inf
B(x,r)

u

is lower semicontinuous in Ω, and belongs to the same equivalence class in N1,p(Ω)
as u. Moreover, if ψ1 is continuous, then u∗ is continuous in Ω.
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Proof. Note first that u∗ does not take the values −∞ and∞ which follows from
Remark 3.3. Let α ∈ R, A = {x ∈ Ω : u∗(x) > α} and x0 ∈ A. Then we have

u∗(x0) = lim
r→0

ess inf
B(x0,r)

u > α,

hence there is δ > 0 such that ess inf
B(x0,δ)

u > α. As for all y ∈ B(x0, δ) there is δy > 0

such that B(y, δy) ⊂ B(x0, δ), we have

u∗(y) = ess lim inf
z→y

u(z) ≥ ess inf
B(y,δy)

u ≥ ess inf
B(x0,δ)

u > α.

This shows that the set A is open and that u∗ is lower semicontinuous in Ω.
To show that u∗ and u belong to the same equivalence class in N1,p(Ω), let ε > 0

and for every x ∈ Ω find a ball Bx = B(x, rx) such that

sup
Bx

ψ2 ≤ inf
Bx

ψ2 + ε.

Clearly we can cover Ω by countably many such balls. Let further v be the lower
semicontinuously regularized solution of the Kψ1,u(Bx)-obstacle problem provided
by Theorem 5.1 in Kinnunen–Martio [9]. Since u is a solution of the Kψ1,ψ2,u(Bx)-
obstacle problem (by Lemma 3.6), the comparison Lemma 3.4 implies that

(5) u ≤ v q.e. in Bx.

Next, as ψ1 ≤ u ≤ ψ2 ≤ supBx
ψ2 =: r q.e. in Bx, we have by the comparison

Lemma 3.4 that v ≤ r q.e. in Bx. Thus v is a solution of the Kψ1,r,u(Bx)-obstacle
problem, which implies that v − ε is a solution of the Kψ1−ε,r−ε,u−ε(Bx)-obstacle
problem. As ψ1 − ε ≤ ψ1, r − ε ≤ infBx ψ2 ≤ ψ2 and u − ε ≤ u in Bx, another
application of the comparison Lemma 3.4 implies that v−ε ≤ u q.e. in Bx. Together
with (5) we get

(6) v − ε ≤ u ≤ v q.e. in Bx

and thus v − ε = v∗ − ε ≤ u∗ ≤ v∗ = v everywhere in Bx. This and (6) imply that

(7) |u∗ − u| ≤ ε q.e. in Bx.

Hence |u∗ − u| ≤ ε q.e. in Ω, since for a given ε > 0 we can cover Ω by countably
many balls satisfying (7). Letting ε → 0 we obtain that u∗ = u q.e. in Ω.

Next we prove that u∗ is continuous if ψ1 is continuous. We already know that
u∗ is lower semicontinuous. To show that it is upper semicontinuous let ε > 0, x ∈ Ω
and choose Bx as above. Let v be the continuous solution of the Kψ1,u(Bx)-obstacle
problem provided by Theorem 5.5 in Kinnunen–Martio [9]. It is shown above that

(8) v(z)− ε ≤ u∗(z) ≤ v(z) for all z ∈ Bx.

Thus using that v is continuous we obtain

v(z)− ε = lim sup
y→z

v(y)− ε ≤ lim sup
y→z

u∗(y) ≤ lim sup
y→z

v(y) = v(z)

for all z ∈ Bx.

This and (8) give
∣∣∣∣lim sup

y→z
u∗(y)− u∗(z)

∣∣∣∣ ≤ ε for all z ∈ Bx and hence

∣∣∣lim sup
y→z

u∗(y)− u∗(z)
∣∣∣ ≤ ε for all z ∈ Ω.
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Letting ε → 0 we get that

lim sup
y→z

u∗(y) = u∗(z) for all z ∈ Ω.

This means that u∗ is continuous in Ω. ¤
The next theorem shows that the continuous solution of the continuous double

obstacle problem is a minimizer in the open set where the solution does not touch
the two obstacles.

Theorem 3.10. Let ψi : Ω → R, i = 1, 2, be continuous and f ∈ N1,p(Ω). Let
u be the continuous solution of the Kψ1,ψ2,f -obstacle problem. Let also

Ω′ = {x ∈ Ω : u(x) < ψ2(x)}.
Then u is a solution of the Kψ1,u(Ω

′)-obstacle problem. Moreover, u is a minimizer
in the open set {x ∈ Ω : ψ1(x) < u(x) < ψ2(x)} (with boundary values u).

Proof. Let v ∈ Kψ1,u(Ω
′) and note that min{u, v} ∈ Kψ1,ψ2,u(Ω

′). Using that u
is a solution of the Kψ1,ψ2,u(Ω

′)-obstacle problem we get that
∫

Ω′
gp

u dµ ≤
∫

Ω′
gp
min{u,v} dµ =

∫

{u≤v}
gp

u dµ +

∫

{u>v}
gp

v dµ.

It follows that ∫

{u>v}
gp

u dµ ≤
∫

{u>v}
gp

v dµ.

Note also that max{u, v} ∈ Kψ1,u(Ω
′). Lemma 2.2 and the above inequality then

imply that
∫

Ω′
gp
max{u,v} dµ =

∫

{u>v}
gp

u dµ +

∫

{u≤v}
gp

v dµ ≤
∫

Ω′
gp

v dµ.

Thus we conclude that it is enough to show that
∫

Ω′
gp

u dµ ≤
∫

Ω′
gp
max{u,v} dµ.

As max{u, v} ≥ u in Ω′, we may assume without loss of generality that v =
max{u, v} ≥ u in Ω′.

Let ε > 0. Using that Lipschitz functions with compact support are dense in
N1,p

0 (Ω′) and that 0 ≤ v − u ∈ N1,p
0 (Ω′) we conclude that there is 0 ≤ ϕ ∈ Lipc(Ω

′)
such that ‖ϕ− (v − u)‖N1,p(Ω) < ε. Let ṽ = ϕ + u, then we have

(∫

Ω′
gp

ṽ dµ

)1/p

≤
(∫

Ω′
gp

v dµ

)1/p

+ ε.

As u and ψ2 are continuous on the compact set supp ϕ and u(x) < ψ2(x) for every
x ∈ supp ϕ, we conclude that there is σ > 0 such that u + σ ≤ ψ2 on supp ϕ. Let
0 < t < 1 be such that

t max
Ω′

ϕ ≤ σ.

Then
ψ1(x) ≤ w(x) := u(x) + t(ṽ(x)− u(x)) = u(x) + tϕ(x) ≤ ψ2(x)
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for every x ∈ Ω′. Since w − u = tϕ ∈ N1,p
0 (Ω′) and ψ1 ≤ w ≤ ψ2 in Ω′, we obtain

that w ∈ Kψ1,ψ2,u(Ω
′). The convexity of the function z 7→ zp and the fact that u is a

solution of the Kψ1,ψ2,u(Ω
′)-obstacle problem imply that

∫

Ω′
gp

u dµ ≤
∫

Ω′
gp

w dµ =

∫

Ω′
gp

u+t(ṽ−u) dµ

≤
∫

Ω′
((1− t)gu + tgṽ)

p dµ ≤ (1− t)

∫

Ω′
gp

u dµ + t

∫

Ω′
gp

ṽ dµ.

This implies that

t

∫

Ω′
gp

u dµ ≤ t

∫

Ω′
gp

ṽ dµ,

and hence ∫

Ω′
gp

u dµ ≤
∫

Ω′
gp

ṽ dµ ≤
[(∫

Ω′
gp

v dµ

)1/p

+ ε

]p

.

Since ε > 0 was arbitrary we obtain that
∫

Ω′
gp

u dµ ≤
∫

Ω′
gp

v dµ

and hence u is a solution of the Kψ1,u(Ω
′)-obstacle problem.

Next, since {x ∈ Ω′ : u(x) > ψ1(x)} = {x ∈ Ω : ψ1(x) < u(x) < ψ2(x)}, it
follows from Theorem 5.5 in Kinnunen–Martio [9] that u is a minimizer in the open
set {x ∈ Ω : ψ1(x) < u(x) < ψ2(x)}. ¤

4. Boundary regularity

Definition 4.1. Let V be a bounded open set with Cp(X \ V ) > 0 and f ∈
N1,p(V ). The p-harmonic extension HV f of f to V is the continuous solution of the
K−∞,f -obstacle problem. We write Hf = HΩf .

A Lipschitz function f on ∂Ω can be extended to a function f̃ ∈ Lip(Ω) such that
f̃ = f on ∂Ω. As Hf̃ only depends on f̃ |∂Ω = f (by the comparison Lemma 3.4), we
define Hf = Hf̃ .

Definition 4.2. A point x ∈ ∂Ω is regular if

lim
Ω3y→x

Hf(y) = f(x) for all f ∈ Lip(∂Ω).

If x ∈ ∂Ω is not regular, it is irregular. We also say that Ω is regular if every x ∈ ∂Ω
is regular.

Regularity can be characterized in many different ways, see Björn–Björn [2],
Theorem 6.1.

For A, Ω ⊂ X we introduce the space of Newtonian functions with zero boundary
values in A \ Ω as follows

N1,p
0 (Ω; A) = {f |Ω∩A : f ∈ N1,p(A) and f = 0 q.e. in A \ Ω}.

One can see that N1,p
0 (Ω; A) = N1,p

0 (Ω; A ∩ Ω).
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Definition 4.3. For A ⊂ X and f : A → R, let

Cp- sup
A

f = inf{k ∈ R : Cp({x ∈ A : f(x) > k}) = 0},
Cp- inf

A
f = sup{k ∈ R : Cp({x ∈ A : f(x) < k)}) = 0},

Cp- lim sup
y→x

f(y) = lim
r→0

Cp- sup
B(x,r)

f,

Cp- lim inf
y→x

f(y) = lim
r→0

Cp- inf
B(x,r)

f.

The following theorem is a generalization of Theorem 5.6 from Björn–Björn [2]
where it was proved for the single obstacle problem, i.e. for ψ2 ≡ ∞ and m = m′.

Theorem 4.4. Let ψi : Ω → R, i = 1, 2, and f ∈ N1,p(Ω). Let u be a solution
of the Kψ1,ψ2,f -obstacle problem. Let x0 ∈ ∂Ω be a regular boundary point. Let

m′(f) = sup{k ∈ R : (f − k)− ∈ N1,p
0 (Ω; B(x0, r)) for some r > 0},

M ′(f) = inf{k ∈ R : (f − k)+ ∈ N1,p
0 (Ω; B(x0, r)) for some r > 0},

m = m(f ; ψ2) = min
{

m′(f), Cp- lim inf
Ω3y→x0

ψ2(y)
}

,

M = M(f ; ψ1) = max
{

M ′(f), Cp- lim sup
Ω3y→x0

ψ1(y)
}

.

Then
m ≤ Cp- lim inf

Ω3y→x0

u(y) ≤ Cp- lim sup
Ω3y→x0

u(y) ≤ M.

Proof. Let v be the lower semicontinuous regularized solution of the Kψ1,f -
obstacle problem, then by the comparison Lemma 3.4, u ≤ v q.e. in Ω and thus

Cp- lim sup
Ω3y→x0

u(y) ≤ Cp- lim sup
Ω3y→x0

v(y) ≤ lim sup
Ω3y→x0

v(y).

On the other hand we have lim sup
Ω3y→x0

v(y) ≤ M , by Theorem 5.6 in Björn–Björn [2].

Hence we obtain

(9) Cp- lim sup
Ω3y→x0

u(y) ≤ M,

which shows one inequality of the theorem.
To prove the other inequality, note first that −u is a solution of the K−ψ2,−ψ1,−f -

obstacle problem and that

M(−f ;−ψ2) = max
{

M ′(−f), Cp- lim sup
Ω3y→x0

(−ψ2(y))
}

= max
{
−m′(f),−Cp- lim inf

Ω3y→x0

ψ2(y)
}

= −min
{

m′(f), Cp- lim inf
Ω3y→x0

ψ2(y)
}

= −m(f ; ψ2).

This and (9) applied to −u imply that

−Cp- lim inf
Ω3y→x0

u(y) = Cp- lim sup
Ω3y→x0

(−u(y)) ≤ M(−f ;−ψ2) = −m.
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Hence
m ≤ Cp- lim inf

Ω3y→x0

u(y) ≤ Cp- lim sup
Ω3y→x0

u(y) ≤ M,

which finishes the proof. ¤

Theorem 4.5. Let ψi : Ω → R, i = 1, 2, and f ∈ N1,p(Ω). Let u be a solution
of the Kψ1,ψ2,f -obstacle problem and x0 ∈ ∂Ω be a regular boundary point. Assume
further that either

(a) f(x0) := lim
Ω3y→x0

f(y) exists, or

(b) f ∈ N1,p(Ω ∩B) for some ball B centered at x0, and that f |∂Ω is continuous
at x0.

Then
Cp- lim

Ω3y→x0

u(y) = f(x0)

if and only if

(10) Cp- lim sup
Ω3y→x0

ψ1(y) ≤ f(x0) ≤ Cp- lim inf
Ω3y→x0

ψ2(y).

Note that it is possible to have a soluble obstacle problem without (10), see
Example 5.7 in Björn–Björn [2].

Proof. Assume first that (10) holds, and let m and M be as in Theorem 4.4. Let
further ε > 0 and B′ = B(x0, r) ⊂ B be such that

|f(x)− f(x0)| < ε for

{
x ∈ B′ ∩ Ω in case (a),
x ∈ B′ ∩ ∂Ω in case (b).

Then (f − (f(x0) − ε))+ ∈ N1,p
0 (Ω; B′) and hence M ′ ≤ f(x0) + ε. By assumption

we have Cp- lim sup
Ω3y→x0

ψ1(y) ≤ f(x0) ≤ f(x0) + ε and thus M ≤ f(x0) + ε and letting

ε → 0 shows that M ≤ f(x0). Similarly as (f − (f(x0) − ε))− ∈ N1,p
0 (Ω; B′) we

conclude that m′ ≥ f(x0) − ε. It follows that m ≥ f(x0) − ε and by letting ε → 0
we get m ≥ f(x0). By Theorem 4.4 we obtain

m ≤ Cp- lim inf
Ω3y→x0

u(y) ≤ Cp- lim sup
Ω3y→x0

u(y) ≤ M ≤ f(x0) ≤ m

and hence
Cp- lim

Ω3y→x0

u(y) = f(x0).

Conversely assume that f(x0) < Cp- lim sup
Ω3y→x0

ψ1(y). As u ≥ ψ1 q.e. in Ω we obtain

f(x0) < Cp- lim sup
Ω3y→x0

ψ1(y) ≤ Cp- lim sup
Ω3y→x0

u(y).

Similarly, it follows that f(x0) > Cp- lim inf
Ω3y→x0

u(y), when f(x0) > Cp- lim inf
Ω3y→x0

ψ2(y).

Hence f(x0) 6= Cp- lim
Ω3y→x0

u(y). ¤

Corollary 4.6. Let ψ1 : Ω → [−∞,∞) and ψ2 : Ω → (−∞,∞] be continuous
and f ∈ N1,p(Ω)∩C(∂Ω). Let Ω be regular and such that for every x ∈ ∂Ω we have

lim sup
Ω3y→x

ψ1(y) ≤ f(x) ≤ lim inf
Ω3y→x

ψ2(y).
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Let u be the continuous solution of the Kψ1,ψ2,f -obstacle problem given by Theo-
rem 3.9. If we let u = f on ∂Ω, then u ∈ C(Ω).

In the following theorem (d) and (e) are new characterizations to regularity and
add to the characterizations in Björn–Björn [2],Theorems 4.2 and 6.1.

Theorem 4.7. Let x0 ∈ ∂Ω, δ > 0 and B = B(x0, δ). Then the following
conditions are equivalent:

(a) The point x0 is a regular boundary point.
(b) It is true that

lim
Ω3y→x0

Hf(y) = f(x0)

for all f ∈ N1,p(Ω) such that f(x0) := lim
Ω3y→x0

f(y) exists.

(c) It is true that
lim

Ω3y→x0

Hf(y) = f(x0)

for all f ∈ N1,p(Ω ∪ (B ∩ Ω)) such that f |∂Ω is continuous at x0.
(d) For all f ∈ N1,p(Ω) and all ψ1, ψ2 : Ω → R such that Kψ1,ψ2,f 6= ∅,

Cp- lim sup
Ω3y→x0

ψ1(y) ≤ f(x0) ≤ Cp- lim inf
Ω3y→x0

ψ2(y)

and f(x0) := lim
Ω3y→x0

f(y), any solution of the Kψ1,ψ2,f -obstacle problem

satisfies
Cp- lim

Ω3y→x0

u(y) = f(x0).

(e) For all f ∈ N1,p(Ω ∪ (B ∩ Ω)) such that f |∂Ω is continuous at x0 and all
ψ1, ψ2 : Ω → R such that Kψ1,ψ2,f 6= ∅ and

Cp- lim sup
Ω3y→x0

ψ1(y) ≤ f(x0) ≤ Cp- lim inf
Ω3y→x0

ψ2(y),

any solution u of the Kψ1,ψ2,f -obstacle problem satisfies

Cp- lim
Ω3y→x0

u(y) = f(x0).

Proof. (a) ⇔ (b) ⇔ (c) These are Theorems 4.2 and 6.1 in Björn–Björn [2].
(a) ⇒ (d) and (a) ⇒ (e) This follows from Theorem 4.5.
(d) ⇒ (b) and (e) ⇒ (c) This is trivial as Hf is the continuous solution of the
K−∞,∞,f -obstacle problem. ¤
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