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Abstract. Classical results of Pelczynski and of Zippin concerning bases in Banach spaces
are extended to the Fréchet space setting, thus answering a question posed by Kalton almost 40
years ago. Equipped with these results, we prove that a Fréchet space with a basis is reflexive
(resp. Montel) if and only if every power bounded operator is mean ergodic (resp. uniformly mean
ergodic). New techniques are developed and many examples in classical Fréchet spaces are exhibited.

1. Introduction and statement of the main results

A continuous linear operator T in a Banach space X (or a locally convex Haus-
dorff space, briefly lcHs) is called mean ergodic if the limits

(1.1) Px := lim
n→∞

1

n

n∑
m=1

Tmx, x ∈ X,

exist (in the topology of X). von Neumann (1931) proved that unitary operators in
Hilbert space are mean ergodic. Ever since, intensive research has been undertaken
concerning mean ergodic operators and their applications; for the period up to the
1980’s see [19, Ch. VIII Section 4], [25, Ch. XVIII], [33, Ch. 2], and the references
therein. A continuous linear operator T in X (the space of all such operators is
denoted by L (X)) is called power bounded if supm≥0 ‖Tm‖ < ∞. Such a T is mean
ergodic if and only if

(1.2) X = {u ∈ X : u = Tu} ⊕ Im(I − T ),

where Im(I − T ) denotes the range of I − T and the bar denotes “closure in X”.
It quickly became evident that there was an intimate connection between geo-

metric properties of the underlying Banach space X and mean ergodic operators
on X. The space X itself is called mean ergodic if every power bounded operator
T ∈ L (X) satisfies (1.1). As a sample, F. Riesz (1938) showed that all Lp-spaces
(1 < p < ∞) are mean ergodic. In 1939 Lorch proved that all reflexive Banach spaces
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are mean ergodic. Sucheston, [51], posed the following question, concerning the con-
verse of Lorch’s result: If every contraction in a Banach space X is mean ergodic, is
X reflexive? In 1997, Emel’yanov showed that every mean ergodic Banach lattice is
reflexive, [20]. A major breakthrough came in 2001 in the penetrating paper of Fonf,
Lin and Wojtaszczyk, [23]. By using the theory of bases in Banach spaces, they were
able to establish (amongst other things) the following characterizations for a Banach
space X with a basis :

(i) X is finite dimensional if and only if every power bounded operator is uni-
formly mean ergodic (i.e. the limit (1.1) exists uniformly on the unit ball of
X).

(ii) X is reflexive if and only if every power bounded operator is mean ergodic
(i.e. if and only if X is mean ergodic).

Essential to their arguments are two classical results on bases in Banach spaces.
Namely, a result of Pelczynski, [15, p. 54], [39, p. 77], stating that if X is non-reflexive,
then it possesses a non-reflexive (separable), closed subspace with a basis, and a result
of Zippin, [55], stating that if a non-reflexive Banach space has a basis, then it has a
non-shrinking basis. The first result for (a special class of) power bounded operators
T on certain lcHs’ X is due to Altman, [4]. The restriction on T that Altman imposed
(a weak compactness condition) was later removed by Yosida [54, Ch. VIII]. For quasi-
compact operators and R-endomorphisms in lcHs’, a mean ergodic theorem due to
Pietsch is also available, [42]. Our aim is to present several results in Fréchet spaces
X (some being in the spirit of [23]) which connect geometric/analytic properties of
the underlying space X to mean ergodicity of operators acting on X. To be more
precise, T ∈ L (X) is called power bounded if {Tm}∞m=0 is an equicontinuous subset
of L (X). Since the requirement (1.1) is not dependent on X being normable, an
operator T ∈ L (X) is again called mean ergodic whenever it satisfies (1.1).

Technical terms concerning lcHs’ X and various types of bases will be formally
defined later. A general reference is [40]. Let us recall that if ΓX is a system of con-
tinuous seminorms generating the topology of X, then the strong operator topology
τs in L (X) is determined by the seminorms

(1.3) qx(S) := q(Sx), S ∈ L (X),

for each x ∈ X and q ∈ ΓX (in which case we write Ls(X)), and the uniform operator
topology τb in L (X) is defined by the family of seminorms

(1.4) qB(S) := sup
x∈B

q(Sx), S ∈ L (X),

for each q ∈ ΓX and bounded set B ⊆ X (in which case we write Lb(X)). One refers
to τb as the topology of uniform convergence on the bounded sets of X. If X is a
Banach space, then τb is precisely the operator norm topology on L (X). A Fréchet
space is a complete metrizable locally convex space. If X is a Fréchet space, then
ΓX can be taken countable. The result of Pelczynski and that of Zippin mentioned
above, both crucial if any headway is to be made in the non-normable setting, have
been extended, each one being of independent interest.

Theorem 1.1. Every non-reflexive Fréchet space contains a non-reflexive, closed
subspace with a basis.



Mean ergodic operators in Fréchet spaces 403

Theorem 1.2. A complete, barrelled lcHs with a basis is reflexive if and only if
every basis is shrinking if and only if every basis is boundedly complete.

Theorem 1.2 clearly implies Zippin’s result in the Banach space setting. It should
be noted that Theorem 1.2 provides a positive answer to a question posed by Kalton
almost 40 years ago, [28, p. 265].

Given any T ∈ L (X), X an arbitrary lcHs, let us introduce the notation

(1.5) T[n] :=
1

n

n∑
m=1

Tm, n ∈ N,

for the Cesàro means of T . The operator T is called mean ergodic when {T[n]}∞n=1

is a convergent sequence in Ls(X). In case X is barrelled it is enough to assume
that limn→∞ T[n]x exists in X for every x ∈ X; see (1.1). If {T[n]}∞n=0 happens to
be convergent in Lb(X), then T will be called uniformly mean ergodic. The space
X itself is called uniformly mean ergodic if every power bounded operator on X
is uniformly mean ergodic. Equipped with Theorems 1.1 and 1.2 it is possible to
establish the following two facts.

Theorem 1.3. Let X be a Fréchet space with a basis. Then X is Montel if and
only if every power bounded, mean ergodic operator on X is uniformly mean ergodic,
that is, if and only if X is uniformly mean ergodic.

Theorem 1.3 can be interpreted as an extension of (i) above. The following
extension of (ii) above is also presented.

Theorem 1.4. A Fréchet space X with a basis is reflexive if and only if every
power bounded operator on X is mean ergodic.

The mean ergodicity and uniform mean ergodicity of such classical Fréchet spaces
as the Köthe echelon spaces λ0(A) and λp(A), for 1 ≤ p ≤ ∞, the sequence spaces
`p+ :=

⋂
q>p `q for 1 ≤ p < ∞, the Lebesgue spaces Lp− :=

⋂
1≤r<p Lr([0, 1]) for

p ∈ (1,∞) and the spaces Lp
`oc(R) of measurable locally p-th integrable functions,

for 1 ≤ p < ∞, are completely determined.
For the following fact in Banach spaces, see [23, Theorem 1].

Theorem 1.5. Let X be any Fréchet space which admits a non-shrinking Schau-
der decomposition. Then there exists a power bounded operator on X which is not
mean ergodic (i.e. X is not mean ergodic).

Our final sample result is the following one. For the Banach space case it follows
from a result of Emel’yanov and Wolff, [21, Theorem 3.1].

Theorem 1.6. Let X be a Fréchet space which contains an isomorphic copy of
the Banach space c0. Then there exists a power bounded operator on X which is not
mean ergodic (i.e. X is not mean ergodic).

2. Preliminary results and some examples

Given any lcHs X and T ∈ L (X) we always have the identities

(2.1) (I − T )T[n] = T[n](I − T ) =
1

n
(T − T n+1), n ∈ N,
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and also (setting T[0] := I, the identity operator on X) that

(2.2)
1

n
T n = T[n] − (n− 1)

n
T[n−1], n ∈ N.

Some authors prefer to use 1
n

∑n−1
m=0 Tm in place of T[n]; since

T[n] = T
( 1

n

n−1∑
m=0

Tm
)

=
1

n
(T n − I) +

1

n

n−1∑
m=0

Tm, n ∈ N,

this leads to identical results. Recall the notation ker(T ) := {x ∈ X : Tx = 0}. The
following result is due to Yosida, [54, Ch. VIII, §3].

Proposition 2.1. Let X be a lcHs and T ∈ L (X) be power bounded. Then

(2.3) Im(I − T ) = {x ∈ X : lim
n→∞

T[n]x = 0}
and so, in particular,

(2.4) Im(I − T ) ∩ ker(I − T ) = {0}.
A subset A of a lcHs X is called relatively sequentially σ(X,X ′)-compact if every

sequence in A contains a subsequence which is σ(X, X ′)-convergent to some element
of X. As a consequence of Proposition 2.1, Yosida established the following mean
ergodic theorem, [54, Ch. VIII; §3].

Theorem 2.2. Let X be a lcHs and T ∈ L (X) be a power bounded operator
such that

(2.5) {T[n]x}∞n=1 is relatively sequentially σ(X,X ′)-compact, ∀x ∈ X.

Then T is mean ergodic and the operator P = limn→∞ T[n] (limit existing in Ls(X))
is a projection satisfying Im(P ) = ker(I − T ) and ker(P ) = Im(I − T ) with

(2.6) X = Im(I − T )⊕ ker(I − T ).

For X a Banach space, the above result is the customary one, that is, T is required
to satisfy supn ‖T n‖ < ∞, which clearly implies

(2.7) lim
n→∞

1

n
T n = 0, in Ls(X).

By the principle of uniform boundedness, every mean ergodic operator T necessarily
satisfies

(2.8) sup
n
‖T[n]‖ < ∞,

that is, T is Cesàro bounded (in the terminology of [33, Ch. 2]). On the other hand,
(2.8) is also sufficient for mean ergodicity of T whenever T additionally satisfies (2.5)
and (2.7), [33, p. 72]. Hille exhibited a classical kernel operator T in L1([0, 1]) which
fails to be power bounded (actually, ‖T n‖ = 0(n1/4)) but, nevertheless, is mean
ergodic (and hence, satisfies (2.8)), [24, §6]. Actually, for this example, it is shown
in [24] that T[n] → 0 in Ls(X) as n → ∞ which then implies, via (2.2), that (2.7)
holds. There also exist operators T ∈ L (X) which satisfy (2.8) but fail to satisfy
(2.7), even with X a finite dimensional space, [22, Example 4.7]. In view of such
features (see also [33, p. 85], [43], for further relevant comments), it is not surprising
that some authors take the viewpoint that “it is not the power boundedness of T
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but, rather the existence of the limit (2.7), which is essential in ergodic theory”; this
viewpoint is explicitly stated in [18, p. 186], [38, p. 214], for example. The proof of
the following version of Proposition 2.1 is routine.

Proposition 2.3. Let X be a barrelled lcHs. Let the operator T ∈ L (X) satisfy
(2.7) and the condition

(2.9) {T[n]x}∞n=1 is a bounded set in X, ∀x ∈ X.

Then T satisfies both (2.3) and (2.4).

Given T ∈ L (X), its dual operator T t : X ′ → X ′ is defined by 〈Tx, x′〉 =
〈x, T tx′〉 for all x ∈ X and x′ ∈ X ′. Let us denote X equipped with its weak
topology σ(X, X ′) by Xσ.

Theorem 2.4. Let X be a barrelled lcHs and T ∈ L (X). Then T is mean
ergodic if and only if it satisfies both (2.5) and (2.7).

Setting P := limn→∞ T[n] (existence of the limit in Ls(X)), the operator P is a
projection which commutes with T and satisfies Im(P ) = ker(I − T ) and ker(P ) =

Im(I − T ). Moreover, X satisfies (2.6).

Proof. If T is mean ergodic, then it follows from (2.2) that (2.7) holds. Moreover,
(2.5) is also satisfied. Conversely, suppose that T satisfies (2.5) and (2.7). Fix x ∈ X.
By (2.5) there exists x0 ∈ X and a subsequence such that T[nk]x → x0 in Xσ. It
follows from (2.1) and (2.7) that

(2.10) lim
n→∞

(TT[n] − T[n])x = lim
n→∞

((n + 1)

n
· 1

(n + 1)
T n+1x− 1

n
Tx

)
= 0,

in X, and hence, that (TT[nk]−T[nk])x → 0 in Xσ. So, TT[nk]x → x0 in Xσ. According
to (2.10), for each x′ ∈ X ′, we then have

lim
k→∞

〈TT[nk]x, x′〉 = lim
k→∞

〈T[nk]x, x′〉 = 〈x0, x
′〉.

Using the identities

〈TT[nk]x, x′〉 = 〈T[nk]x, T tx′〉, k ∈ N,

it follows that 〈x0, x
′〉 = 〈x0, T

tx′〉 = 〈Tx0, x
′〉. Since x′ ∈ X ′ is arbitrary, we have

Tx0 = x0 and hence, via (1.5), that

(2.11) T[n]x0 = x0, n ∈ N.

Accordingly, we have

(2.12) x− x0 = x− lim
k→∞

T[nk]x = lim
k→∞

(x− T[nk]x)

in Xσ. Now, since x−T[n]x = (I−T )
∑n

m=1
1
n
(I+T +...+Tm−1)x ∈ Im(I−T ), n ∈ N,

we conclude that {x−T[nk]x}∞k=1 ⊆ Im(I −T ). That is, x−x0 belongs to the closure
of Im(I − T ) in Xσ which, of course, coincides with Im(I − T ), [31, p. 236]. Since
(2.5) implies (2.9), Proposition 2.3 is available and hence, (2.3) holds. It follows,
because x− x0 ∈ Im(I − T ), that T[n](x− x0) → 0 in X. Combined with (2.11) this
yields limn→∞ T[n]x = x0 (in X). So, we can define a linear map P : X → X by

(2.13) Px := lim
n→∞

T[n]x, x ∈ X.

Since X is barrelled, actually P ∈ L (X), [32, p. 141]; in particular, T[n] → P in
Ls(X), that is, T is mean ergodic.
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Note that Px = x0 implies that TPx = Px for each x ∈ X, that is, TP = P . It
then follows that T[n]P = P for all n ∈ N and hence, that P 2x = limn→∞ T[n](Px) =
Px, for x ∈ X, and P is a projection. On the other hand, (2.1) and (2.7) imply that
T[n] − T[n]T = 1

n
(T − T n+1) → 0 in Ls(X), that is, P = PT (see (2.13)). So, P and

T commute.
According to (2.3) and (2.13) we have Im(I − T ) = ker(P ). It is routine to verify

that ker(I − T ) = Im(P ). Since P is a projection, (2.6) follows. ¤

Corollary 2.5. Let X be a barrelled lcHs such that each bounded set in X is
relatively sequentially σ(X, X ′)-compact. If T ∈ L (X) satisfies (2.7) and (2.9), then
T is mean ergodic.

Proof. Under the given hypothesis on X, condition (2.9) implies (2.5) and hence,
Theorem 2.4 applies. ¤

Remark 2.6. (i) In any lcHs X, conditions (2.7) and (2.9) are satisfied by
every power bounded operator T ∈ L (X). Indeed, fix q ∈ ΓX . By the assumed
equicontinuity of {T n}∞n=0 there exists p ∈ ΓX satisfying

(2.14) q(T nx) ≤ p(x), x ∈ X, n ∈ N.

It follows that q(T[n]x) ≤ 1
n

∑n
m=1 q(Tmx) ≤ p(x), for x ∈ X, n ∈ N, which clearly

implies (2.9). Moreover, (2.14) gives that q( 1
n
T nx) ≤ 1

n
p(x) for all x ∈ X and n ∈ N

which yields (2.7).
(ii) Reflexive lcHs’ which are either Fréchet, (DF)- or (LF)-spaces satisfy the

hypotheses of Corollary 2.5; see [10, Theorem 11, Examples 1,2].

Corollary 2.7. Every reflexive lcHs which is a (DF)- or (LF)-space (in partic-
ular, any reflexive Fréchet space) is mean ergodic.

Proposition 2.8. Let X be any (DF)- or (LF)-space (in particular, any Fréchet
space) which is Montel. Then X is uniformly mean ergodic.

Proof. Let T ∈ L (X) be power bounded. Since X is reflexive, [31, p. 369],
Corollary 2.7 implies that T is mean ergodic. Set P := limn→∞ T[n], with the limit
existing in Ls(X). Since X is barrelled and H := {P} ∪ {T[n]}∞n=1 is bounded in
Ls(X), it follows that H is an equicontinuous subset of L (X), [32, (2) p. 137]. So,
τs and the topology τc in L (X) of uniform convergence on the precompact sets of
X coincide on H, [32, (2) p. 139]. But, bounded sets in Montel spaces are relatively
compact (per definition) and so T[n] → P in Lb(X), that is, T is uniformly mean
ergodic. ¤

Let Λ be an index set, always assumed to be countable. Any increasing sequence
A = (an)n of functions an : Λ → (0,∞) is called a Köthe matrix on Λ, where by
increasing we mean 0 < an(i) ≤ an+1(i) for all i ∈ Λ and n ∈ N. To each p ∈ [1,∞)
is associated the linear space

(2.15) λp(A) := {x ∈ CΛ : q(p)
n (x) :=

( ∑
i∈Λ

|an(i)xi|p
)1/p

< ∞, ∀n ∈ N}.

We also require the linear space

(2.16) λ∞(A) := {x ∈ CΛ : q(∞)
n (x) := sup

i∈Λ
an(i)|xi| < ∞, ∀n ∈ N}
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and its closed subspace (equipped with the relative topology)

λ0(A) := {x ∈ CΛ : lim
i→∞

an(i)xi = 0, ∀n ∈ N}.

Elements x ∈ CΛ are denoted by x = (xi). The spaces λp(A), for p ∈ [1,∞], are
called Köthe echelon spaces (of order p); they are all Fréchet spaces (separable if
p 6= ∞ and reflexive if p 6= 1,∞) relative to the increasing sequence of seminorms
q
(p)
1 ≤ q

(p)
2 ≤ . . .. For the general theory of such spaces we refer to [31], [40], for

example.

Proposition 2.9. Let A be a Köthe matrix and 1 < p < ∞. The reflexive
Fréchet space λp(A) is Montel if and only if it is uniformly mean ergodic.

Proof. Suppose that λp(A) is not Montel. According to the proof of Proposi-
tion 2.5(ii) in [8] there exists a direct sum decomposition λp(A) = Y ⊕ Z with Z
isomorphic to the Banach space `p. Yahdi exhibited a power bounded operator on `2

which fails to be uniformly mean ergodic, [53, Example 2.4]. It is routine to check
that the “same operator”, say S, now considered to be acting in `p, is also power
bounded but not uniformly mean ergodic. Denote the operator S, when transferred
to Z, by R. Then T : Y ⊕Z → Y ⊕Z given by T (y, z) := (0, Rz), for (y, z) ∈ Y ⊕Z,
is a power bounded operator on λp(A) which fails to be uniformly mean ergodic. In
particular the Köthe echelon space λp(A) is not uniformly mean ergodic. ¤

Recall the separable Fréchet spaces Lp− :=
⋂

1≤r<p Lr([0, 1]), for p ∈ (1,∞),
equipped with the seminorms

(2.17) qp,β(m)(f) :=
( ∫ 1

0

|f(t)|β(m) dt
)1/β(m)

, f ∈ Lp−,

for any increasing sequence 1 ≤ β(m) ↑ p as m → ∞. These spaces, which are all
reflexive, have been studied in [11].

Lemma 2.10. Each Fréchet space Lp−, for 1 < p < ∞, contains a complemented
subspace which is a Banach space isomorphic to `2.

Proof. Consider the Rademacher functions (ri)
∞
i=0 on [0, 1] which are orthonormal

in L2([0, 1]). For every 1 ≤ p < ∞, Khinchine’s inequality ensures the existence of
constants Ap, Bp > 0 such that

(2.18) Ap

( n∑
i=0

|αi|2
)1/2

≤
( ∫ 1

0

∣∣∣
n∑

i=0

αiri(t)
∣∣∣
p

dt
)1/p

≤ Bp

( n∑
i=0

|αi|2
)1/2

,

for all choices of scalars (αi)
n
i=0 and n ∈ N0, [16, pp.13-14], [36, Theorem 2.b.3].

It follows from (2.18) that on the closed subspace Z, of Lp−, which is spanned by
(ri)

∞
i=0 the relative topology from Lp− is a norm topology and that Z endowed with

this topology is canonically isomorphic to `2.
Fix p ∈ (1,∞). Given f ∈ Lp−, set 〈f, ri〉 :=

∫ 1

0
f(t)ri(t) dt for i = 0, 1, 2, . . ..

Then, in the notation of (2.17), we have for each n ∈ N0 (by (2.18) and Hölder’s
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inequality) that
n∑

i=0

|〈f, ri〉|2 =

∫ 1

0

f(t)
( n∑

i=0

〈f, ri〉ri(t)
)

dt ≤ qq,β(m)(f) ·
∥∥∥

n∑
i=0

〈f, ri〉ri

∥∥∥
Lβ(m)′ ([0,1])

≤ qp,β(m)(f)Bβ(m)′ ·
( n∑

i=0

|〈f, ri〉|2
)1/2

,

where 1 < β(m)′ < ∞ satisfies 1
β(m)

+ 1
β(m)′ = 1. Then, for n large enough,

( n∑
i=0

|〈f, ri〉|2
)1/2

≤ Bβ(m)′qp,β(m)(f)

and hence, by letting n →∞, we see that

(2.19)
( ∞∑

i=0

|〈f, ri〉|2
)1/2

≤ Bβ(m)′qp,β(m)(f), f ∈ Lp−.

Accordingly, the linear map P : Lp− → Lp− defined by

Pf :=
∞∑
i=0

〈f, ri〉ri, f ∈ Lp−,

is well defined. To see that P is continuous, fix m ∈ N. Then, for each f ∈ Lp−, it
follows from (2.18) and (2.19) that

qp,β(m)(Pf) = qp,β(m)

( ∞∑
i=0

〈f, ri〉ri

)
≤ Bβ(m)

( ∞∑
i=0

|〈f, ri〉|2
)1/2

≤ Bβ(m)Bβ(m)′qp,β(m)(f).

That P is a projection follows from the fact that (ri)
∞
i=0 is an orthonormal sequence.

So, P ∈ L (Lp−) is a projection of Lp− onto Z and hence, Z is a complemented
subspace of Lp− which is a Banach space isomorphic to `2. ¤

Since `2 is not uniformly ergodic, an argument as in the proof of Proposition 2.9
yields the following result.

Proposition 2.11. Let 1 < p < ∞. Then the reflexive Fréchet space Lp− fails
to be uniformly mean ergodic.

As usual ω will denote CN when equipped with the seminorms

(2.20) qn(x) := max
1≤i≤n

|xi|, x ∈ ω,

for each n ∈ N, and

(2.21) s = {x ∈ CN : pn(x) := sup
i∈N

in|xi| < ∞, ∀n ∈ N}

is the space of all rapidly decreasing sequences. Both are nuclear Fréchet spaces
and hence, also Montel. For A := (an)n with an(i) := in, for i ∈ N, it is known
that s = λp(A) for all p ∈ [1,∞], [40, p. 360]. For each p ∈ [1,∞), the sequence



Mean ergodic operators in Fréchet spaces 409

space `p+ :=
⋂

q>p `q is a separable, reflexive Fréchet space when equipped with the
seminorms

(2.22) qn,p(x) :=
( ∞∑

i=1

|xi|β(n)
)1/β(n)

, x ∈ `p+,

where β(n) := p + 1
n
for n ∈ N. This family of spaces was studied in [41].

For Banach spaces, the following criterion is due to Sine, [49].

Theorem 2.12. Let X be a lcHs and T ∈ L (X) be power bounded such that
ker(I − T ) = {0}. Then T is mean ergodic if and only if ker(I − T t) = {0}.

Proof. Let T be mean ergodic. Suppose that ker(I − T t) 6= {0}. Then there
exist u ∈ ker(I − T t) ⊆ X ′ and x ∈ X satisfying 〈u, x〉 = 1. It follows from u = T tu
that 〈Tmx, u〉 = 〈x, (T t)mu〉 = 〈x, u〉 for all m ∈ N and hence, via (1.5), that
〈T[n]x, u〉 = 〈x, u〉 = 1 for all n ∈ N. That is, limn→∞〈T[n]x, u〉 = 1. The mean
ergodicity of T ensures that x0 := limn→∞ T[n]x exists. It follows from (1.5) that

Tx0 = lim
n→∞

1

n

n∑
m=1

Tm+1x = lim
n→∞

(
T[n]x− 1

n
Tx +

1

n
T n+1x

)
.

Clearly 1
n
Tx → 0 and also 1

n
T n+1x → 0 as T is mean ergodic; see (2.2). So, x0 = Tx0

and hence, x0 = 0 because ker(I − T ) = {0}. That is, T[n]x → 0 and hence,
〈T[n]x, u〉 → 0; contradiction. So, ker(I − T t) = {0}.

Now suppose that ker(I − T t) = {0}. If X 6= Im(I − T ), then there exists
x′ ∈ X ′ \ {0} whose restriction to Im(I − T ) is zero, that is,

〈x, (I − T t)x′〉 = 〈(I − T )x, x′〉 = 0, ∀x ∈ X.

Accordingly, x′ is a non-zero element of ker(I−T t); contradiction. So X = Im(I − T ).
According to Proposition 2.1 we have

X = Im(I − T ) = {x ∈ X : lim
n→∞

T[n]x = 0},

that is, T[n] → 0 in Ls(X). Hence, T is mean ergodic. ¤

Proposition 2.13. Let A be any Köthe matrix. Then the following assertions
are equivalent.

(i) λ∞(A) is mean ergodic.
(ii) λ∞(A) is uniformly mean ergodic.
(iii) λ∞(A) is a Montel space.
(iv) λ∞(A) does not contain an isomorphic copy of `∞.
(v) λ0(A) is mean ergodic.
(vi) λ0(A) is uniformly mean ergodic.
(vii) λ0(A) is a Montel space.
(viii) λ0(A) does not contain an isomorphic copy of c0.
(ix) λ1(A) is mean ergodic.
(x) λ1(A) is uniformly mean ergodic.
(xi) λ1(A) is Montel.
(xii) λ1(A) does not contain an isomorphic copy of `1.

Proof. (iii) ⇒ (ii) by Proposition 2.8 and (ii) ⇒ (i) is obvious.
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Suppose that λ∞(A) is not Montel. According to [9, Proposition 2.3] we have
λ∞(A) = Y ⊕ Z with Z isomorphic to `∞. Hence, there exists a power bounded
operator on λ∞(A) which is not mean ergodic. This establishes (i) ⇒ (iii) and also
(iv) ⇒ (iii) was established along the way.

(iii) ⇒ (iv) is trivial.
(iii) ⇔ (vii) is known and is equivalent to λ0(A) = λ∞(A); see for example, [40,

Theorems 27.9 and 27.15].
Again (vii) ⇒ (vi) by Proposition 2.8 and (vi) ⇒ (v) is clear.
Suppose that λ0(A) is not Montel. Then λ0(A) contains a sectional subspace

which is complemented in λ0(A) and is isomorphic to c0; see, for example, the proof
of Proposition 2.5(ii) in [8] which also applies when p = 0 there. Thus, we have
established that (v) ⇒ (vii) and (viii) ⇒ (vii).

(vii) ⇒ (viii). Since c0 is not reflexive, the same argument used for the proof of
(iii) ⇒ (iv) is again applicable.

(iii) ⇔ (xi) is immediate from [40, Proposition 27.9].
(xi) ⇒ (xii). Since `1 is not reflexive, the same argument used for the proof of

(iii) ⇒ (iv) is again applicable.
Suppose that λ1(A) is not Montel. Then λ1(A) contains a sectional subspace

which is complemented in λ1(A) and is isomorphic to `1. This implies (ix) ⇒ (xi)
and (xii) ⇒ (xi).

Finally, (xi) ⇒ (x) by Proposition 2.8 and (x) ⇒ (ix) is clear. ¤

Remark 2.14. (i) A lcHs which contains an isomorphic copy of `∞ contains it as
a complemented subspace, [27, Corollary 7.4.6]. Therefore every lcHs which contains
a copy of `∞ fails to be mean ergodic.

(ii) An analogue of part (i) is also available for c0 and is based on the following
version of

Sobczyk’s Theorem. Let X be a separable lcHs which contains an isomorphic
copy of c0. Then X contains a complemented copy of c0.

Its proof proceeds as follows: one modifies in an obvious way the last part of the
proof of the classical Banach space version of Sobczyk’s theorem, as presented in [27,
p. 160], by replacing there the use of Theorem 7.4.4 of [27] with Corollary 7.4.5 of
[27].

Each Fréchet space `p+, for 1 ≤ p < ∞, has no closed subspace isomorphic to
any (infinite dimensional) Banach space, [41, p. 10]. So, an argument as in the proof
of Proposition 2.11 cannot be used for `p+.

The following class of multiplication operators will be useful. Let X denote any
one of the sequence spaces ω, s, `p, c0, `

p+ or λp(A). Given any sequence of numbers
0 < µi < 1, for i ∈ N, define a linear operator T (µ) ∈ L (X) by

(2.23) T (µ)x := (µixi), x ∈ X.

Direct calculation shows, for each n ∈ N, that

(2.24) T
(µ)
[n] x =

1

n

( µi

(1− µi)
· (1− µn

i )xi

)
i

x ∈ X.
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Suppose, in addition, that µi ↑ 1. Then there exists an increasing sequence of integers
ni →∞ satisfying ni ≤ 1

(1−µi)
< 1 + ni, for i ∈ N, and hence,

(2.25)
1

ni

µi

(1− µi)
· (1− µni

i ) ≥ µ1

(
1− (

1− (ni + 1)−1
)ni

)
, i ∈ N.

Proposition 2.15. For each 1 ≤ p < ∞, the reflexive Fréchet space `p+ is mean
ergodic but, not uniformly mean ergodic.

Proof. First note that the Banach space `p is continuously included in `p+ and
hence, the unit ball B of `p is a bounded set in `p+. Let 0 < µi ↑ 1 and define
the power bounded operator T (µ) ∈ L (`p+) via (2.23). Let q denote any one of the
seminorms (2.22). If ei ∈ B denotes the standard i-th unit basis vector of `p, then it
follows from the definition of q and (2.24) that

q
(
T

(µ)
[n] ei

)
=

1

n

µi

(1− µi)
· (1− µn

i ), i, n ∈ N.

Since `p+ is mean ergodic, there is P ∈ L (`p+) with T
(µ)
[n] → P in Ls(`

p+) as n →∞.
By the above identities, P (ei) = 0 for all i ∈ N. But, (ei)i∈N is a basis for `p+, [41,
p. 8], and so P = 0. By (2.25) and the fact that its right-hand side converges to
µ1(1− e−1) > 0 we can conclude that

lim
n→∞

sup
x∈B

q
(
T

(µ)
[n] x

)
6= 0,

that is,
(
T

(µ)
[n]

)
fails to converge to 0 in Lb(`

p+) as n → ∞. Hence, T (µ) is not
uniformly mean ergodic. ¤

For X a Banach space, the next result is due to Lin, [35].

Proposition 2.16. Let X be a Fréchet space and T ∈ L (X) satisfy the condi-
tions ker(I − T ) = {0} and 1

n
T n → 0 in Lb(X). Consider the following statements.

(i) I − T[n] is surjective for some n ∈ N.
(ii) I − T is surjective.
(iii) T[n] → 0 in Lb(X) as n →∞.

Then (i) ⇒ (ii) ⇒ (iii). If X is a Banach space, then also (iii) ⇒ (i).

Proof. (i) ⇒ (ii). Suppose that I − T[n] is surjective. It is routine to verify that
I − T[n] = (I − T )gn(T ), where gn(T ) := 1

n

∑n−1
r=0 (

∑r
j=0 T j). Given y ∈ X there is,

by hypothesis, x ∈ X such that (I − T[n])x = y and hence, (I − T )gn(T )x = y. So,
(I − T ) is surjective.

(ii) ⇒ (iii). Fix a bounded set B ⊆ X and q ∈ ΓX . Since (I − T ) : X → X
is continuous and bijective and X is a Fréchet space, it follows that (I − T ) is
a bicontinuous isomorphism. So, C := (I − T )−1B is a bounded set in X and
B = (I − T )C. In the notation of (1.4) it follows from (2.1) that

qB(T[n]) = sup
x∈C

q
(
(I − T )T[n]

)
= sup

x∈C
q
( 1

n
(T − T n+1)x

)

≤ 1

n
qC(T ) + 2qC

( 1

(n + 1)
· T n+1

)
.

Since we are assuming that 1
n
T n → 0 in Lb(X), it follows that qB(T[n]) → 0. But, q

and B are arbitrary and so T[n] → 0 in Lb(X). Hence, (iii) holds.
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Suppose now, in addition, that X is a Banach space. Given (iii), it follows that
‖T[n]‖ < 1 for some n ∈ N. It is then classical that (I − T[n]) is invertible in L (X),
[19, Ch. VII, §3], and so (i) holds. ¤

We now show that (iii) ⇒ (ii) may fail in the non-normable setting.

Example 2.17. Define T ∈ L (s) by

Tx :=
(
(1− 2−i)xi

)
, x = (xi) ∈ s.

It is routine to check that ker(I − T ) = {0} and that y := (2−i) ∈ s does not belong
to Im(I − T ), that is, (I − T ) is not surjective. So (ii) of Proposition 2.16 fails to
hold.

Since Tmx = ((1− 2−i)mxi) for x ∈ s and all m ∈ N, it follows from (2.21) (with
the notation from there) that

(2.26) pn (Tmx) ≤ pn(x), x ∈ s,

for all n,m ∈ N. Given any bounded set B ⊆ s, it follows that

(pn)B

( 1

m
Tm

)
= sup

x∈B
pn

( 1

m
Tmx

)
≤ 1

m
sup
x∈B

pn(x), m ∈ N.

Hence, (pn)B

(
1
m

Tm
) → 0 as m →∞. That is, 1

m
Tm → 0 in Lb(s).

It remains to verify condition (iii) of Proposition 2.16. The dual space of s is
given by

s′ = {ξ ∈ CN : ∃k ∈ N with sup
i

|ξi|
ik

< ∞}
and direct calculation shows that

T tξ =
(
(1− 2−i)ξi

)
, ξ ∈ s′.

It follows that ker(I − T t) = {0} and, by (2.26), we see that T is power bounded.
According to Theorem 2.12 the operator T is mean ergodic. Since s is Montel, T is
actually uniformly mean ergodic (see Proposition 2.8). So, there exists P ∈ L (s)
such that T[n] → P in Lb(s). In particular, T[n] → P in Ls(s). Fix r ∈ N and let er

denote the element of s with a 1 in the r-th coordinate and 0’s elsewhere. Then

T ner = (1− 2−r)ner → 0 as n →∞
and hence, also T[n]er = µ(1−µ)n

n(1−µ)
er → 0 as n → ∞ (where µ := 1 − 2−r). But,

T[n]er → Per as n → ∞ and we conclude that Per = 0. Since r ∈ N is arbitrary, it
follows that P = 0 and hence, T[n] → 0 in Lb(s) which is precisely condition (iii).

We conclude this section by exhibiting an interesting family of power bounded
operators. Fix 1 < p < ∞. A Borel measurable function ϕ : [0, 1] → C defines a
continuous multiplication operator Mϕ ∈ L (Lp−) via f 7→ ϕf , for f ∈ Lp−, if and
only if ϕ ∈ ⋂

1≤q<∞ Lq([0, 1]), [7, Proposition 18].

Proposition 2.18. Let 1 < p < ∞ and ϕ ∈ ⋂
1≤q<∞ Lq([0, 1]). The following

assertions for the multiplication operator Mϕ ∈ L (Lp−) are equivalent.
(i) ϕ ∈ L∞([0, 1]) with ‖ϕ‖∞ ≤ 1.
(ii) Mϕ is power bounded.
(iii) Mϕ is mean ergodic.
(iv) Mϕ is uniformly mean ergodic.
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Proof. Observe that always (Mϕ)n = Mϕn , for n ∈ N, and so we have

(2.27) qp,m((Mϕ)nf) = qp,m(ϕnf), f ∈ Lp−,

for each m ∈ N and all n ∈ N (the notation is from (2.17)).
(i) ⇒ (ii). Fix m ∈ N. It follows from (2.27) and (2.17) that qp,m((Mϕ)nf) ≤

‖ϕn‖∞ · qp,m(f) for all n ∈ N and f ∈ Lp−. Since (i) implies that ‖ϕn‖∞ ≤ 1 for all
n ∈ N, we see that

qp,m((Mϕ)nf) ≤ qp,m(f), f ∈ Lp−, n ∈ N,

that is, {(Mϕ)n}∞n=1 is equicontinuous and so Mϕ is power bounded.
(ii) ⇒ (iii). This is immediate from the reflexivity of Lp− and Corollary 2.7.
(iii) ⇒ (iv). Set T := Mϕ. By assumption there exists Q ∈ L (Lp−) such that

T[n] → Q in Ls(Lp−) and hence, (2.2) implies that 1
n
T n = 1

n
Mϕn → 0 in Ls(Lp−) as

n → ∞. For the choice f := χ
[0,1]

∈ Lp− we can conclude that ϕn

n
→ 0 in Lp−. But,

Lp− is continuously included in L1([0, 1]) and so ϕn

n
→ 0 in L1([0, 1]). Accordingly,

there exists a subsequence ϕn(k)

n(k)
→ 0 a.e. in [0, 1] as k → ∞, which implies that

|ϕ| ≤ 1 a.e. For each z ∈ C with |z| ≤ 1, it is routine to check that 1
n

∑n
k=1 zk → 1

if z = 1 and 1
n

∑n
k=1 zk → 0 otherwise (as n →∞). Hence, ‖ϕ‖∞ ≤ 1 implies that

(2.28)
1

n

n∑

k=1

ϕk → χ
A

a.e. on [0, 1],

as n →∞, where A := {t ∈ [0, 1] : ϕ(t) = 1}.
For each Borel set E ⊆ [0, 1], define the projection P (E) := Mχ

E
∈ L (Lp−).

Then E 7→ P (E) is a spectral measure in Lp− (see Section 4 for the definition)
which is boundedly σ-additive, [7, Proposition 6(iii)]. Since the lcHs Lb(Lp−) in
which P takes its values is quasicomplete, [32, p. 144], it is known that all bounded
measurable functions are P -integrable, [34, p. 161]. In particular, 1

n

∑n
k=1 ϕk is P -

integrable for each n ∈ N. It follows from (2.28) and the dominated convergence
theorem for the Lb(Lp−)-valued vector (= spectral) measure P , [34, Theorem 2.2],
that

∫
[0,1]

( 1
n

∑n
k=1 ϕk) dP → P (A) in Lb(Lp−), that is, T[n] → P (A) = Q in Lb(Lp−)

as n →∞. Hence, Mϕ = T is uniformly mean ergodic.
(iv) ⇒ (i). If Mϕ is uniformly mean ergodic, then it is mean ergodic. Hence,

ϕ ∈ L∞([0, 1]) with ‖ϕ‖∞ ≤ 1; see the proof of (iii) ⇒ (iv) above. ¤
Since the containment L∞([0, 1]) ⊆ ⋂

1≤q<∞ Lq([0, 1]) is proper, Proposition 2.18
implies that there exist multiplication operators Mϕ ∈ L (Lp−) which fail to be power
bounded.

3. On bases and reflexivity in lcHs’

The main aim of this section is to establish Theorems 1.1 and 1.2.
A sequence (xn)n in a lcHs X is called a basis if, for every x ∈ X, there is a

unique sequence (αn)n ⊆ C such that the series
∑∞

n=1 αnxn converges to x in X.
By setting fn(x) := αn we obtain a linear form fn : X → C which is called the n-th
coefficient functional associated to (xn)n. The functionals fn, n ∈ N, are uniquely
determined by (xn)n and {(xn, fn)}∞n=1 is a biorthogonal sequence (i.e. 〈xn, fm〉 = δmn
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for m,n ∈ N). For each n ∈ N, the map Pn : X → X defined by

(3.1) Pn : x 7→
n∑

i=1

fi(x)xi =
n∑

i=1

〈x, fi〉xi, x ∈ X,

is a linear projection with range equal to the finite dimensional space span(xi)
n
i=1.

If, in addition, (fn)n ⊆ X ′, then the basis (xn)n is called a Schauder basis for X. In
this case, (Pn)n ⊆ L (X) and each dual operator

(3.2) P t
n : x′ 7→

n∑
i=1

〈xi, x
′〉fi, x′ ∈ X ′,

for n ∈ N, is a projection with range equal to span(fi)
n
i=1. Moreover, for every

x′ ∈ X ′ the series
∑∞

i=1〈xi, x
′〉fi converges to f in X ′

σ (the space X ′ equipped with
the topology σ(X ′, X)). For this reason, (fn)n is also referred to as the dual basis
of the Schauder basis (xn)n. The terminology “X has a Schauder basis” will also be
abbreviated simply to saying that “X has a basis”. A sequence (xn)n in a lcHs X is
called a basic sequence if it is a Schauder basis for the closed linear hull span(xn)n of
(xn)n in X.

Let X be a Fréchet space with a fundamental sequence of seminorms ΓX =
(qn)n. Then Xn denotes the local Banach space generated by qn, that is, Xn is
the completion of the quotient normed space (X/q−1

n ({0}), qn). Let πn : X → Xn

denote the canonical map. Then X = projnXn is the (reduced) projective limit of
the sequence of Banach spaces (Xn)n, [31, p. 232].

Now the promised extension of Pelcynski’s result. We wish to thank Professor
J. C. Díaz for some useful discussions on this topic.

Proof of Theorem 1.1. Let X be a non-reflexive Fréchet space and ΓX = (qn)n

be an increasing, fundamental sequence of seminorms. If X contains an isomorphic
copy of `1, then it surely contains a non-reflexive, closed subspace with a basis.

So, suppose that X does not contain an isomorphic copy of `1. According to [31,
p. 303 & pp. 312–313], the non-reflexivity of X ensures the existence of a bounded
sequence in X with no weakly convergent subsequence and hence, by Rosenthal’s
dichotomy theorem for Fréchet spaces [13, Lemma 3], X contains a sequence (xk)k

which is Cauchy but, not convergent in Xσ. For each n ∈ N, the sequence (πn(xk))k

is σ(Xn, X
′
n)-Cauchy in the Banach space Xn. Moreover, there exists n(0) ∈ N such

that (πn(xk))k is not convergent in (Xn)σ for all n ≥ n(0). Indeed, if the contrary were
the case, then there would exist positive integers n(m) ↑ ∞ such that (πn(m)(xk))k

converges in (Xn(m))σ, for all m ∈ N. Since X = projmXn(m), it follows that (xk)k is
convergent in Xσ which contradicts the choice of (xk)k.

Now, (πn(0)(xk))k is Cauchy but not convergent in (Xn(0))σ. According to [15,
p. 54 Ex. 10(ii)], there exists a subsequence (πn(0)(x

0
k))k which is a basic sequence in

Xn(0). Then the sequence (π1+n(0)(x
0
k))k ⊆ X1+n(0) is Cauchy but not convergent

in (X1+n(0))σ. If it were convergent then, being a subsequence of the weak Cauchy
sequence (π1+n(0)(xk))k, also this latter sequence would converge in (X1+n(0))σ; con-
tradiction! So, we can again apply [15, p. 54 Ex. 10(ii)] to select a subsequence
(π1+n(0)(x

1
k))k of (π1+n(0)(x

0
k))k which is a basic sequence in X1+n(0). Continue this

procedure inductively and, finally, select the diagonal subsequence (xk
k)k≥n(0). Ac-

cording to [13, Lemma 1], we see that (xk
k)k≥n(0) is a basic sequence in X. Since this
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sequence is σ(X, X ′)-Cauchy but, has no convergent subsequence in Xσ, it follows
that span(xk

k)k≥n(0) is not reflexive. ¤
The strong topology on X (resp. X ′) is denoted by β(X, X ′) (resp. β(X ′, X))

and we write Xβ (resp. X ′
β). For a Schauder basis (xn)n ⊆ X, we denote by H the

subspace of X ′ consisting of all x′ ∈ X ′ such that P t
nx′ 7→ x′ in X ′

β as n → ∞ and
endow it with the topology β(H,X) induced by β(X ′, X). If H = X ′ (i.e. the dual
basis (fn)n is a Schauder basis for X ′

β), then (xn)n is called shrinking. A Schauder
basis (xn)n ⊆ X is called boundedly complete if the series

∑∞
n=1 αnxn converges in X

whenever (
∑n

i=1 αixi)n is a bounded sequence in X. For Banach spaces, these notions
are due to James, [26], and for lcHs’ they are due to Dubinsky and Retherford, [17],
[44].

Corollary 3.1. Let X be a non-reflexive Fréchet space. Then X contains a
closed subspace with a basis which is not shrinking.

Proof. According to Theorem 1.1, X contains a basic sequence (xn)n such that
E := span(xn)n is non-reflexive. Then [28, Theorem 3.3(ii)] implies that E (hence,
also X) has a basic sequence (uk)k which is not shrinking. So, span(uk)k is a closed
subspace of X with a basis which is not shrinking. ¤

A Schauder basis (xn)n of a lcHs X is called regular if there exists a neighbour-
hood V of zero such that xn /∈ V for all n ∈ N. Equivalently, there exists q ∈ ΓX

such that infn q(xn) > 0. If, in addition, the sequence (xn)n is bounded in X, then it
is called normalized. Even if X is a Fréchet space, it does not necessarily follow that
a given basis can be regularized, [30].

Proposition 3.2. Let X be a Fréchet space which is not Montel. Then X
contains a closed subspace which is not Montel and has a basis.

Proof. According to [5, Proposition 2.2], the space X possesses a (infinite) nor-
malized basic sequence, say (xn)n; a proof of this result which avoids non-standard
analysis is also available (see [5, p. 205 Remark (2)]). Hence, Y := span(xn)n is a
Fréchet space with a normalized Schauder basis. But, it is routine to check that such
a basis cannot exist in any infinite dimensional Montel Fréchet space. So, Y is not
Montel. ¤

Given a lcHs X, a biorthogonal sequence {(xn, fn)}∞n=1 in X ×X ′ is said to be of
type P if there exists a neighbourhood V of zero in X such that xn /∈ V , for all n ∈ N,
and if the sequence of partial sums (

∑n
i=1 xi)n is bounded in X. We say {(xn, fn)n}

is of type P ∗ if (xn)n is bounded in X and (
∑n

i=1 fi)n is bounded in X ′
β. Bases and

basic sequences of types P and P ∗ were introduced and studied in Banach spaces by
Singer, [50]. The definition was extended by Dubinsky and Retherford, [17], to bases
and basic sequences in lcHs’ and by Kalton, [28], to biorthogonal sequences.

The behavior of bases and basic sequences in reflexive Banach spaces has been
completely characterized. Recall that James proved that a Banach space with a
Schauder basis is reflexive if and only if the basis is both shrinking and boundedly
complete, [26]. Zippin showed, for a Banach space X with a basis, that if every
basis is boundedly complete or if every basis is shrinking, then X is reflexive, [55].
James’s characterization of reflexivity was generalized to lcHs’ by Dubinsky and
Retherford [17], [44] (see also [27, Theorem 14.5.1]). Furthermore, Kalton extended
both Singer’s and Zippin’s results to cover lcHs’ more general than Banach spaces,
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[28]. In particular, he proved that a sequentially complete lcHs with a Schauder
basis in which every basic sequence is boundedly complete or every basic sequence
is shrinking is necessarily semi-reflexive. He also showed that a complete barrelled
lcHs with a normalized Schauder basis in which every normalized basis is boundedly
complete, or in which every normalized basis is shrinking, is reflexive. As noted in
the Introduction, Kalton raised the question of whether the last result remains true
without the restriction of normalization on the basis. By using ideas of [28] and [55],
we now proceed to show that the answer is positive. As usual, we begin with some
auxiliary results.

Remark 3.3. Let X be a complete barrelled lcHs and (xn)n be a sequence in
X \ {0} for which X = span(xn)n. Then (xn)n is a Schauder basis for X if and only
if for each p ∈ ΓX there exist Mp > 0 and q ∈ ΓX such that

(3.3) p

(
r∑

i=1

αixi

)
≤ Mpq

(
s∑

i=1

αixi

)

for arbitrary positive integers r ≤ s and arbitrary scalars α1, . . . , αs; (see [45, Theo-
rems 3.1–3.2] or [27, Theorem 14.3.6]). By setting

p̃(x) := sup
r∈N

p

(
r∑

i=1

〈x, fi〉xi

)
,

we obtain from (3.3) that

(3.4) p(x) ≤ p̃(x) ≤ Mpq(x) ≤ Mpq̃(x), x ∈ X,

for all p ∈ ΓX . Hence, Γ̃X := {p̃ : p ∈ ΓX} is also a system of continuous seminorms
generating the topology of X and we have

p̃

(
r∑

i=1

αixi

)
≤ p̃

(
s∑

i=1

αixi

)

for every p̃ ∈ Γ̃X and for arbitrary positive integers r ≤ s and arbitrary scalars
α1, . . . , αs. That is, (xn)n is a monotone basis with respect to Γ̃X . ¤

Lemma 3.4. Let X be a complete barrelled lcHs with a Schauder basis (xn)n.
Then X = proj i∈I Xi is the projective limit of a system (Xi)i∈I of local Banach
spaces such that (πi(xn))n is a Schauder basis in Xi for every i ∈ I, where πi denotes
the canonical projection of X into Xi.

Proof. According to Remark 3.3, we can select a system ΓX of continuous semi-
norms defining the topology of X with respect to which the basis (xn)n is monotone,
that is, for every p ∈ ΓX and for arbitrary positive integers r ≤ s and arbitrary
scalars α1, . . . , αs we have

(3.5) p

(
r∑

i=1

αixi

)
≤ p

(
s∑

i=1

αixi

)
.

In the case that X admits a continuous norm, we can assume that each p ∈ ΓX

is a norm. Then the completion Xp of the normed space (X, p) is a Banach space.
Clearly, X = proj p∈ΓX

Xp with X continuously embedded in every Xp, i.e., πp(x) = x.
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In particular, by (3.5) and Remark 3.3 we see that (xn)n is a Schauder basis in every
Xp.

Suppose now that X does not admit a continuous norm. Denote by (fn)n the
dual basis of (xn)n. For each p ∈ ΓX , the space Ker(p) is then infinite dimensional
and

(3.6) Ker(p) = {x ∈ X : p(x) = 0} =
⋂

n∈J(p)

Ker(fn),

where J(p) := {n ∈ N : p(xn) 6= 0}. Indeed, if n ∈ J(p) (hence, p(xn) 6= 0), then we
obtain from (3.5) that

|fn(x)| = 1

p(xn)
p(〈x, fn〉xn) ≤ 2

p(xn)
p(x), x ∈ X,

thereby implying that, if x ∈ Ker(p), then 〈x, fn〉 = 0 for all n ∈ J(p) and hence, x ∈⋂
n∈J(p) Ker(fn). Conversely, if x ∈ ⋂

n∈J(p) Ker(fn), then x =
∑

i6∈J(p)〈x, fi〉xi and
hence, 0 = p(

∑n
i=1,i6∈J(p)〈x, fi〉xi) → p(x), i.e., p(x) = 0 because (xn)n6∈J(p) ⊂ Ker(p).

Denote by πp the canonical quotient map from X onto X/ ker(p) and by p̂ the
quotient norm on X/ ker(p) given by

p̂(πp(x)) := inf{p(y) : πp(y) = πp(x)} .

Then the local Banach space Xp is the completion of the normed space (X/ ker(p), p̂)
and X = proj p∈ΓX

Xp. It remains to show that (πp(xn))n∈N = (πp(xn))n∈J(p) is a
Schauder basis in Xp.

Suppose that J(p) = (n(i))i, where (n(i))i is either a finite sequence or an in-
creasing sequence of positive integers. If (n(i))i is a finite sequence, then it is routine
to check that (πp(xn(i)))i is a linearly independent set and X/ ker(p) = span(xn(i))i.

Suppose then that (n(i))i is an increasing sequence of positive integers. Let
p̂
(∑m+r

i=1 αiπp(xn(i))
)

= 1. For any ε > 0 there exists x =
∑∞

n=1 βnxn such that
p(x) ≤ 1 + ε and πp(x) =

∑∞
n=1 βnπp(xn) =

∑m+r
i=1 αiπp(xn(i)). This means that

∞∑
n=1

βnxn −
m+r∑
i=1

αixn(i) ∈ Ker(p) =
⋂
i

Ker(fn(i)).

In view of the biorthogonality, we obtain that βn(i) = 0 if i > m + r, and βn(i) = ai

if i ∈ {1, . . . , m + r}. Therefore, by (3.5) we have

p̂
( m∑

i=1

αiπp(xn(i))
)

= p̂
( m∑

i=1

βn(i)πp(xn(i))
)
≤ p

( m∑
i=1

βn(i)xn(i)

)

≤ p
( m+r∑

i=1

βn(i)xn(i)

)
= p

( ∞∑
n=1

βnxn

)
≤ 1 + ε.

(3.7)

The last equality follows from p
(∑m+r

i=1 βn(i)xn(i)

)
= p (

∑s
n=1 βnxn) → p(x), which is

a consequence of

p

(
s∑

n=1

βnxn

)
= p




s∑

n=1,n∈J(p)

βnxn +
s∑

n=1,n6∈J(p)

βnxn


 = p




s∑

n=1,n∈J(p)

βnxn



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because p(xn) = 0 if n 6∈ J(p). Since (3.7) holds for all m, r and ε, we can conclude
that (πp(xn(i)))i is a Schauder basis for the Banach space Xp. In particular, (fn(i))i

is the dual basis of (πp(xn(i)))i. ¤
Let X be a lcHs. For each p ∈ ΓX , we set Up := {x ∈ X : p(x) ≤ 1} and define

the dual seminorm p′ of p by

p′(u) := sup{|〈x, u〉| : p(x) ≤ 1} = sup{|〈x, u〉| : p(x) = 1}, u ∈ X ′,

that is, p′ is the gauge of the polar U◦
p in X ′. Let X ′

p := {u ∈ X ′ : p′(u) < ∞}. Then
(X ′

p, p
′) is a Banach space and the transpose map πt

p of the canonical quotient map
πp is an isometry from the strong dual of the Banach space Xp (i.e. the completion of
(X/ ker(p), p̂)) onto (X ′

p, p
′). Therefore, every v ∈ (X/ ker(p), p̂)′ defines a continuous

linear functional u = v ◦ πp ∈ X ′ with p′(u) < ∞.
We now formulate a useful criterion for turning algebraic bases into Schauder

bases. This criterion is due to Zippin in the Banach space setting, [55, Lemma 2],
and was later extended by Robinson to complete barrelled lcHs’, [48, Theorem 1.1].

Lemma 3.5. Let X be a complete barrelled lcHs and (xn)n be a Schauder basis
of X.

For each k ∈ N, let (yi)
p(k+1)
i=p(k)+1 be a basis of span(xi)

p(k+1)
i=p(k)+1, where (p(k))k is

an increasing sequence of positive integers with p(1) = 0. Suppose, for each q ∈ ΓX ,
that there exist Mq > 0 and r ∈ ΓX such that

(3.8) q




m∑

i=p(k)+1

αiyi


 ≤ Mqr




n∑

i=p(k)+1

αiyi




for all k ∈ N, for all integers m, n with p(k) < m ≤ n ≤ p(k + 1) and for all scalars
(αi)

n
i=p(k)+1.
Then the sequence (yi)i is a Schauder basis of X.

Remark 3.6. If the basis (xn)n in Lemma 3.5 is monotone relative to ΓX and
(3.8) holds with q in the place of r in its right-hand side, then it can be shown that,
for each q ∈ ΓX , there exists Cq > 0 such that

(3.9) q

(
r∑

i=1

αiyi

)
≤ Cqq

(
s∑

i=1

αiyi

)

for arbitrary positive integers r ≤ s and arbitrary scalars α1, . . . , αs.

We now present a criterion for extending Schauder block sequences to Schauder
bases for the whole space.

Lemma 3.7. Let X be a complete barrelled lcHs and (xn)n be a Schauder basis
of X.

Assume that 0 6= yk =
∑p(k+1)

i=p(k)+1 αixi where (p(k))k is an increasing sequence of
positive integers with p(1) = 0 so that, for some p0 ∈ ΓX ,

(3.10) inf
k∈N

p0(yk) = d > 0

and, for every q ∈ ΓX ,

(3.11) sup
k∈N

q(yk) ≤ Mq < ∞.
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Then there exists a Schauder basis (zi)i in X such that, for each k ∈ N, we have
zi = yk for some i ∈ {p(k) + 1, . . . , p(k + 1)}.

Proof. As X is barrelled, we can suppose that (xn)n is a monotone basis with
respect to ΓX . Indeed, by Remark 3.3 there exists a system Γ̃X of continuous
seminorms defining the topology of X such that (xn)n is a monotone basis with
respect to Γ̃. Therefore, conditions (3.10) and (3.11) continue to hold. In particu-
lar, condition (3.10) is satisfied with p̃0 ∈ Γ̃X ; see (3.4). According to Lemma 3.4,
(πp0(xn))n is a Schauder basis in the local Banach space Xp0 . In particular, by setting
J := {n ∈ N : p0(xn) 6= 0} we have (πp0(xn))n = (πp0(xn))n∈J and πp0(xn) = 0 for all
n 6∈ J . Moreover, by (3.6) and (3.10) we have 0 6= πp0(yk) =

∑p(k+1)
i=p(k)+1,i∈J αiπp0(xi).

Fix k ∈ N and set Ek = span(xi)
p(k+1)
i=p(k)+1, in which case πp0(Ek) = span(πp0

(xi))
p(k+1)
i=p(k)+1,i∈J . Since 0 6= πp0(yk) ∈ πp0(Ek), there exists ik ∈ {p(k) + 1, . . . , p(k +

1)} ∩ J so that πp0(yk) 6∈ span(πp0(xi))
p(k+1)
i=p(k)+1,i∈J,i6=ik

. To see this, observe that if for
every i ∈ {p(k) + 1, . . . , p(k + 1)} ∩ J we have πp0(yk) ∈ span(πp0(xj))

p(k+1)
j=p(k)+1,j∈J,j 6=i,

then αi = 0 for all i ∈ {p(k)+1, . . . , p(k +1)}∩J , thereby implying that πp0(yk) = 0
and hence, that p0(yk) = p̂0(πp0(yk)) = 0 which contradicts (3.6).

So, the set {πp0(yk)} ∪ {πp0(xi)}i∈{p(k)+1,...,p(k+1)}∩J,i6=ik is linearly independent
in the local Banach space Xp0 . Accordingly, there exists wk ∈ X ′

p0
for which

〈πp0(yk), wk〉 = 1 and 〈πp0(xi), wk〉 = 0 for all i ∈ {p(k) + 1, . . . , p(k + 1)} ∩ J
and i 6= ik. Note that p′0(wk) ≤ 1/d as p0(yk) > d. In particular, by (3.6) we also
have 〈πp0(xi), wk〉 = 0 for all i ∈ {p(k) + 1, . . . , p(k + 1)} \ J . Clearly, the set defined
by

zi =

{
xi if i ∈ {p(k) + 1, . . . , p(k + 1)} and i 6= ik,

yk if i = ik,

is also linearly independent. Thus, (zi)
p(k+1)
i=p(k)+1 is a basis of Ek.

Define a linear map Pk : Ek → span(zi)
p(k+1)
i=p(k)+1 by Pkz = 〈z, vk〉zik , where vk :=

wk ◦ πp0 ∈ X ′ so that p′0(vk) ≤ 1/d. Then Pkzi = 0 if i 6= ik and Pkzik = zik .
Moreover, by (3.11) we obtain, for each q ∈ ΓX with q ≥ p0, that

(3.12) q(Pkz) ≤ p′0(vk)p0(z)q(zik) ≤
Mq

d
q(z) .

For such a q, fix p(k) < r < s ≤ p(k + 1) and scalars (βi)
p(k+1)
i=p(k)+1. If r ≥ ik, then

(3.5) and (3.12) imply that

q(
r∑

i=p(k)+1

βizi) ≤ q




r∑

i=p(k)+1,i6=ik

βixi


 + q(βikzik)

≤ q




s∑

i=p(k)+1,i6=ik

βixi


 + q(βikzik)
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≤ q




s∑

i=p(k)+1

βizi


 + 2q(βikzik)(3.13)

= q




s∑

i=p(k)+1

βizi


 + 2q


Pk




s∑

i=p(k)+1

βizi







≤
(

1 + 2
Mq

d

)
q




s∑

i=p(k)+1

βizi


 .

If r satisfies p(k) < r < ik ≤ s, then again by (3.5) and (3.12) we have

q




r∑

i=p(k)+1

βizi


 ≤ q




s∑

i=p(k)+1,i6=ik

βizi




≤ q




s∑

i=p(k)+1

βizi


 + q(βikzik)

≤
(

1 +
Mq

d

)
q




s∑

i=p(k)+1

βizi


 .

(3.14)

Finally, if r, s satisfy p(k) < r < s < ik, then by (3.5) we have

(3.15) q




r∑

i=p(k)+1

βizi


 ≤ q




s∑

i=p(k)+1

βizi


 .

Inequalities (3.13), (3.14) and (3.15) allow us to conclude that there exists M̃q :=

(1 + 2Mq

d
), for each q ∈ ΓX , such that the sequence (zi)i satisfies the inequality (3.8)

for every q ∈ ΓX . According to Lemma 3.5, (zi)i is then a Schauder basis of X. ¤
Theorem 1.2 will now be presented as two separate results.

Theorem 3.8. Let X be a complete barrelled lcHs with a Schauder basis (xn)n.
Assume that all the bases in X are shrinking. Then X is reflexive.

Proof. Suppose that X is not reflexive. Then, by a result of Retherford [44, The-
orem 2.3] (see, also, [12, Theorem 4] or [27, Theorem 14.5.1]), (xn)n is not boundedly
complete. Let ΓX be a system of continuous seminorms defining the topology of
X with respect to which the Schauder basis (xn)n is monotone. Since (xn)n is not
boundedly complete, there exists a sequence of scalars (αi)i such that

(3.16) sup
n∈N

q

(
n∑

i=1

αixi

)
= Mq < ∞, q ∈ ΓX ,
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and
∑∞

i=1 αixi does not converge. Accordingly, there exist p0 ∈ ΓX and an increasing
sequence (p(k))k of positive integers with p(1) = 0 satisfying

(3.17) inf
k∈N

p0




p(k+1)∑

i=p(k)+1

αixi


 = d > 0

and

(3.18) sup
k∈N

q




p(k+1)∑

i=p(k)+1

αixi


 ≤ 2Mq < ∞, q ∈ ΓX .

For each k ∈ N, let yk =
∑p(k+1)

i=p(k)+1 αixi. Then, by (3.17), p0(yk) ≥ d for all k ∈ N

and, by (3.16),

(3.19) q

(
k∑

s=1

ys

)
= q




p(k+1)∑
i=1

αixi


 ≤ Mq , k ∈ N , q ∈ ΓX .

By (3.17) and (3.18) we can apply Lemma 3.7 (and Remark 3.6) to conclude that
there exist an increasing sequence (ik)k of integers with ik ∈ {p(k)+1, . . . , p(k +1)},
for k ∈ N, and a Schauder basis (zi)i in X given by

(3.20) zi =

{
xi if i 6= ik for all k,
yk if i = ik

such that, for every q ∈ ΓX with q ≥ p0, there exists Cq > 0 such that

(3.21) q

(
r∑

i=1

βizi

)
≤ Cqq

(
s∑

i=1

βizi

)
,

for arbitrary positive integers r ≤ s and arbitrary scalars β1, . . . , βs.
Denote by (fi)i the dual basis of (zi)i. Observe also that, if (vn)n denotes the

dual basis of (xn)n, then span(fi)
∞
i=1 = span(vn)∞n=1 by (3.20). It follows from (3.17),

(3.19) and (3.21) that the sequence (zik , fik)k is of type P and

(3.22) p′0(fik) ≤ 2
Cp0

d
, k ∈ N.

For each i ∈ N, define

(3.23) ui =

{
zi if i 6= ik for all k,∑k

r=1 zir if i = ik

and

(3.24) gi =

{
fi if i 6= ik for all k,
fik − fik+1

if i = ik.

Then span(ui)
∞
i=1 = X and (ui, gi)i is a biorthogonal sequence; see, [50, Proposition 2],

for example. Actually, (ui)i is also a Schauder basis in X. To show this we can proceed
either as in [28, Theorem 3.1] or as follows. Let Un(x) =

∑n
i=1〈x, gi〉ui for any x ∈ X
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and n ∈ N. If p(k) ≤ n < p(k + 1) for some k ∈ N, then (3.19) and (3.21), (3.22)
imply that

q (Un(x)) = q




n∑

i=1,i6∈{i1,i2,...,ik}
〈x, fi〉zi +

k∑
r=1

〈x, fik − fik+1
〉

r∑
s=1

zis




= q




n∑

i=1,i6∈{i1,i2,...,ik}
〈x, fi〉zi +

k∑
s=1

zis

k∑
r=s

〈x, fik − fik+1
〉



= q




n∑

i=1,i6∈{i1,i2,...,ik}
〈x, fi〉zi +

k∑
s=1

〈x, fis〉zis −
k∑

s=1

〈x, fik+1
〉zis




≤ q

(
n∑

i=1

〈x, fi〉zi

)
+ q

(
−

k−1∑
s=1

〈x, fik+1
〉zis − 〈x, fik+1

〉zik

)

≤ Cqq(x) + |〈x, fik+1
〉|q

(
k∑

s=1

zis

)

≤ (Cq + p′0(fik+1
)Mq)q(x) ≤ (Cq + 2

Cp0

d
Mq)q(x),

for all q ∈ ΓX with q ≥ p0 and all x ∈ N. As X is a complete lcHs, this means
that (ui)i is indeed a Schauder basis of X (with dual basis (gi)i). In particular,
the sequence (uik , gik)k is of type P ∗ as the sequences (uik)k and (

∑k
h=1 gih)k =

(fi1 − fik+1
)k are bounded by (3.19) and (3.22).

But, for every k ∈ N, we have that

〈uik , fi1〉 = 〈
k∑

r=1

zir , fi1〉 = 1,

which implies that (ui)i is not shrinking. For, if (ui)i is shrinking, then fi1 =∑∞
i=1〈ui, fi1〉gi in X ′

β because fi1 ∈ X ′. Hence, 〈ui, fi1〉gi → 0 in X ′
β and so also

〈uik , fi1〉gik → 0, thereby implying that 1 = supx∈(uis )s
|〈x, gik〉| → 0 as (uik)k is

bounded. So, (ui)i is not shrinking and the theorem is proved. ¤

Theorem 3.9. Let X be a complete barrelled lcHs with a Schauder basis (xn)n.
If all the bases in X are boundedly complete, then X is reflexive.

Proof. Denote by (fn)n the dual basis of (xn)n. Recall that H denotes the
subspace of X ′ consisting of all f ∈ X ′ such that limn→∞

∑n
i=1〈xi, f〉fi = f in X ′

β,
endowed with the topology β(H, X) induced by β(X ′, X). Hence, (fn)n is a Schauder
basis for H.

By assumption (xn)n is boundedly complete. So, by [29, Lemma 6.2] applied
to the space H = span(fn)∞n=1, with the closure taken in X ′

β, we can conclude that
β(X ′, X) = β(H, X) = β(H, H ′) and, by [29, Proposition 5.3 and Theorem 6.3], H is
barrelled with H ′

β = (H ′, β(H ′, H)) = X algebraically and topologically. Moreover,
(fn)n is a shrinking basis for H whose dual basis is clearly (xn)n; see [29, Corollary 3]
or [17, Theorem 1.6].
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Suppose that X is not reflexive. Again by a result of Retherford [44, Theorem 2.3]
(see also [12, Theorem 4] or [27, Theorem 14.5.1]), (xn)n is not shrinking in X and
so (fn)n is not a boundedly complete basis for H, [29, Proposition 5.5]. Since H is
a complete barrelled lcHs and (fn)n is not a boundedly complete Schauder basis of
H, we can proceed as in the proof of Theorem 3.8 to establish the following fact:
the space H has another Schauder basis (gi)i, with dual basis (wi)i, such that (gi)i

contains a biorthogonal subsequence (gik , wik)k of type P and

(3.25) span(wi)
∞
i=1 = span(xn)∞n=1.

Therefore the sequence (hi)i in H defined by

(3.26) hi =

{
gi if i 6= ik for all k,∑k

r=1 gir if i = ik

is a non shrinking Schauder basis for H with dual basis (ti)i given by

(3.27) ti =

{
wi if i 6= ik for all k,
wik − wik+1

if i = ik.

In particular, the biorthogonal sequence (hik , tik)k is of type P ∗. Thus, (ti)i is a
Schauder basis for span(ti)

∞
i=1 in H ′

β = X.
Now, set t0 = wi1 . By (3.27) and (3.25) we obtain that

span(ti)
∞
i=0 = span(wi)

∞
i=1 = span(xn)∞n=1 .

If t0 = wi1 ∈ span(ti)
∞
i=1, then wi1 =

∑∞
k=1 tik with the series converging in H ′

β =
X. But, this is impossible because (tik)k does not β(H ′, H)-converge to 0 (indeed,
1 = supx∈(his )s

|〈x, tik〉|, where (his)s is β(H,H ′)-bounded because (hik , tik)k is of
type P ∗). Thus, X = H ′

β = span(xn)∞n=1 = [t0]⊕ span(ti)
∞
i=1 which implies that the

extension (ti)
∞
i=0 of (ti)

∞
i=1 by the element t0 is also a Schauder basis of X. Hence,

(ti)
∞
i=0 must be boundedly complete. However, (

∑k
h=1 tih)k is bounded and does not

converge in X = H ′
β; contradiction! The proof is thereby complete. ¤

Finally, the validity of the converse of both Theorem 3.8 and Theorem 3.9 has
already been noted earlier (see e.g. [27, Theorem 14.5.1]). The proof of Theorem 1.2
is thereby completely established.

4. Schauder decompositions

A decomposition of a lcHs X is a sequence (En)n of closed, non-trivial subspaces
of X such that each x ∈ X can be expressed uniquely in the form x =

∑∞
i=1 yi with

yi ∈ Ei for each i ∈ N. This induces a sequence (Qn)n of projections defined by
Qnx := yn where x =

∑∞
i=1 yi with yi ∈ Ei for each i ∈ N. These projections are

pairwise orthogonal (i.e. QnQm = 0 if n 6= m) and Qn(X) = En for n ∈ N. If, in
addition, each Qn ∈ L (X), for n ∈ N, then we speak of a Schauder decomposition
of X. For a basis (xn)n of X, the projection Qn takes the form Qnx = 〈x, fn〉 with
(fn)n being the sequence of coefficient functionals associated to (xn); see Section
3. Then Qn ∈ L (X) if and only if fn ∈ X ′. So, for the 1-dimensional spaces
En := {λxn : λ ∈ C}, for n ∈ N, we see that (En)n is a Schauder decomposition of
X if and only if (xn)n is a Schauder basis for X.

Let (En)n be a Schauder decomposition for a lcHs X. As observed above, (En)n

induces a sequence (Qn)n ⊆ L (X) of non-zero projections satisfying QnQm = 0 (if
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n 6= m) and x =
∑∞

n=1 Qnx for each x ∈ X. Conversely, if (Qn)n ⊆ L (X) is any
sequence of projections satisfying these two conditions, then (Qn(X))n is a Schauder
decomposition of X. By setting Pn :=

∑n
i=1 Qi, for n ∈ N, we arrive at the following

equivalent definition, preferred by some authors in certain situations; see [9], [37],
[38]. A sequence (Pn)n ⊆ L (X) of projections is called a Schauder decomposition of
X if it satisfies:

(S1) PnPm = Pmin{m,n} for all m,n ∈ N,
(S2) Pn → I in Ls(X) as n →∞, and
(S3) Pn 6= Pm whenever n 6= m.

By setting Q1 := P1 and Qn := Pn−Pn−1 for n ≥ 2 we arrive at the more traditional
formulation of a Schauder decomposition as given above. Let (Pn)n ⊆ L (X) be a
Schauder decomposition of X. Then the dual projections (P t

n)n ⊆ L (X ′
σ) always

form a Schauder decomposition of X ′
σ, [29, p. 378]. Note that necessarily (P t

n)n ⊆
L (X ′

β), [32, p. 134]. If, in addition, (P t
n)n is a Schauder decomposition for X ′

β, then
the original sequence (Pn)n is called shrinking, [29, p. 379]. Since (S1) and (S3) clearly
hold for (P t

n)n, this means precisely that P t
n → I in Ls(X

′
β); see (S2).

In dealing with the uniform mean ergodicity of operators the following notion,
due to Díaz and Miñarro, [14, p. 194], is rather useful. A Schauder decomposition
(Pn)n in a lcHs X is said to have property (M) if Pn → I in Lb(X) as n → ∞.
Since every non-zero projection P in a Banach space satisfies ‖P‖ ≥ 1, it is clear
that no Schauder decomposition in any Banach space can have property (M). For
non-normable spaces we will see below that the situation is quite different.

Remark 4.1. Let (Pn)n ⊆ L (X) be a Schauder decomposition of X with prop-
erty (M). If X is quasi-barrelled, then it is routine to verify that P t

n → I in Lb(X
′
β).

In particular, P t
n → I in Ls(X

′
β). That is, (Pn)n is necessarily a shrinking Schauder

decomposition of X and (P t
n)n is a Schauder decomposition of X ′

β with property (M).

We now formulate a result which provides a systematic method for producing
examples of Schauder decompositions without property (M).

Let X be a lcHs and (Ω, Σ) be a measurable space. A finitely additive set function
P : Σ → L (X) is called a spectral measure in X if it satisfies P (∅) = 0 and P (Ω) = I,
is multiplicative (i.e. P (A ∩ B) = P (A)P (B) for all A,B ∈ Σ) and is σ-additive in
Ls(X), i.e. An ↓ ∅ in Σ implies that P (An) → 0 in Ls(X). If, in addition, P is also
σ-additive in Lb(X), then it is called boundedly σ-additive. Non-trivial examples
of boundedly σ-additive spectral measures can only occur in non-normable spaces.
For examples of spectral measures in classical Fréchet spaces, some of which are
boundedly σ-additive and others which are not, we refer to [7], [8], [6], [9], [46], [47].

We denote by B(X) the collection of all bounded subsets of a lcHs X.

Proposition 4.2. Let X be a Fréchet space. Suppose that there exists a spectral
measure in X which fails to be boundedly σ-additive. Then X admits a Schauder
decomposition without property (M).

Proof. Let P : Σ → L (X) be any spectral measure which fails to be boundedly
σ-additive. Let q1 ≤ q2 ≤ . . . be a sequence of seminorms generating the topology of
X and having the property that

(4.1) qk(P (A)x) ≤ qk(x), x ∈ X, A ∈ Σ,
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for each k ∈ N; see Proposition 2.3 in [52] and the discussion following its proof.
Since P fails to be boundedly σ-additive, there exists a sequence (An)n ⊆ Σ with
An ↑ Ω such that P (An) 6→ I in Lb(X). It follows that there exists a sequence
of positive integers n(k) ↑ ∞ such that P (An(k)) 6= P (An(k+1)) for k ∈ N. Set
Pk := P (An(k)) for k ∈ N, in which case it is routine to check (using the σ-additivity
of P in Ls(X)) that (Pk)k is a Schauder decomposition of X.

The proof is completed by showing that Pk 6→ I in Lb(X). On the contrary,
suppose that Pk → I in Lb(X) as k → ∞. According to (1.4), the topology of
Lb(X) is determined by the seminorms

qB,k(T ) := sup
x∈B

qk(Tx), T ∈ L (X),

for all k ∈ N and B ∈ B(X). So, fix such a k and B. Given ε > 0, there exists
M ∈ N such that

(4.2) sup
x∈B

qk((I − P (An(m))x) = qB,k(I − Pm) ≤ ε, m ≥ N.

Let n ≥ n(M). Then there exists m ≥ M satisfying n(m) ≤ n < n(m+1). Hence, by
property (S1) of a Schauder decomposition we have I −P (An) = (I −P (An(m)))(I −
P (An)). It follows from this identity, (4.1) and (4.2) that supx∈B qk((I−P (An))x) ≤
ε, that is,

qB,k((I − P (An))) ≤ ε, n ≥ n(M).

This shows that P (An) → I in Lb(X); contradiction to the choice of (P (An))n !
Hence, Pk 6→ I in Lb(X). ¤

Remark 4.3. Explicit examples of Fréchet spaces which admit spectral measures
which fail to be boundedly σ-additive are surely known. For the spaces Lp

`oc(R),
1 ≤ p < ∞, we refer to [7, Proposition 6.2(ii)] and for `p+, 1 ≤ p < ∞, see [8,
Corollary 3.2(i)]. For those Köthe echelon spaces λp(A) with p ∈ {0} ∪ [1,∞) which
are not Montel see [8, Corollary 3.2(ii)]. The same conclusion holds for Köthe function
spaces over non-atomic measure spaces, [6, Proposition 2.14].

We conclude with two technical results needed later. The first result is an exten-
sion of a lemma in [23, p. 149] to the Fréchet space setting.

Lemma 4.4. Let X be a Fréchet space which admits a non-shrinking Schauder
decomposition. Then there exist a Schauder decomposition (Pj)j ⊆ L (X) of X, a
functional ξ ∈ X ′ and a bounded sequence (zj)j ⊆ X with zj ∈ (Pj+1 − Pj)(X) such
that |〈zj, ξ〉| > 1

2
for all j ∈ N.

Proof. Let (Rn)n ⊆ L (X) be a non-shrinking Schauder decomposition of X.
It follows that there exist a set B ∈ B(X), a functional ξ ∈ X ′ and a sequence of
positive integers n(j) ↑ ∞ such that

(4.3) sup
x∈B

|〈x, (I −Rt
n(j))ξ〉| > 1, j ∈ N.

Select q ∈ ΓX such that

(4.4) |〈x, ξ〉| ≤ q(x), x ∈ X.

By (4.3), there exists x1 ∈ B with |〈(I − Rn(1))x
1, ξ〉| > 1. Set m(1) := n(1). Since

Rnx1 → x1 in X as n → ∞, we can select m(2) ∈ (n(k))k with m(2) > n(1) such
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that q((I−Rm(2))x
1) < 1

2
. Moreover, (4.4) then implies that |〈(I−Rm(2))x

1, ξ〉| < 1
2
.

Define z1 := (Rm(2) −Rm(1))x
1 and set P1 := Rm(1) and P2 := Rm(2). Observe that

|〈z1, ξ〉| = |〈(I −Rm(1))x
1 − (I −Rm(2))x

1, ξ〉|
≥ |〈(I −Rm(1))x

1, ξ〉| − |〈(I −Rm(2))x
1, ξ〉| >

(
1− 1

2

)
=

1

2
.

According to (4.3), there exists x2 ∈ B with |〈(I − Rm(2))x
2, ξ〉| > 1. Select m(3) ∈

(n(k))k with m(3) > m(2) such that q((I − Rm(3))x
2) < 1

2
. Again (4.4) implies that

|〈(I − Rm(3))x
2, ξ〉| < 1

2
. Define z2 := (Rm(3) − Rm(2))x

2 and set P3 := Rm(3). As
above,

|〈z2, ξ〉| = |〈(I −Rm(2))x
2 − (I −Rm(3))x

2, ξ〉| > 1

2
.

Proceeding in this way we get m(j) ↑ ∞ and a sequence (xj)j ⊆ B such that
|〈zj, ξ〉| ≥ 1

2
for all j ∈ N, where zj := (Rm(j+1) − Rm(j))x

j. Setting Pj := Rm(j),
for j ∈ N, we see that (Pj)j is a Schauder decomposition of X and that zj ∈
(Pj+1 − Pj)(X) for all j ∈ N. Since B ∈ B(X) and (Pj+1 − Pj)j is equicontinuous
in L (X), it follows that D :=

⋃
j∈N(Pj+1 − Pj)(B) is a bounded set in X. But,

(zj)j ⊆ D and hence, (zj)j is bounded in X. ¤

Lemma 4.5. Let X be a Fréchet space which admits a Schauder decomposition
without property (M). Then there exist a Schauder decomposition (Pj)j of X, a
seminorm q ∈ ΓX and a bounded sequence (zj)j ⊆ X with zj ∈ (Pj+1 − Pj)(X) such
that q(zj) > 1

2
for all j ∈ N.

Proof. Let (Rn)n ⊆ L (X) be a Schauder decomposition of X which does not
have property (M). Hence, there exist a set B ∈ B(X), a seminorm q ∈ ΓX and
positive integers n(j) ↑ ∞ such that

(4.5) sup
x∈B

q((I −Rn(j))x) > 1, j ∈ N.

Select x1 ∈ B with q((I − Rn(1))x
1) > 1. Set m(1) := n(1). Since Rnx1 → x1 in

X as n → ∞, there exists m(2) ∈ (n(k))k such that q((I − Rm(2))x
1) < 1

2
. Set

z1 := (Rm(2) − Rm(1))x
1 and define P1 := Rm(1) and P2 := Rm(2). As in the proof of

Lemma 4.4 we can conclude that

q(z1) = q
(
(I −Rm(1))x

1 − (I −Rm(2))x
1
)

>
1

2
.

According to (4.5), there exists x2 ∈ B with q((I − Rm(2))x
2) > 1. Select m(3) ∈

(n(k))k with m(3) > m(2) such that q((I − Rm(3))x
2) < 1

2
. Define z2 := (Rm(3) −

Rm(2))x
2 and P3 := Rm(3) and note that q(z2) > 1

2
. Proceed in this way to get

m(j) ↑ ∞ and a sequence (xj)j ⊆ B such that zj := (Rm(j+1) − Rm(j))x
j satisfies

q(zj) > 1
2
, for each j ∈ N. Put Pj := Rm(j), for j ∈ N, and then complete the

argument as in the proof of Lemma 4.4. ¤

5. Mean ergodic operators

Using the results of previous sections we can now establish Theorems 1.3–1.6.
Various examples and consequences of these results are also given.
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We begin with a useful observation. Let (Pn)n ⊆ L (X) be any Schauder decom-
position in the Fréchet space X. As noted in [14, p. 192], there exists an increasing
sequence of seminorms (qk)k determining the topology of X such that

(5.1) qk(Pjx) ≤ qk(x), x ∈ X, j ∈ N,

for each k ∈ N. Indeed, if (pm)m is any increasing sequence of seminorms determining
the topology of X, then the seminorms qk(x) := supj∈N pk(Pjx), for x ∈ X and
k ∈ N, have the desired property (after noting that X is barrelled and hence, (Pn)n ⊆
L (X) is equicontinuous).

Proof of Theorem 1.5. Let (Pj)j ⊆ L (X) denote a Schauder decomposition as
given by Lemma 4.4 and define projections Qj := Pj−Pj−1 (with P0 := 0) and closed
subspaces Xj := Qj(X) of X, for j ∈ N. By Lemma 4.4 there also exist a bounded
sequence (zj)j ⊆ X with zj ∈ Xj+1 and ξ ∈ X ′ such that |〈zj, ξ〉| > 1

2
, for all j ∈ N.

Set ej := zj/〈zj, ξ〉 ∈ Qj+1(X), in which case (ej)j is a bounded sequence in X with
〈ej, ξ〉 = 1, for all j ∈ N. Let (qk)k be any increasing sequence of seminorms giving
the topology of X, satisfying (5.1) and such that |〈x, ξ〉| ≤ q1(x) for all x ∈ X.

As in [23, p. 150], take an arbitrary sequence of positive numbers a = (aj)j with∑∞
j=1 aj = 1 and set An :=

∑n
j=1 aj, for n ∈ N. Let x ∈ X. For integers m > n ≥ 2

we have
m∑

k=n

AkQkx =
( n−1∑

j=1

aj

)( m∑

k=n

Qkx
)

+
m∑

j=n

aj

( m∑

k=j

Qkx
)
.

Since
∑∞

k=1 Qkx = x, we see that (
∑m

k=1 AkQkx)m is Cauchy and hence, convergent
in X. Moreover, for each s ∈ N, we have (cf. (5.1))

qs

( m∑

k=1

AkQkx
)

= qs

( m∑
j=1

aj(Pm − Pj−1)x
)

≤
m∑

j=1

aj(qs(Pmx) + qs(Pj−1x)) ≤ 2qs(x),

for all m ∈ N. Define a linear map Ta : X → X by

(5.2) Tax :=
∞∑

k=1

AkQkx +
∞∑

j=2

〈Pj−1x, ξ〉ajej, x ∈ X.

Using the previous inequalities we see that

qs(Tax) ≤ 2qs(x) +
∞∑

j=2

ajq1(Pj−1x)qs(ej), x ∈ X.

Setting Ms := supj qs(ej) < ∞ (recall that (ej)j is bounded in X) and noting that
q1(Pj−1x) ≤ q1(x) ≤ qs(x), it follows that

qs(Tax) ≤ (2 + Ms)qs(x), x ∈ X, s ∈ N,

with Ms independent of a. In particular, Ta ∈ L (X).
To show that Ta is power bounded it suffices to show, for arbitrary sequences

a = (aj)j and b = (bj)j of positive numbers with
∑∞

j=1 aj = 1 =
∑∞

j=1 bj, that the
composition TaTb is also of the same type (say, Tc for an appropriate c = (cj)j). But,
this is precisely the Claim on p. 150 in [23] which is proved there (on p. 151) by purely
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“algebraic computations” and hence, carries over to our setting here. So, Ta is indeed
power bounded.

To deduce that Ta is not mean ergodic we apply Theorem 2.12 by verifying that
ker(I − Ta) = {0} and that ξ ∈ X ′ belongs to ker(I − T t

a).
Let x ∈ ker(I − Ta). It follows from (5.2) and x =

∑∞
k=1 Qkx that

(5.3)
∞∑

k=1

Qkx = x =
∞∑

k=1

AkQkx +
∞∑

k=2

〈Pk−1x, ξ〉akek.

Moreover, (5.2) together with the identities

(5.4) QkQj = 0, k 6= j,

which imply that Q1ek = 0 for k ≥ 2, yield

Q1x = Q1Tax = A1Q1x.

Since 0 < A1 = a1 < 1, we see that Q1x = 0. For k > 1, apply Qk to (5.3) to
conclude that

(5.5) Qkx = AkQkx + 〈Pk−1x, ξ〉akek.

Now, P1x = Q1x + P0x = 0 and so, by substituting k = 2 into (5.5), we see that
Q2x = A2Q2x with 0 < A2 < 1. Hence, Q2x = 0. Proceed inductively (via (5.5)
and the formula Pk−1x =

∑k−1
j=1 Qjx) to conclude that Qkx = 0 for all k ∈ N. Then

x =
∑∞

k=1 Qkx = 0, that is, ker(I − Ta) = {0}.
It remains to verify that ξ ∈ ker(I − T t

a). To this end, fix k ∈ N and y ∈ Xk. By
(5.2), (5.4), the equalities 〈ej, ξ〉 = 1 for all j ∈ N, and the identities

Pj−1y = Pj−1Qky =

{
0 for 1 ≤ j ≤ k,

y for j > k,

we have that

〈y, T t
aξ〉 = 〈Tay, ξ〉 = 〈Aky +

∞∑

j=k+1

〈y, ξ〉ajej, ξ〉 = 〈y, ξ〉 ·
(
Ak +

∞∑

j=k+1

aj

)
= 〈y, ξ〉.

Hence, 〈(I−Ta)y, ξ〉 = 0 for all k ∈ N and y ∈ Xk. In view of the decomposition X =∑∞
k=1 Xk we conclude that 〈y, (I − T t

a)ξ〉 = 0 for all y ∈ X, that is, ξ ∈ ker(I − T t
a).
¤

Proposition 5.1. Let X be a Fréchet space. Then X is reflexive if and only if
every closed subspace of X is mean ergodic.

Proof. Suppose that X is not reflexive. By Theorem 1.1 there exists a non-
reflexive, closed subspace Y with a basis. According to Theorem 1.2, the space
Y must have some non-shrinking Schauder basis. In particular, Y admits a non-
shrinking Schauder decomposition and hence, Theorem 1.5 implies that Y is not
mean ergodic. ¤

Proof of Theorem 1.4. Let X be a Fréchet space with a basis. If X is non-reflexive,
then Theorem 1.2 shows that X admits a non-shrinking Schauder basis (and hence,
a non-shrinking Schauder decomposition). By Theorem 1.5 we can conclude that X
is not mean ergodic. ¤
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Theorem 5.2. Let X be a Fréchet space which admits a Schauder decomposition
without property (M). Then there exists a power bounded, mean ergodic operator
in L (X) which fails to be uniformly mean ergodic.

Proof. Let (Pj)j ⊆ L (X) denote a Schauder decomposition of X as given by
Lemma 4.5 and define projections Qj := Pj−Pj−1 (with P0 = 0) and closed subspaces
Xj := Qj(X) of X, for j ∈ N. By Lemma 4.5 there exist a seminorm q ∈ ΓX and
a bounded sequence (zj)j ⊆ X with zj ∈ Xj+1 such that q(zj) > 1

2
, for all j ∈ N.

Choose a sequence of increasing seminorms (qk)k generating the topology of X which
satisfy (5.1) and such that q ≤ q1.

Take any sequence of positive numbers a = (aj)j with
∑∞

j=1 aj = 1 and set
An :=

∑n
j=1 aj for n ∈ N. Define a linear map Ta : X → X by

(5.6) Tax :=
∞∑

k=1

AkQkx, x ∈ X;

observe that this corresponds to (5.2) for the case when ξ = 0. As in the proof of
Theorem 1.5 given above the operator Ta is well defined, satisfies

(5.7) qs(Tax) ≤ 2qs(x), x ∈ X, s ∈ N,

and is power bounded.
Given x ∈ ker(I − Ta) we have x = Tax and so, from (5.6), it follows that x =∑∞

k=1 AkQkx. Using (5.4) it follows that Qjx = AjQjx and hence, since 0 < Aj < 1,
that Qjx = 0 for all j ∈ N. That is, x = 0 and so ker(I − Ta) = {0}. To conclude
that Ta is mean ergodic it suffices, by Theorem 2.12, to show that ker(I −T t

a) = {0}.
So, suppose that u ∈ X ′ satisfies T t

au = u. Let xj ∈ Xj be arbitrary and note that
〈xj, u〉 = 〈Taxj, u〉 for all j ∈ N. It follows form (5.6) and (5.7) that

〈xj, u〉 =
∞∑

k=1

Ak〈Qkxj, u〉 =
∞∑

k=1

Ak〈QkQjxj, u〉 = Aj〈xj, u〉

for j ∈ N; see also (5.4). Since 0 < Aj < 1, we conclude that 〈xj, u〉 = 0. So, we
have shown that 〈y, u〉 = 0 whenever y ∈ Xj for some j ∈ N. Since

∑∞
j=1 Qj = I

(in Ls(X)), it follows that each x ∈ X has a decomposition x =
∑∞

j=1 Qjx with
Qjx ∈ Xj for all j ∈ N. By continuity of u it follows that u = 0. So, ker(I−T t

a) = {0}
and hence, Ta is mean ergodic.

The proof is completed by showing, for the choice aj := 2−j for j ∈ N, that
Ta is not uniformly mean ergodic. For ease of notation, set T := Ta. Note that
Ak = 1 − 2−k for each k ∈ N. Moreover, from (5.6), (5.7) and

∑∞
j=1 Qj = I (in

Ls(X)), it follows that

Tmx =
∞∑

k=1

Am
k Qkx, x ∈ X, m ∈ N.

Then (1.5) and direct calculation yields

(5.8) T[n]x =
1

n

∞∑

k=1

Ak

(1− Ak)
· (1− An

k)Qkx, x ∈ X, n ∈ N.

Since T is mean ergodic, there exists P ∈ L (X) with T[n] → P in Ls(X) as n →∞.
For j ∈ N fixed and x ∈ Xj, it follows from (5.4) that Qkx = δkjx for all k ∈ N and
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hence, (5.8) implies that

(5.9) T[n]x =
1

n

Aj

(1− Aj)
· (1− An

j )x, n ∈ N.

Since 0 < (1− An
j ) < 1, for each n ∈ N, it follows that

qk(T[n]x) ≤ 1

n

Aj

(1− Aj)
qk(x), k, n ∈ N.

Accordingly, qk(T[n]x) → 0 as n →∞ (for each k ∈ N). But, T[n] → P in Ls(X) as
n → ∞ and so Px = 0. That is, Py = 0 for every y ∈ ⋃∞

j=1 Xj. We have already
seen that

⋃∞
j=1 Xj is dense in X and so P = 0, that is, T[n] → 0 in Ls(X) as n →∞.

Suppose that T is uniformly mean ergodic, in which case necessarily T[n] → 0 in
Lb(X). In particular, since (zj)j is a bounded sequence in X, we have

(5.10) lim
n→∞

sup
j∈N

q(T[n]zj) = 0.

Fix j ∈ N. It follows from (5.9) with x = zj ∈ Xj and n = 2j (together with
Aj = 1− 2−j) that

q(T2jzj) = (1− 2−j) · (1− (1− 2−j)2j

)q(zj).

Using the inequalities q(zj) > 1
2
and (1− 2−j) ≥ 1

2
we conclude that

q(T2jzj) >
1

4
(1− (1− 2−j)2j

).

But, limj→∞(1 − 2−j)2j
= e−1 and we have a contradiction to (5.10). Accordingly,

T = Ta is not uniformly mean ergodic. ¤

Remark 5.3. (i) As noted in Section 4, every Schauder decomposition in a
Banach space fails to have property (M). So, for Banach spaces Theorem 5.2 reduces
to [23, Theorem 2]. However, the proof of Theorem 2 given in [23] is based on Lin’s
criterion, namely Proposition 2.16 above which, as noted in Section 2, fails to hold
in non-normable spaces (in general). So, the “Banach space proof” of [23] does not
apply in Fréchet spaces.

(ii) For each p ∈ [1,∞), let Lp
`oc(R) denote the space of all (equivalence classes

of) Lebesgue measurable functions f defined on R which satisfy

q(n)
p (f) :=

( ∫ n

−n

|f(t)|p dt
)1/p

< ∞,

for all n ∈ N. Each space Lp
`oc(R) is a separable Fréchet space (reflexive if p 6= 1)

when equipped with the seminorms q
(1)
p ≤ q

(2)
p ≤ . . .. This class of spaces has been in-

tensively studied in [1], [3], [2]. According to Remark 4.3 (see [7, Proposition 6.2(ii)]),
there exists a spectral measure in Lp

`oc(R) which fails to be boundedly σ-additive.
Hence, Proposition 4.2 implies that Lp

`oc(R) admits a Schauder decomposition with-
out property (M). Then Theorem 5.2 shows that Lp

`oc(R) is not uniformly mean
ergodic. For each 1 < p < ∞, the space Lp

`oc(R) is mean ergodic because of its reflex-
ivity (cf. Corollary 2.7). The case p = 1 is different. Since the Banach space L1([0, 1])
is isomorphic to a complemented subspace of L1

`oc(R), to show that L1
`oc(R) is not

mean ergodic it suffices to show (by an argument as in the Proof of Proposition 2.9)
that L1([0, 1]) is not mean ergodic. But, L1([0, 1]) has a Schauder basis [36, p. 3] and
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is non-reflexive. Then [23, Corollary 1] implies that L1([0, 1]) is, indeed, not mean
ergodic. Or, one can appeal to [20, Theorem 2].

The following result has no counterpart in Banach spaces.

Theorem 5.4. For a Fréchet space X the following assertions are equivalent.
(i) X is a Montel space.
(ii) Every closed subspace of X is uniformly mean ergodic.
(iii) Every power bounded, mean ergodic operator defined on a closed subspace of

X is uniformly mean ergodic.

Proof. (i) ⇒ (ii). This follows from Proposition 2.8 and (ii) ⇒ (iii) is obvious.
Suppose that X is not Montel. According to Proposition 3.2, X contains a closed

subspace Y which is not Montel and has a basis. Then the Schauder decomposition
(Pn)n ⊆ L (Y ) induced by this basis has the property that each (1-dimensional)
space Qn(Y ) := (Pn − Pn−1)(Y ), for n ∈ N, is Montel (with P0 := 0). By [14,
Proposition 4], the Schauder decomposition (Pn)n cannot have property (M) and
hence, Theorem 5.2 guarantees the existence of a power bounded, mean ergodic
operator in L (Y ) which fails to be uniformly mean ergodic. This establishes (iii) ⇒
(i). ¤

Proof of Theorem 1.3. Let X be a Fréchet space with a basis. If X is Montel,
then it is uniformly mean ergodic by Proposition 2.8. On the other hand, if X is
not Montel, then we can choose Y = X in the proof of (iii) ⇒ (i) in Theorem 5.4 to
conclude that X is not uniformly mean ergodic. ¤

Proof of Theorem 1.6. Initially we proceed along the lines of [23, Corollary 4]. Let
X be a Fréchet space which contains an isomorphic copy of c0, say via an isomorphism
J : c0 → X. Let (en)n be the standard unit basis vectors of c0, in which case the
sequence (yn)n with yn := Jen, for n ∈ N, is a Schauder basis of Y := J(c0). Let ‖·‖c0

denote the norm in c0 and ΓX = (qk)k be increasing. Then, for each k ∈ N, there
exists Mk > 0 satisfying qk(Jx) ≤ Mk‖x‖c0 , for x ∈ c0, and there exist k1 ∈ N and
K > 0 such that ‖x‖c0 ≤ Kqk1(Jx), for all x ∈ c0. By omitting qj, for 1 ≤ j < k1,
and relabelling (if necessary), we may assume that there exists M0 > 0 with
(5.11) ‖x‖c0 ≤ M0q1(Jx), x ∈ c0,

and for each k ∈ N an Mk > 0 satisfying
(5.12) qk(Jx) ≤ Mk‖x‖c0 , x ∈ c0.

Moreover, (qk)k is still increasing and determines the topology of X. In particular,
for each u = (uj) =

∑∞
j=1 ujej in c0 we have

sup
j∈N

|uj| ≤ M0q1

( ∞∑
j=1

ujyj

)
= M0q1

( ∞∑
j=1

ujJej

)

and

(5.13) qk

( ∞∑
j=1

ujyj

)
≤ Mk sup

j∈N
|uj|.

Let (fn) ⊆ `1 = c′0 denote the dual basis of (en)n ⊆ c0. For each n ∈ N, define
y′n ∈ Y ′ by y′n := fn ◦ J−1, in which case (y′n)n is the dual basis of the Schauder basis
(yn)n of Y . Since |〈y, y′n〉| ≤ M0q1(y), for y ∈ Y and n ∈ N, we see that (y′n)n is an
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equicontinuous subset of Y ′. By the Hahn–Banach theorem, for each n ∈ N there
exists ξn ∈ X ′ satisfying ξn|Y = y′n and

(5.14) |〈x, ξn〉| ≤ M0q1(x), x ∈ X.

Define xn :=
∑n

j=1 yj ∈ Y and gn := (ξn − ξn+1) ∈ X ′ for each n ∈ N. Direct
calculation yields

〈yn, ξk〉 = δkn and 〈xn, gk〉 = δkn, k, n ∈ N.

Define projections Pn : X → X, for each n ∈ N, by

Pnx :=
n∑

k=1

〈x, gk〉xk, x ∈ X,

with the range of Pn equal to span(xj)
n
j=1 = span(yj)

n
j=1 ⊆ Y . Clearly PnPm =

Pmin{m,n}. Set h := ξ1 ∈ X ′, in which case

〈xn, h〉 = 〈
n∑

j=1

yj, ξ1〉 = 1, n ∈ N.

Since (Pn − Pn−1)xn = xn (with P0 := 0), we have xn ∈ (Pn − Pn−1)(X) for all
n ∈ N. Moreover, (xn)n ⊆ X is a bounded sequence, because xn = J(

∑n
j=1 ej) with

‖∑n
j=1 ej‖c0 = 1 for all n ∈ N implies (via (5.12)) that

qk(xn) = qk

(
J(

n∑
j=1

ej)
)
≤ Mk, k, n ∈ N.

Moreover, with ε0 := M−1
0 we see from (5.11) that

ε0 ≤ q1(xn), n ∈ N.

On the other hand, the identities

Pnx = 〈x, ξ1〉y1 − 〈x, ξn+1〉xn +
n∑

k=2

〈x, ξk〉(xk − xk−1) =
n∑

k=1

(〈x, ξk〉 − 〈x, ξn+1〉) yk,

valid for all n ∈ N and x ∈ X, imply (via (5.13) and (5.14)) that

(5.15) qk(Pnx) ≤ Mk sup
1≤k≤n

|〈x, ξk〉 − 〈x, ξn+1〉| ≤ 2MkM0q1(x), x ∈ X; k, n ∈ N.

Accordingly, (Pn)n ⊆ L (X) is equicontinuous.
Let a = (aj)j be any sequence of positive numbers satisfying

∑∞
j=1 aj = 1 and

set An :=
∑n

j=1 aj, for n ∈ N. As in the statement of Theorem 3 in [23] define

(5.16) Sax := x−
∞∑

n=2

anPn−1x +
∞∑

n=2

an〈Pn−1x, h〉xn,

for each x ∈ X. To verify that Sa ∈ L (X), fix k ∈ N. From the definition of Sa and
the inequalities (5.13) and (5.15) we can conclude that

qk(Sax) ≤ qk(x) + 2MkM0q1(x) + Mk sup
n≥2

|〈Pn−1x, h〉|,

for each x ∈ X. But, (5.14) and (5.15) yield

|〈Pn−1x, h〉| = |〈Pn−1x, ξ1〉| ≤ M0q1(Pn−1x) ≤ 2M2
0 M1q1(x)
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and hence,
qk(Sax) ≤ (

1 + 2MkM0 + 2MkM
2
0 M1

)
qk(x), x ∈ X,

with the right-hand side independent of a. So, Sa ∈ L (X).
The fact that Sa is power bounded follows from the Claim on p. 156 of [23], stating

that SaSb = Sc for an appropriate c (expressed in terms of apriori given a and b). The
argument in [23] is of a pure “algebraic computational” nature and so, also applies
here.

Next we verify that Sa is not mean ergodic. To this end, first define Yn := Pn(X)
in which case the property PnPm = Pmin{m,n} implies that Yn ⊆ Ym whenever n ≤ m.
Let y ∈ Y . Since (

∑n
j=1 ej)n is a Schauder basis of c0, there exist scalars (αn)n such

that J−1y =
∑∞

n=1 αn(
∑n

j=1 ej), that is, y =
∑∞

j=1 αjxj. But,
∑m

j=1 αjxj ∈ Pm(X) =
Ym for all m ∈ N and so

(5.17) Y =
⋃∞

m=1 Ym,

with the closure formed in X.
To see that Sa(Y ) ⊆ Y it suffices to verify that Sa(Ym) ⊆ Y for each m ∈ N.

According to (5.16), for a given x ∈ X we have

Sa(Pmx) = Pmx−
∞∑

n=2

anPn−1Pmx +
∞∑

n=2

an〈Pn−1Pmx, h〉xn.

Because of the property PrPs = Pmin{r,s} we have
∞∑

n=2

anPn−1Pmx =
m∑

n=2

anPn−1x +
∑
n>m

anPmx.

For the same reason we also have
∞∑

n=2

an〈Pn−1Pmx, h〉xn =
m∑

n=2

an〈Pn−1x, h〉xn + 〈Pmx, h〉
∑
n>m

anxn.

Accordingly,

Sa(Pmx) = Pmx +
m∑

n=2

anPn−1x +
( ∑

n>m

an

)
Pmx

+
m∑

n=2

an〈Pn−1x, h〉xn + 〈Pmx, h〉
∑
n>m

anxn.

It then follows from (5.17) that Sa(Pmx) ∈ Y .
Now, limn→∞ Pny = y for all y ∈ Ym because y = Pmy and so

lim
n→∞

PnPmy = lim
n≥m

PnPmy = Pmy.

Since (Pn)n ⊆ L (X) is equicontinuous, it follows from (5.17) that

y = lim
n→∞

Pny, y ∈ Y.

Define Q1 := P1 and Qk := (Pk − Pk−1) for k ≥ 2. Arguing as in the proof of
Theorem 3 in [23], it turns out that each Qk is a projection with QkQj = 0 whenever
k 6= j and Pk =

∑k
j=1 Qj. Hence, Ek := Qk(X) = Qk(Y ), for k ∈ N, is a Schauder

decomposition of Y .
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Finally, with Ta ∈ L (X) as defined by (5.2), it turns out (see the proof of
Theorem 3 in [23] where the formulae (4) and (7) used there are also available here)
that Sa|Y = Ta. Observe that xk belongs to Ek and satisfies 〈xk, h〉 = 1 for all
k ∈ N. Moreover, (xk)k is a bounded sequence in Y . By the proof of Theorem 1.5
given above (applied to Sa in Y ) there exists y ∈ Y such that ((Sa)[n]y)n does not
converge in Y . In particular, Ta ∈ L (X) is not mean ergodic. ¤
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