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Abstract. In this paper we study the Hardy–Littlewood maximal operator in variable ex-
ponent spaces when the exponent is not assumed to be bounded away from 1 and ∞. Within
the framework of Orlicz–Musielak spaces, we characterize the function space X with the property
that Mf ∈ Lp(·) if and only if f ∈ X, under the assumptions that p is log-Hölder continuous and
1 6 p− 6 p+ 6 ∞.

1. Introduction

Variable exponent spaces have been the subject of quite a lot of interest recently,
as surveyed in [13, 39]. These investigations have dealt both with the spaces them-
selves, e.g. [7, 12, 17, 29, 31], with related differential equations [1, 3, 15, 16, 32,
41, 42], and with applications [4, 38]. A critical step in the development of the the-
ory was establishing the boundedness of the Hardy–Littlewood maximal operator.
To describe this results and ours, we use the by now standard notation of variable
exponent spaces. The reader may consult Section 2 if necessary.

The boundedness of the maximal operator was originally proved by Diening [9]
assuming that

(1) the exponent is locally log-Hölder continuous;
(2) the exponent is constant outside a compact set; and
(3) the exponent is bounded and bounded away from 1, i.e. 1 < p− 6 p+ < ∞.

Pick and Růžička [37] complemented this result by showing that the local log-Hölder
continuity in (1) is the optimal continuity modulus for this assertion.

Diening’s second assumption, that p be constant outside a compact set, is quite
unnatural and is a result of the method of proof. Cruz-Uribe, Fiorenza and Neuge-
bauer [8, Theorem 1.5] showed that it can be replaced by a weaker decay condition
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at infinity. Their condition is naturally termed global log-Hölder continuity (cf. Re-
mark 2.4). These authors also comment on the necessity of the decay condition
in [8, Theorem 1.6]. Nekvinda [36] independently proved the same result under a
slightly weaker decay assumption at infinity, replacing the continuity modulus by
a Dini-type condition at infinity. It remains an open question whether Nekvinda’s
Dini-type condition is sufficient also for finite points.

With the first two assumptions being optimal, it is natural to look at the third
condition also. The upper bound in (3), p+ < ∞, seems strange, since it is imme-
diately clear that M : L∞ ↪→ L∞. In Section 3 we show that this condition was an
artefact of previous proof methods and that M : Lp(·) ↪→ Lp(·) when p is globally
log-Hölder continuous and 1 < p− 6 p+ 6 ∞. Since M : L1 6↪→ L1, the lower bound
condition p− > 1, on the other hand, looks quite reasonable. Indeed, Cruz-Uribe,
Fiorenza and Neugebauer [8, Theorem 1.7] showed that if p is lower semicontinuous
and M : Lp(·) ↪→ Lp(·), then p− > 1. In Section 6 we improve this result and show
that M : Lp(·) ↪→ Lp(·) implies p− > 1 even without the semicontinuity assumption
(Theorem 6.3).

Despite these quite definite looking assertions about the lower bound, other ap-
proaches were devised. Hästö [26], Futamura and Mizuta [19] and Mizuta, Ohno and
Shimomura [33] studied embeddings from Lp(·) to L1 and Cruz-Uribe, Fiorenza and
Neugebauer [8], Aguilar Cañestro and Ortega Salvador [2] and Harjulehto and Hästö
[23] studied weak-type inequalities including the case p− = 1. In this paper we take
a different route. We fix the target space to be Lp(·) and give a concrete description
of the space M−1[Lp(·)], i.e. we describe the space X for which Mf ∈ Lp(·) if and only
if f ∈ X. In view of the previous paragraph X ( Lp(·).

The relevant classical results [40, Section 1] for such a characterization are that

Mf ∈ Lp if and only if f ∈ Lp (p > 1) and Mf ∈ L1 if and only if f ∈ L log L.

The latter result is, of course, restricted to bounded domains: if Mf ∈ L1(Rn), then
f ≡ 0. On an intuitive level, then, we see that we need some kind of modified scale
of spaces L̃p(·) where p = 1 corresponds to L log L, not L1, if we want to characterize
functions f for which Mf ∈ Lp(·). It is possible to construct such a space within the
framework of Orlicz–Musielak spaces.

Recall that the Orlicz–Musielak space with modular Φ(x, t) is defined by the
Luxemburg type-norm

‖f‖LΦ(Ω) := inf

{
λ > 0 :

ˆ

Ω

Φ
(
x,

f(x)

λ

)
dx 6 1

}

[34]. (The function Φ must satisfy certain conditions, which we will not detail here.)
We need a function which behaves like a logarithm when p = 1 and fades away when
p > 1. Since the embedding constant of M : Lp ↪→ Lp is p′, the function

min
{
p′, log(e + |t|)}, p′ := p/(p− 1),

would be a natural choice. Unfortunately, it does not yield a convex modular. The
following variant fixes this problem:

ψp(t) =

{
log(e + |t|), for |t| < ep′ − e,

2p′ − ep′

e+|t|p
′, for |t| > ep′ − e.
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Note that t 7→ tpψp(t) is convex on [0,∞) and that
1
2
ψp(t) 6 min

{
p′, log(e + |t|)} 6 ψp(t),

so ψp is equivalent up to a contant to the natural choice of modular.
The norm ‖f‖Lp(·)ψp(·)[L] is then given by the modular

Φ(x, t) = |t|p(x)ψp(x)(t).

Note that ‖f‖Lp(·)ψp(·)[L] ≈ ‖f‖Lp(·) if p− > 1, but the constant of proportionality
blows up as p− → 1. We are now ready for the main theorem:

Theorem 1.1. Let Ω ⊂ Rn be a bounded open set and let 1/p : Ω → R be
log-Hölder continuous with 1 6 p− 6 p+ 6 ∞. Then

‖Mf‖Lp(·)(Ω) . ‖f‖Lp(·)ψp(·)[L](Ω).

The embedding is sharp in the sense that

Mf ∈ Lp(·)(B) if and only if f ∈ Lp(·)ψp(·)[L](B)

for balls B (and other sufficiently nice domains).

In the special case when p− > 1 we get a result in all of Rn, as expected:

Theorem 1.2. Let p ∈ P log(Rn) with 1 < p− 6 p+ 6 ∞. Then M is bounded
from Lp(·)(Rn) to Lp(·)(Rn), more specifically,

‖Mf‖p(·) 6 A(p−)′‖f‖p(·).

Here A > 0 depends only on the dimension n and the constant of log-Hölder conti-
nuity of 1

p
.

After this paper was finished, Diening, Cruz-Uribe and Fiorenza [5] found a new
proof for Theorem 1.2.

Cruz-Uribe and Fiorenza [6] have also recently investigated the behavior of the
maximal operator in variable exponent spaces when p → 1. In fact, improving their
result was the inital motivation for this study. Their main result is the following:

Theorem 1.5 of [6]. Let Ω ⊂ Rn be a bounded open set and let p : Ω → R
be log-Hölder continuous with 1 6 p− 6 p+ < ∞. For every δ > 0 there exist
non-negative, continuous exponents q and ε with q|{p=1} ≡ 1, spt q ⊂ {p < 1 + δ}
and spt ε ⊂ {1 < p < 1 + δ} so that

M : Lp(·)+ε(·) log Lq(·)(Ω) ↪→ Lp(·)(Ω).

Since ε equals 0 in the set {p = 1} in the previous theorem, the result allows us
to regain the classical, constant exponent embeddings as special cases. However, the
embedding is clearly not optimal in the variable exponent case. Surely, the exponent
ε is a strange manifestation of the technique of proof which does not correspond to
anything in the constant exponent case. As a consequence of our embedding theorem,
we get the following improvement of their result:

Theorem 1.3. Let Ω ⊂ Rn be a bounded open set and let 1/p : Ω → R be
log-Hölder continuous with 1 6 p− 6 p+ 6 ∞. For every δ > 0 there exist a
non-negative, continuous exponent q with spt q ⊂ {p < 1 + δ} and q|{p=1} ≡ 1 so
that

M : Lp(·) log Lq(·)(Ω) ↪→ Lp(·)(Ω).
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Cruz-Uribe and Fiorenza [6, Example 1.9] also gave an example which shows that
the embedding of Theorem 1.3 is strict in the sense that there exists a function f
with Mf ∈ Lp(·)(Ω) but f 6∈ Lp(·) log Lq(·)(Ω). We give a slight improvement of this
result in Proposition 5.1 by relaxing the continuity asssumptions on the exponents.

Let us conclude the introduction by mentioning some other directions of study
of the maximal operator in variable exponent spaces which are not yet covered by
our results. Lerner [31] constructed examples of variable exponents which are not
log-Hölder continuous but for which the maximal operator is nevertheless bounded.
Diening [10] gave an abstract characterization of the boundedness of the maximal
operator, which allows us, for instance, to conclude that the maximal operator is
bounded for the exponent p if and only if it is bounded for the conjugate exponent p′.
The weighted case was studied by Kokilashvili, N. Samko and S. Samko [27, 28, 29].
In further generality still, the maximal operator was considered in the metric measure
space case by Harjulehto, Hästö and Pere [25] and Futamura, Mizuta and Shimomura
[20, 21]. In all these cases it remains unclear what happens when p → 1 or p →∞.

Another question related to the methods of this paper is modifying the Lebesgue
space scale to allow for optimal results. Other recent modifications in the variable
exponent case, again not covered by our results, are due to Harjulehto, Hästö and
Latvala [24], Harjulehto and Hästö [23] and Diening, Hästö and Roudenko [14].

The structure of the rest of this paper is as follows. In Section 2 we recall
the definitions and conventions used throughout the paper. In Section 3 we tackle
the case of unbounded exponents which are bounded away from 1. In Section 4 we
consider the lower bound on p− and prove Theorem 1.1. In Section 5 we show how this
theorem implies Theorem 1.3 and prove that a theorem of this type cannot be sharp
(Proposition 5.1). Finally, in Section 6 we show without any a priori assumptions
on the exponent that the maximal operator is never bounded from Lp(·)(Ω) to itself
when p− = 1. The proofs in Sections 3 and 6 are based on the Habilitation’s Thesis
of Lars Diening [11].

2. Notation and conventions

By C we denote a generic constant, i.e. a constant whose value may change from
appearance to appearance. We write f . g if there exists a constant C so that
f 6 Cg. The notation f ≈ g means that f . g . f . We always assume that Ω ⊂ Rn

is an open set. For a function f : Ω → R we denote the set {x ∈ Ω : a < f(x) < b}
simply by {a < f < b}, etc. For f ∈ L1

loc(Ω) and A ⊂ Rn with positive finite measure
we write

fA =

 

A

f(y) dy := |A|−1

ˆ

A∩Ω

f(y) dy.

We use M to denote the centered Hardy–Littlewood maximal operator, Mf(x) =
supr>0 |f |B(x,r).

Let p : Ω → [1,∞] be a measurable function, which we call a variable expo-
nent. For A ⊂ Rn we write p+

A = esssupx∈A∩Ω p(x) and p−A = essinfx∈A∩Ω p(x), and
abbreviate p+ = p+

Ω and p− = p−Ω. We define

ϕp(x, t) :=





tp(x) for 0 < p(x) < ∞,

0 for p(x) = ∞, t ∈ (0, 1],

∞ for p(x) = ∞, t ∈ (1,∞).
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The reason to define ϕ∞(1) = 0 is to get a left-continuous function, as in the general
theory of Orlicz–Musielak spaces. Note that ϕ∞(t) 6 limq→∞ ϕq(t) 6 ϕ∞(2t) for all
t > 0. Let q, r, s ∈ [1,∞] with 1

q
= 1

r
+ 1

s
. Then Young’s inequality reads

ϕq(x, ab) 6 ϕr(x, a) + ϕs(x, b)

for all a, b > 0.
Let ϕ−1

p (x, ·) be the left-continuous inverse of ϕp(x, ·), i.e.
ϕ−1

p (x, s) := inf {t > 0: ϕp(x, t) > s}.
This implies ϕ−1

p (x, t) = t
1

p(x) for p(x) < ∞ and ϕ−1
p (x, t) = χ(0,∞](t) for p(x) = ∞.

Except where special emphasis is needed, we will simply abbreviate ϕp(x, t) and
ϕ−1

p (x, t) by tp(x) and t1/p(x). It is to be understood that this means ∞χ(1,∞)(t) and
χ(0,∞), respectively, at points where p(x) = ∞.

The variable exponent modular is defined for measurable functions by

%p(·)(f) =

ˆ

Ω

ϕp(x, |f(x)|) dx.

The variable exponent Lebesgue space Lp(·)(Ω) consists of measurable functions f :
Ω → R with %p(·)(λf) < ∞ for some λ > 0. We define the Luxemburg norm on this
space by the formula

‖f‖Lp(·)(Ω) = inf
{
λ > 0: %p(·)(f/λ) 6 1

}
.

Here Ω could of course be replaced by some subset as in ‖f‖Lp(·)(A); the abbreviation
‖f‖p(·) is used for the norm ‖f‖Lp(·)(Ω) over all of Ω. Notice that an immediate
consequence of the definition is that ‖f‖p(·) 6 1 if and only if %p(·)(f) 6 1.

Remark 2.1. If p+ = ∞, then our definition is not exactly the same as the
one given by Kováčik and Rákosník [30] who used the modular ϕp(·)(fχ{p<∞}) +
‖fχ{p=∞}‖∞. However, both definitions give the same space up to equivalence of
norms, and our definition is easier to use in the case p+ = ∞.

The following inequality remains valid also when we include p+ = ∞, although
for technical reasons we must assume either %p(·)(f) > 0 or p+ < ∞:

Lemma 2.2. For any measurable exponent p : Ω → [1,∞] with p− < ∞ we have

min
{

%p(·)(f)
1

p− , %p(·)(f)
1

p+

}
6 ‖f‖p(·) 6 max

{
%p(·)(f)

1
p− , %p(·)(f)

1
p+

}

when %p(·)(f) > 0 or p+ < ∞.

Proof. Suppose that p+ < ∞. If %p(·)(f) 6 1, then we need to prove that

%p(·)(f)
1

p− 6 ‖f‖p(·) 6 %p(·)(f)
1

p+ .

By homogeneity, the latter inequality is equivalent to ‖f/%p(·)(f)
1

p+ ‖p(·) 6 1, which
is equivalent to the modular being less than or equal to one:

ˆ

Ω

(
f(x)

%p(·)(f)
1

p+

)p(x)

dx 6 1.

But since %p(·)(f)
− p(x)

p+ 6 %p(·)(f)−1, this is clear. The other inequality and the case
%p(·)(f) > 1 are similar.
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Consider then p+ = ∞. In this case the upper inequality becomes ‖f‖p(·) 6
max

{
%p(·)(f)1/p− , 1

}
. If %p(·)(f) 6 1, then ‖f‖p(·) 6 1, so the inequality holds. If

%p(·)(f) > 1, then we need to show that
ˆ

Ω

( f(x)

%p(·)(f)1/p−

)p(x)

dx 6 1.

Since %p(·)(f)−1 < 1, we conclude that

%p(·)(f)
−p(x)

p− 6
{

0, if p(x) = ∞,

%p(·)(f)−1, if p(x) < ∞.

Hence ˆ

Ω

( f(x)

%p(·)(f)1/p−

)p(x)

dx 6
ˆ

Ω

f(x)p(x)%p(·)(f)−1 dx = 1.

The proof of the lower inequality is analogous. ¤
The following has emerged as a central condition in the theory of variable expo-

nent spaces.

Definition 2.3. Let α ∈ C(Ω). We say that α is locally log-Hölder continuous
if there exists clog > 0 so that

|α(x)− α(y)| 6 clog

log(e + 1/|x− y|)
for all x, y ∈ Ω.

We say that α is (globally) log-Hölder continuous if it is locally log-Hölder con-
tinuous and there exists α∞ ∈ R so that the decay condition

|α(x)− α∞| 6 clog

log(e + |x|)
holds for all x ∈ Ω.

Remark 2.4. If Ω is a bounded set then the notions of local and global log-
Hölder continuity coincide. If Ω is unbounded, then α is globally log-Hölder contin-
uous if and only if it can be extended to ∞ in such a way that

|α(x)− α(y)| 6 clog

log(e + 1/q(x, y))

for all x, y ∈ Ω ∪ {∞}, where q denotes the spherical-chordal metric,

q(x, y) =
|x− y|√

1 + |x|2
√

1 + |y|2 and q(x,∞) =
1√

1 + |x|2 ,

for x, y ∈ Rn. This motivates calling the condition global log-Hölder continuity.

The following lemma is an easy consequence of the definition.

Lemma 2.5. Let α be locally log-Hölder continuous. Then

|B|−|α(x)−α(y)| 6 (2eΩ−1
n )n clog

for all balls B ⊂ Rn containing x and y, where Ωn denotes the volume of the unit
ball.

The notation P log(Ω) is used for the set of functions p from Ω to (0,∞] for which
1/p is globally log-Hölder continuous.
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3. The maximal operator in spaces with unbounded exponents

In this section we develop the theory of maximal operators when the exponent
is not bounded. Therefore the conventions regarding t∞ and t1/∞ introduced in the
previous section are particularly relevant.

Lemma 3.1. Let p ∈ P log(Rn) with 0 < p− 6 p+ 6 ∞. Then there exists
β ∈ (0, 1), which only depends on the log-Hölder continuity constant of 1

p
, such that

(
β (λ |B|−1)1/p−B

)p(x) 6 λ |B|−1

for all λ ∈ [0, 1], every ball B ⊂ Rn and x ∈ B.

Proof. If p−B = ∞, then p(x) = ∞ and ϕ∞
(
β ϕ−1

∞ (λ |B|−1)
)

= ϕ∞(β) = 0 6
λ |B|−1. Assume now that p−B < ∞ and p(x) < ∞. Due to Lemma 2.5 there exists
β ∈ (0, 1) such that

β |B|1/p(x)−1/p−B 6 1.

Multiply this by |B|−1/p(x) and raise the result to the power of p(x) to prove the claim
for λ = 1. If 0 6 λ < 1, then

(
β

(
λ |B|−1)1/p−B

)p(x)

= λp(x)/p−B
(
β

(|B|−1)1/p−B
)p(x)

6 λp(x)/p−B |B|−1 6 λ |B|−1

by convexity and the case λ = 1.
It remains to consider the case p(x) = ∞ and p−B < ∞. Since p−B < ∞ we

can choose points xi ∈ B such that each p(xi) is finite and p(xi) → ∞. Then
ϕp(x, t) 6 limi→∞ ϕp(xi, t) for all t > 0 by continuity. Hence, this case is reduced to
the previous case. ¤

If A and B are normed spaces contained in a vector space, then the norm ‖·‖A+B

is defined by
‖f‖A+B = inf

a,b
‖a‖A + ‖b‖B,

where the infimum is taken over elements a ∈ A and b ∈ B such that a + b = f .

Lemma 3.2. Let p ∈ P log(Rn) with 1 6 p− 6 p+ 6 ∞. Define r ∈ P log(Rn ×
Rn) by

1

r(x, y)
= max

{
0,

1

p(x)
− 1

p(y)

}
.

Then for γ ∈ (0, 1) there exists β ∈ (0, 1) such that
(

β

 

B

|f(y)| dy

)p(x)

6
 

B

|f(y)|p(y) dy +

 

B

γr(x,y) dy

for every ball B ⊂ Rn containg x, and function f ∈ Lp(·)(Rn) + L∞(Rn) satisfying
‖f‖Lp(·)(Rn)+L∞(Rn) 6 1. Here, β depends on p only via the constant of local log-
Hölder continuity of 1

p
.

Proof. We assume without loss of generality that f is non-negative. Since we
have ‖f‖Lp(·)(Rn)+L∞(Rn) 6 1, we can write f = h+k where ‖h‖∞+‖k‖p(·) 6 1. Then
fp = min{f, |k|} and f∞ = f − fp are non-negative and ‖f∞‖∞ + ‖fp‖p(·) 6 1. By
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convexity
(

β

2

 

B

f(y) dy

)p(x)

6 1

2

(
β

 

B

fp(y) dy

)p(x)

+
1

2

(
β

 

B

f∞(y) dy

)p(x)

.

Thus it suffices to prove the claim for f ∈ L1
loc(R

n) with ‖f‖p(·) 6 1 or ‖f‖∞ 6 1.
Let B ⊂ Rn be a ball and x ∈ B. Without loss of generality let f(y) = 0 for

y ∈ Rn \ B. If p−B = ∞, then p(y) = ∞ for all y ∈ B and the claim is just Jensen’s
inequality for the convex function ϕ∞, even without the last term. So assume in the
following p−B < ∞.

Let β > 0 be as in Lemma 3.1. We can assume that β 6 γ. We split f into three
parts:

f1 := f χ{f>1}, f2 := f χ{f61, p(·)6p(x)}, and f3 := f χ{f61, p(·)>p(x)}.

Then f = f1 + f2 + f3 and fj 6 f . By convexity of ϕp(x, ·) we conclude that

ϕp

(
x,

β

3

 

B

f(y) dy

)
6 1

3

3∑
j=1

ϕp

(
x, β

 

B

fj(y) dy

)
=:

1

3

(
(I) + (II) + (III)

)
.

Therefore it suffices to consider the functions f1, f2, and f3 independently.
We start with f1. Hölder’s inequality with exponent p−B implies that

(I) = ϕp

(
x, β

 

B

f1(y) dy

)
6 ϕp

(
x, β

(  

B

f1(y)p−B dy

)1/p−B
)

.

Since f1(y) > 1 or f1(y) = 0 and p−B 6 p(y), we have by f1(y)p−B 6 ϕp(y, f1(y)) so
that

(I) 6 ϕp

(
x, β

(  

B

ϕp(y, f1(y)) dy

)1/p−B
)

.

If ‖f‖∞ 6 1, then f1 = 0 and (I) = 0. So we assume that ‖f‖p(·) 6 1. Then we
apply Lemma 3.1 with λ =

´
B

ϕp(y, f1(y)) dy 6 1 and conclude that

(I) 6
 

B

ϕp(y, f1(y)) dy.

Since β f2(y) 6 f2(y) 6 1 and p(y) 6 p(x) in the support of f2, we conclude that
ϕp

(
x, β f2(y)

)
6 ϕp

(
y, f2(y)

)
. To estimate (II) we apply Jensen’s inequality followed

by this inequality and derive

(II) = ϕp

(
x,

 

B

β f2(y) dy

)
6
 

B

ϕp

(
x, β f2(y)

)
dy 6

 

B

ϕp

(
y, f2(y)

)
dy.

Finally, for (III), Jensen’s inequality, Young’s inequality and β 6 γ give

(III) 6
 

B

ϕp

(
x, β f3(y)) dy 6

 

B

ϕp

(
y, β

f3(y)

γ

)
+ γr(x,y) dy

6
 

B

ϕp(y, f3(y)) dy +

 

B

γr(x,y) dy.

Collecting the estimates for (I), (II) and (III) proves the lemma. ¤
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Lemma 3.3. Let p ∈ P log(Rn) with 1 6 p− 6 p+ 6 ∞. Then for any k > 0
there exists β ∈ (0, 1) such that

(
β

 

B

|f(y)| dy

)p(x)

6
 

B

|f(y)|p(y) dy + hB(x),

for every ball B ⊂ Rn containg x, and function f ∈ Lp(·)(Rn) + L∞(Rn) satisfying
‖f‖Lp(·)(Rn)+L∞(Rn) 6 1, where

hB(x) := min {|B|k, 1}
(

(e + |x|)−k +

 

B

(e + |y|)−k dy

)
.

Here, β depends on p only via the constant of log-Hölder continuity of 1
p
.

Proof. Let γ := exp(−K) for some K > 0 and let β and r be as in Lemma 3.2.
We have ϕr(x,y)(γ) = ϕr(x,y)/2(γ) · ϕr(x,y)/2(γ). We will show that ϕr(x,y)/2(γ) 6
min {|B|k, 1} and ϕr(x,y)/2(γ) 6 (e + |x|)−k + (e + |y|)−k for a suitable choice of K.
The claim follows easily from this and Lemma 3.2. If r(x, y) = ∞, then ϕr(x,y)(γ) =
ϕ∞(γ) = 0 and there is nothing to prove. So we can assume that r(x, y) < ∞.

The local log-Hölder continuity of 1
p
implies that

∣∣∣∣
1

r(x, y)

∣∣∣∣ 6
∣∣∣∣

1

p(x)
− 1

p(y)

∣∣∣∣ 6 A

log(e + 1/|B|) ,

with A a constant multiple of the constant of local log-Hölder continuity of 1
p
. Hence

we get

γ
r(x,y)

2 6 exp

(
K log |B|

2A

)
= |B| K

2A 6 |B|k

for K > 2kA and |B| 6 1. If |B| > 1, then we use γr(x,y)/2 6 1 which follows from
γ < 1. Overall, we get γr(x,y)/2 6 min {|B|k, 1} for K > 2kA.

Define s by 1
s(x)

= | 1
p(x)

− 1
p∞
|. Then 1

r(x,y)
6 1

s(x)
+ 1

s(y)
6 2 max { 1

s(x)
, 1

s(y)
}.

Hence, r(x, y) > 1
2
min {s(x), s(y)} and

γ
r(x,y)

2 6 γ
1
4

min {s(x),s(y)} 6 γ
s(x)
4 + γ

s(y)
4 .

Due to the decay condition on 1
p
at infinity, 1

s(x)
6 A2

log(e+|x|) and 1
s(y)

6 A2

log(e+|y|) where
A2 > 0 is the decay constant of 1

p
. This implies that

γ
s(x)
4 6 exp

(
− K log(e + |x|)

4A2

)
= (e + |x|)− K

4A2 6 (e + |x|)−k,

and similarly γ
s(y)
4 6 (e + |y|)−k for K > 4kA2. Thus

γ
r(x,y)

2 6 γ
s(x)
4 + γ

s(y)
4 6 (e + |x|)−k + (e + |y|)−k. ¤

Recall that the space weak-L1 is defined to consist of those functions f for which

sup
λ>0

λ
∣∣{f > λ}

∣∣ < ∞.

One easily sees that the supremum is less than or equal to ‖f‖L1 (sometimes called
Chebyshev’s inequality), and so L1 ⊂ weak-L1, as the name implies.
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Corollary 3.4. Let p ∈ P log(Rn) with 1 6 p− 6 p+ 6 ∞. Then there exists
h ∈ weak-L1(Rn) ∩ L∞(Rn) and β ∈ (0, 1) such that

(3.5)
(
β Mf(x)

)p(x) 6 M
(|f(·)|p(·))(x) + h(x)

for all f ∈ Lp(·)(Rn) + L∞(Rn) with ‖f‖Lp(·)(Rn)+L∞(Rn) 6 1. Here, β depends on p

only via the constant of local log-Hölder continuity of 1
p
.

Proof. Fix k > n and define

h(x) = (e + |x|)−k + M
(
(e + |·|)−k

)
(x).

We easily see that the function x 7→ (e + |x|)−k belongs to L1(Rn) ∩ L∞(Rn).
Since M : L1(Rn) ↪→ weak-L1(Rn) and M : L∞(Rn) ↪→ L∞(Rn), we have h ∈
weak-L1(Rn) ∩ L∞(Rn). Now the claim follows from Lemma 3.3, since hB 6 h. ¤

With these results we are ready to prove the first part of our main result, that
p+ = ∞ is not an obstacle to the boundedness of the maximal operator.

Proof of Theorem 1.2. If p− = ∞, then p ≡ ∞ and the result is classical. So
assume in the following that p− < ∞. Define q := p

p− and note that q ∈ P log(Rn)

with 1 6 q− 6 q+ 6 ∞. Since q 6 p 6 ∞, we have Lp(·) ↪→ Lq(·) + L∞, with
embedding constant K > 1 independent of p and q. Since the claim is homogeneous,
it suffices to show that

‖Mf‖p(·) 6 A(p−)′

for all functions f with ‖f‖p(·) 6 1/K. By the norm-modular inequality, Lemma 2.2,
the former follows from

%p(·)(β Mf) 6 Ap−αp− ,

where we denoted α := (p−)′. (Lemma 2.2 is not applicable if %p(·)(β Mf) = 0, but
in this case f ≡ 0, so the claim is clear.)

Fix now f with ‖f‖p(·) 6 1/K. Note that, by the choice of K, ‖f‖Lq(·)+L∞ 6 1.
Let β and h be as in Corrollary 3.4, such that (3.5) holds with p replaced by q. Then

ϕp

(
x, β Mf(x)

)
= ϕq

(
x, β Mf(x)

)p−

6
(
M

[
ϕq(·, |f(·)|)](x) + h(x)

)p−

6 2p−−1M
[
ϕq(·, |f(·)|)](x)p− + 2p−−1|h(x)|p− .

Since p− > 1 and h ∈ weak-L1(Rn) ∩ L∞(Rn), we have h ∈ Lp−(Rn). Hence,
ˆ

Rn

ϕp

(
x, β Mf(x)

)
dx 6 2p−

ˆ

Rn

M
[
ϕq(·, |f(·)|)](x)p−dx + 2p−‖h‖p−

p−

6 Cαp−
ˆ

Rn

ϕq(x, |f(x)|)p−dx + 4p−‖M(e + | · |)−k‖p−

p−

6 Cp−αp−
(
%p(·)(f) + ‖(e + | · |)−k‖p−

p−

)
6 Cp−αp− ,

where we used that M : Lp−(Rn) ↪→ Lp−(Rn) with constant Cnα, where Cn depends
only on the dimension n, in the second and third inequalities. ¤
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4. The preimage of Lp(·) under the maximal operator

In this section we consider the other ingredient of Theorem 1.1, namely the lower
bound p− > 1, and eventually prove the theorem itself.

The following Lemma is an easy modification of Lemma 3.3 which is valid for
bounded exponents in bounded domains. The proof is omitted.

Lemma 4.1. Let Ω ⊂ Rn be a bounded open set and let p be log-Hölder con-
tinuous with 1 6 p− 6 p+ < ∞. Let f ∈ Lp(·)(Ω) be such that %p(·)(f) 6 K. Then
there exists a constant C depending only on p, n and K so that

Mf(x)p(x) 6 C M
[|f |p(·) + χ{0<f<1}

]
(x)

for every x ∈ Ω.

The trick with the following theorem is to use a reverse triangle inequality to
recombine terms that were originally split using the triangle inequality. This is
possible since our exponent tends to 1 in the critical parts of the domain.

Proposition 4.2. Let Ω ⊂ Rn be a bounded open set and let p be log-Hölder
continuous with 1 6 p− 6 p+ 6 2. Then there exists a constant C depending only
on p, Ω and the dimension n so that

‖Mf‖Lp(·)(Ω) 6 C‖f‖Lp(·)ψp(·)[L](Ω)

for every f ∈ Lp(·)ψp(·)[L](Ω).

Proof. By the homogenity of the claim, it suffices to consider such non-negative
functions f that ˆ

Ω

f(x)p(x)ψp(x)(f(x)) dx 6 1.

Then we must show that ‖Mf‖Lp(·) 6 C, which is equivalent to %Lp(·)(Mf) 6 C.
We split f into small and large parts as follows:

fs = fχ{f6ep′(·)−e} and fl = fχ{f>ep′(·)−e}.

Note that %p(·)(Mf) . %p(·)(Mfs) + %p(·)(Mfl). By Lemma 4.1 we have

Mfs(x)p(x) . M
[
fp(·)

s

]
(x) + 1

for x ∈ Ω. Then the embedding L log L ↪→ L1 implies thatˆ

Ω

Mfs(x)p(x) dx .
ˆ

Ω

fs(y)p(y) log
(
e + fs(y)p(y)

)
dy + |Ω|

.
ˆ

Ω

f(y)p(y)ψp(y)(f(y)) dy + |Ω| 6 C.

This takes care of fs

Next we treat fl. Let us define ri = 1 + 1/i for i > 1 and Ωi =
{
ri < p 6 ri−1

}
so that ∪Ωi = {p > 1}. The sequences (1)∞i=0 and (ri)

∞
i=0 satisfy the criterion of

Nekvinda [35, Theorem 4.1] so we conclude that l1 ∼= l(ri). We fix K > 0 so that

(4.3)
∑
i>1

xi 6 K whenever
∑
i>1

xri
i 6 L

where L is will be specified later.
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Define fi = fl χΩi
and pi = max{ri, p} for i > 2. Since fl = 0 in {p = 1}, we see

that
∑

fi = fl. By the subadditivity of the maximal operator, the triangle inequality
and the embedding Lpi(·)(Ω) ↪→ Lp(·)(Ω) [30, Theorem 2.8], we conclude that

‖Mfl‖p(·) 6
∑
i>2

‖Mfi‖p(·) 6 (1 + |Ω|)
∑
i>2

‖Mfi‖pi(·).

Next, Theorem 1.2 and the norm-modular inequality, Lemma 2.2, imply that

‖Mfl‖p(·) .
∑
i>2

(ri − 1)−1‖fi‖Lpi(·)(Ωi)
.

∑
i>2

(ri − 1)−1%Lpi(·)(Ωi)
(fi)

1/ri−1 .

By (4.3) the right hand side is bounded by K provided we show that

(4.4)
∑
i>2

(ri − 1)−ri−1%Lpi(·)(Ωi)
(fi) 6 L.

But for this we just need to estimate as follows:

∑
i

(ri − 1)−ri−1%Lpi(·)(Ωi)
(fi) .

∑
i>2

ˆ

Ωi

(ri − 1)−1fi(x)pi(x)dx

.
∑
i>2

ˆ

Ωi

(p(x)− 1)−1f(x)p(x)dx

6 %Lp(·)ψp(·)[L](Ω)(f) 6 1.

We collect the implicit absolute constants from these estimates and define L by them.
Thus (4.4) holds, and so (4.3) concludes the proof. ¤

We next show that the space we constructed is optimal for the boundedness of
the maximal operator. First we have a constant exponent version of the result we
are pursuing.

Lemma 4.5. Let p ∈ (1, 2] and fix an open bounded set Ω ⊂ Rn. Assume that
f ∈ L1(Ω) is a non-negative function with

´
Ω

f dx = 1 which does not take values in
the range

(
0, eKp′

)
for some K > 1. Then

p′
ˆ

Ω

|f(x)|p dx .
ˆ

Ω′
Mf(x)p dx,

where Ω′ :=
{
x ∈ Rn : d(x, Ω) < Ω

−1/n
n e−(K−1)p′/n

}
is a dilatation of Ω.

Proof. Since the support of f lies in Ω and f has unit mass, we see that Mf(x) <

a if d(x, Ω) >
(
Ωn a

)−1/n. We set a = e(K−1)p′ . Then Mf < λ in the set Rn \ Ω′ for
λ > a. Using this for the equality, and [40, Chapter 1, 5.2(b)] for the inequality, we
conclude that

∣∣{x ∈ Ω′ : Mf(x) > λ
}∣∣ =

∣∣{x ∈ Rn : Mf(x) > λ
}∣∣ > 1

2nλ

ˆ

{f>λ}
f(x) dx
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for every f ∈ L1(Ω) and λ > a. We start with the usual kind of estimate, but split
our integral in two parts:

p′
ˆ

Ω

f(x)p dx =

ˆ ∞

0

pλp−2

ˆ

{f>λ}
f(x) dx dλ

=

ˆ a

0

pλp−2

ˆ

Ω

f(x) dx dλ +

ˆ ∞

a

pλp−2

ˆ

{f>λ}
f(x) dx dλ

6 p′ap−1

ˆ

Ω

f(x) dx + 2n

ˆ ∞

a

pλp−1
∣∣{x ∈ Ω′ : Mf(x) > λ

}∣∣ dλ

6 p′e(K−1)p

ˆ

Ω

f(x) dx + 2n

ˆ

Ω′
Mf(x)p dx.

Since f p−1 6∈ (0, eKp), we see that

p′e(K−1)p

ˆ

Ω

f(x) dx 6 p′e−p

ˆ

Ω

f(x)p dx.

Thus we can absorb the first term of the right hand side in the previous estimate
into the left hand side, and so we conclude that

p′(1− e−p)

ˆ

Ω

f(x)p dx 6 2n

ˆ

Ω′
Mf(x)p dx. ¤

Theorem 4.6. Let p ∈ P log(Ω) with 1 6 p− 6 p+ 6 ∞ in a ball Ω ⊂ Rn. If
Mf ∈ Lp(·)(Ω), then f ∈ Lp(·)ψp(·)[L](Ω).

Proof. We extend p by reflection in ∂Ω to the dilated ball 3
2
Ω, and then to

all of Rn without changing the log-Hölder constant by [12, Proposition 3.6]. The
extension can be done so that p is bounded away from 1 in the complement of 2Ω.
Let f ∈ L1(Ω) be a function with

´
Ω

Mf(x)p(x) dx < ∞. As in the proof of [22,
Theorem 2.7] we conclude by reflection in ∂Ω that Mf is in fact bounded on 3

2
Ω.

Since f is supported in Ω, we have Mf(x) . |x|−n in Rn \ 3
2
Ω. Thus we conclude,

that Mf ∈ Lp(·)(Rn).
We may assume that f is non-negative since otherwise we may estimate function

|f |. The claim obviously holds in the set {p > 2} since Mf > f a.e. Thus we assume
in the rest of the proof that p < 2. Since we may scale the function f by a constant
without affecting the claim, we assume that %Lp(·)(Rn)(Mf) 6 1 and ‖f‖1 6 1.

We split f into small and large parts for K > 1 as follows:

fs = fχ{f6eKp′(·)−e} and fl = fχ{f>eKp′(·)−e}.

Then we find thatˆ

Ω

f(x)p(x)ψp(x)(f(x)) dx 6 K

ˆ

Ω

fs(x)p(x) log(e + fs(x)) dx + 2

ˆ

Ω

p′(x) fl(x)p(x) dx.

Thus it suffices to bound the terms on the right hand side. Since fs(x)p(x)−1 6
eKp(x) 6 e2K we see thatˆ

Ω

fs(x)p(x) log(e + fs(x)) dx 6 e2K

ˆ

Ω

fs(x) log(e + fs(x)) dx.

Since Mf ∈ L1(Ω) it follows by [40, Chapter 1, 5.2(b)] that the first member of the
right hand side is finite.
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So it remains to estimate ˆ

Ω

p′(x) fl(x)p(x) dx.

We divide Ω into the sets Ωi = {ri+1 < p < ri−1}, ri = 1 + 2−i, and write fi = flχΩi
.

Let Ω′
i be the dilation of Ωi, as in Lemma 4.5, corresponding to exponent ri. Since

r′i = 2i + 1, we get
d(∂Ω′

i, ∂Ωi) 6 Cne−(K−1)(2i+1)/n.

On the other hand,

d(∂Ωi−j, ∂Ωi) > exp

(
−clog

ri−j+1ri−1

ri−j+1 − ri−1

)
> e−clog2

i+3/|2j−4|

for j > 2 by the log-Hölder continuity of the exponent. A similar estimate holds for
j < −1. Now we may choose K depending on Cn, clog and n so that Ω′

i ⊂
⋃

j∈J Ωi+j

for every i ∈ N, where J ⊂ Z is finite. We can then use Lemma 4.5 in the sets Ωi as
followsˆ

Ω

p′(x) fl(x)p(x) dx .
∑

i

ˆ

Ωi

r′i
(
f

p(x)/ri

i

)ri

dx .
∑

i

ˆ

Ω′i

M
[
f

p(·)/ri

i

]
(x)ri dx.

By Lemma 4.1, M(f
p(·)/ri

i )ri/p(x) . Mfi(x) + 1 6 Mf(x) + 1 for x ∈ Ω′
i. Using this

and the finite overlap of Ω′
i givesˆ

Ω

p′(x) fl(x)p(x) dx .
∑

i

ˆ

Ω′i

(Mf(x) + 1)p(x) dx .
∑

i

ˆ

Ω′i

2p(x)−1(Mf(x)p(x) + 1) dx

. |J |
∑

i

ˆ

Ωi

2p(x)−1(Mf(x)p(x) + 1) dx

6 C

ˆ

Rn

Mf(x)p(x) dx + C |Ω| 6 C.

Thus also the integral over the large part of the function is bounded, which concludes
the proof. ¤

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Theorem 4.6 states that if Mf ∈ Lp(·)(Ω) for a ball Ω,
then f ∈ Lp(·)ψp(·)[L](Ω). We proceed to show how the reverse implication can be
pieced together from the previous results.

By the homogenity of the claim, it suffices to consider such non-negative functions
f that ˆ

Ω

f(x)p(x)ψp(x)(f(x)) dx 6 1.

Then we must show that ‖Mf‖Lp(·) 6 C, which is equivalent to %Lp(·)(β Mf) 6 C,
β ∈ (0, 1). Denote Ω−

a = {p < a}, Ω+
a = {p > a} and

d0 = min{d(Ω−
4/3, Ω

+
5/3), d(Ω−

5/3, Ω
+
2 )}.

Note that Ω−
a and Ω+

a are bounded since Ω is bounded. The uniform continuity of
the exponent implies that d0 > 0. Denote by D the set of points x ∈ Ω for which
Mf(x) =

ffl
B(x,r)

f(y) dy with r > d0. We note that

%Lp(·)(Ω)(β Mf) 6 %Lp(·)(Ω−
5/3
\D)(Mf) + %Lp(·)(Ω+

5/3
\D)(β Mf) + %Lp(·)(D)(β Mf).



Maximal functions in variable exponent spaces: limiting cases of the exponent 517

For x ∈ D we have Mf(x) . d−n
0 ‖f‖1 and so %Lp(·)(D)(β Mf) 6 C. For the other

two terms only points where p < 2 or p > 4/3 affect the maximal function. Thus
Theorem 1.2 implies that %Lp(·)(Ω+

5/3
\D)(β Mf) 6 C and Proposition 4.2 implies that

%Lp(·)(Ω−
5/3
\D)(Mf) 6 C, which completes the proof. ¤

5. Improving the results of Cruz-Uribe and Fiorenza

As a corollary of our embedding theorem, we get the improvement of the result
by Cruz-Uribe and Fiorenza [6] stated in the introduction. The proof is as follows.

Proof of Theorem 1.3. We fix K > 0 and define

q(x) = max
{

0, 1−K
(
log p′(x)

)−1
}

.

We prove the theorem by showing that

‖Mf‖Lp(·)(Ω) . ‖f‖Lp(·)ψp(·)[L](Ω) . ‖f‖Lp(·) log Lq(·)(Ω).

The first inequality follows from Theorem 1.1, so it suffices to show the second one.
This in turn follows from the point-wise inequality

tp min{p′, log(e + t)} . tp logq(e + t)

between modulars, which we proceed to prove.
Further we restrict our attention to so small p that q = 1 − K

(
log p′

)−1 > 0.
Then the previous inequality follows from

min{p′, z} 6 eKz1−K/ log p′ ,

where we denoted z = log(e + t) > 1. Suppose first that p′ 6 z. Then

eKz1−K/ log p′ > eKp′1−K/ log p′ = p′,

since the exponent of z is non-negative. If, on the other hand, p′ > z, then
eKz−K/ log p′ > eKp′−K/ log p′ = 1, so the inequality follows in both cases. ¤

In [6, Example 1.9], Cruz-Uribe and Fiorenza showed that it is not possible to get
an optimal result using the scale Lp(·) log Lq(·), i.e. that an analogue of Theorem 4.6
is not possible in the Lp(·) log Lq(·)-scale. This is not a surprising result, but required
a good two pages of proof and certain continuity assumptions of the exponents.

Our next result improves their example by assuming the boundedness of the
maximal operator, instead of their log-Hölder continuity assumption, removing the
continuity assumption

|q(x)− q(y)| 6 C

log log(ee + 1/|x− y|)
on the exponent q, and halving the length of the proof.

Proposition 5.1. Let Ω ⊂ Rn be an open set. Let p be a continuous bounded
variable exponent such that M : Lpε(·)(Ω) ↪→ Lp(·)(Ω) is bounded for every ε > 0,
where pε = max{p, 1 + ε}. Suppose q : Ω → [0, 1] is a measurable function that has
a Lebesgue point in the set {p > 1, q > 0}. Then there exists a function f with
Mf ∈ Lp(·)(Ω) but f 6∈ Lp(·) log Lq(·)(Ω).
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Proof. We assume without loss of generality that the Lebesgue point of q is 0
and denote q(0)/3 by δ.

Let B ⊂ Ω be a ball centered at 0 with radius r ∈ (0, 1/2) so that p−B = 1+ε > 1.
Define the function f by f(y) = |y|− n

p(y) log(1/|y|)− 1+δ
p(y) χB(y). Then

%pε(·)(f) =

ˆ

B

|y|−n log(1/|y|)−(1+δ) dy =

ˆ r

0

y−1 log(1/y)−(1+δ) dy < ∞.

Therefore f ∈ Lpε(·)(Ω) and hence Mf ∈ Lp(·)(Ω).
Let k =

(2(1−δ)
δ

)1/n and let i0 À 1 be an index so large that qB(0,k−i) > 2δ for
every i > i0. Denote A := {q > δ}. Then

%Lp(·) log Lq(·)(Ω)(f) =

ˆ

Ω

f(y)p(y) log(f(y))q(y) dy

>
ˆ

B(0,k−i0)∩A

|y|−n log(1/|y|)q(y)−(1+δ) dy

>
∑
i>i0

ˆ

(B(0,k−i)\B(0,k−i−1))∩A

|y|−n log(1/|y|)−1 dy.

Since q 6 1 and qB(0,k−i) > 2δ, we find that the set B(0, k−i)\A has measure at most
1−2δ
1−δ

|B(0, k−i)|. Therefore the measure of the set (B(0, k−i) \ B(0, k−i−1)) ∩ A is at
least

(1− k−n)|B(0, k−i)| − 1− 2δ

1− δ
|B(0, k−i)| = δ

2(1− δ)
|B(0, k−i)|.

We fix s =
(

2−3δ
2(1−δ)

)1/n ∈ (0, 1) so that 1 − sn = δ
2(1−δ)

. Since t 7→ t−n log(1/t)−1 is a
decreasing function (for small t), we find that
ˆ

(B(0,k−i)\B(0,k−i−1))∩A

|y|−n log(1/|y|)−1 dy >
ˆ

(B(0,k−i)\B(0,s k−i))

|y|−n log(1/|y|)−1 dy

=

ˆ k−i

sk−i

log(1/t)−1 dt

t
= log

log(1/(sk−i))

log(1/k−i)
.

This estimate holds for every i > i0 since i0 À 1, and so we get

%Lp(·) log Lq(·)(Ω)(f) >
∑
i>i0

log

(
1 +

log(1/s)

i log k

)
= ∞. ¤

6. The boundedness of the maximal operator implies that
the exponent is bounded away from one

In this section we improve Theorem 1.7 by Cruz-Uribe, Fiorenza and Neugebauer
[8] and show without any a priori assumptions on the exponent that the boundedness
of the maximal operator implies that p− > 1.

Since our method is based on a partition, we work with cubes instead of balls in
this section. By a cube we always mean a cube with sides paralell to the coordinate
axes. By p̄Q we denote the harmonic average of p over Q,

p̄Q :=

(  

Q

1

p(x)
dx

)−1

.
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Lemma 6.1. Let p be a variable exponent and let Q ⊂ Rn with |Q| > 0. Then
(

t

2

)p̄Q

6
 

Q

tp(y) dy and t
1

p̄Q 6
 

Q

t
1

p(y) dy

for all t > 0.

Proof. For the second claim we define Ft(s) = ts. Then the claim can be written
as

Ft

(  

Q

1

p(x)
dx

)
6
 

Q

Ft

(
1

p(x)

)
dx.

Since Ft is convex, this follows from Jensen’s inequality.
For the first claim we define Gt(s) = st1/s. Another application of Jensen’s

inequality gives
1

p̄Q

tp̄Q 6
 

Q

1

p(x)
tp(x) dx.

The claim follows from this since
(

t
2

)p 6 1
p
tp 6 tp. ¤

We can now calculate ‖χQ‖p(·). The novelty lies in including the case p+ = ∞
and not assuming that p is log-Hölder continuous.

Lemma 6.2. Let p be an exponent for which the maximal operator is bounded
from Lp(·) to itself with constant A > 0. Then

1
6
|Q|

1
p̄Q 6 ‖χQ‖p(·) . A |Q|

1
p̄Q .

Proof. Only the proof of the upper bound is included here. The lower bound is
not needed in the sequel, and its proof can be found in [11, Lemma 3.40].

Fix a cube Q and define f(x) := χQ(x) |Q|−1/p(x). Note that %p(·)(f) 6 1 and
hence ‖f‖p(·) 6 1. Since |f |Q 6 cMf(x) for x ∈ Q, we get with Lemma 6.1 for the
first inequality,

‖χQ‖p(·) |Q|
− 1

p̄Q 6 ‖χQ‖p(·)

 

Q

|Q|− 1
p(x) dx = ‖χQ |f |Q‖p(·) . ‖Mf‖p(·) . A. ¤

The next proof relies on the following fact: although M is continuous from Lq(Ω)
to Lq(Ω) for all q ∈ (1,∞], the constant of continuity blows up as q → 1. We will
show that p− = 1 also implies a blow up of the continuity constant of M .

Theorem 6.3. Let Ω ⊂ Rn be an open set. Let p be such a variable exponent
that M : Lp(·)(Ω) ↪→ Lp(·)(Ω) is bounded. Then p− > 1.

Proof. Assume for a contradiction that p− = 1 and that M : Lp(·)(Ω) ↪→ Lp(·)(Ω)
is bounded with embedding constant A > 1.

Fix ε ∈ (0, 1). Since p− = 1, the set
{

1
p

> 1
1+ε/2

}
has positive measure and

therefore has some point of density z0, i.e. a point for which

lim
Q→{z0}

∣∣∣Q ∩
{

1
p

> 1
1+ε/2

}∣∣∣
|Q| = 1,

where the limit is taken over all cubes containing z0. Therefore, there exists a cube
Q0 ⊂ Ω with z0 ∈ Q0 and `(Q0) 6 1 such that 1

p̄Q0
=

ffl
Q0

1
p(y)

dy > 1/(1 + ε), i.e.
p̄Q0 6 1 + ε. Here `(Q0) denotes the side length of Q0. Let m ∈ N be large and split
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Q0 into N := 2mn disjoint cubes Q1, . . . , QN of side length `(Qj) = 2−m `(Q0). By
renumbering we assume without loss of generality that

p̄Q1 = min
16j6N

p̄Qj
.

In particular p̄Q1 6 p̄Q0 6 1 + ε < 2. Define f ∈ L1(Ω) by

f := A−2 |Q1|−1/p̄Q1 χQ1 .

Then Lemma 6.2 implies that ‖f‖p(·) = A−2 |Q1|−1/p̄Q1 ‖χQ1‖p(·) . A−1. Especially,
we have f ∈ Lp(·)(Rn) and ‖Mf‖p(·) 6 A ‖f‖p(·) . 1. We arrive at a contradiction
by showing that %p(·)(β Mf) will be large if ε > 0 is small enough and m ∈ N is large
enough.

Let xj denote the center of Qj for j = 1, . . . , N . Then for j = 2, . . . , N , and for
all y ∈ Qj one easily checks that

β Mf(y) > c β A−2 |Q1|1−1/p̄Q1︸ ︷︷ ︸
=:A2

|xj − x1|−n,

where c depends only on the dimension n. Therefore, by Lemma 6.1,
ˆ

Q0

(
β Mf(y)

)p(y)
dy >

∑
j>2

ˆ

Qj

(
A2 |xj − x1|−n

)p(y)

dy

>
∑
j>2

|Qj|
(

1
2
A2 |xj − x1|−n

)p̄Qj
.

Since p̄Qj
> p̄Q1 , we have tp̄Q1 6 tp̄Qj + 1. Hence,
ˆ

Q0

(
β Mf(y)

)p(y)
dy >

∑
j>2

|Qj|
((

1
2
A2 |xj − x1|−n)p̄Q1 − 1

)

> −|Q0|+
∑
j>2

|Qj|
(

1
2
A2 |xj − x1|−n)p̄Q1

> −1 + C

ˆ

Q0\Q1

(
A2 |y − x1|−n)p̄Q1 dy.

We can essentially calculate the integral in the previous estimate:
ˆ

Q0\Q1

|y − x1|−np̄Q1 dy ≈
ˆ `(Q0)/2

`(Q1)

rn−1−np̄Q1 dr

≈ 1

(p̄Q1 − 1)n

(|Q1|1−p̄Q1 − (|Q0|/2n)1−p̄Q1

)
.

We use this and the expression of A2 in our previous estimate and conclude that

1 +

ˆ

Q0

(
β Mf(y)

)p(y)
dy & β A−2p̄Q1

|Q1|p̄Q1
−1

p̄Q1 − 1

(|Q1|1−p̄Q1 − (|Q0|/2n)1−p̄Q1

)

=
β A−2p̄Q1

p̄Q1 − 1

(
1− 2−n(m−1)(p̄Q1

−1)
)
,
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where we used that |Q1|/|Q0| = 2−nm in the last step. Now we choose m so large
that 2−n(m−1)(p̄Q1

−1) 6 1/2 and recall that 1 6 p̄Q1 6 1 + ε < 2. Then we have that

1 +

ˆ

Q0

(
β Mf(y)

)p(y)
dy & β A−4ε−1.

As ε → 0 this contradicts ‖Mf‖p(·) 6 1, which means that the assumption p− = 1
was wrong, as was to be shown. ¤
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