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Abstract. In this paper a modulus of curves is defined using pseudo-distance functions. This
leads to a notion of quasiconformal maps that is equivalent to the standard definition when the
distance function is Riemannian. The moduli of families of curves whose endpoints lie in the
boundary of open subsets of a compact, convex set are determined. This allows bounds on volumes
of images of Euclidean balls under quasiconformal maps to be made. Also, certain generalized,
conformal, isosystolic constants are found. Estimates are given of how these constants, and of how
norms of weak upper gradients, vary under quasiconformal maps.

Introduction

In this paper a modulus or outer measure of a set of curves is defined using
pseudo-distance functions (see Section 1 for definitions). This does not give a con-
formal invariant, but does yield a maximal dilation that determines how far a map
is from being conformal. In fact, it agrees with the maximal dilation of the confor-
mally invariant (i.e. standard) modulus when the distance function is Riemannian
(Theorem 1.10). There are rigidity results when the distance function is given on
the boundary of a manifold ([27], [9], [2], [12], and [28]; see also the survey [11]
and the monograph [31] and references therein). Other rigidity results have been
obtained when the distance function is given outside of a compact, convex subset
of a Riemannian manifold ([25], [19] (5.5.C’), and [10]). In light of the equivalence
of quasiconformality derived from the modulus of curves from distance to that from
the conformally invariant modulus, these results can be seen as analogous to those
of Gehring [17], Rešetnjak [29], and Mostow [26].

The paper is organized as follows. The first section begins with definitions and
statements of basic properties of the modulus (it also shows how it is related to
the standard, conformally invariant modulus). Next is a proof that the maximal
dilation of the modulus from a Riemannian distance function agrees with that of the
conformally invariant one (Theorem 1.10). This section relies heavily on methods
found in the monograph [32].

In the second section estimates of moduli are made, and for certain sets of curves
they are determined exactly. In [19] and [10] a compact set whose geodesics are length
minimizing up to the boundary is said to be BGM (Boundary Geodesics Minimize).
Applying Santalo’s formula (as in [19] and [10]) it is shown (Lemma 2.4) that the set
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of curves whose interiors and endpoints lie, respectively, in the interior and boundary
of a BGM set X have modulus equal to the Riemannian volume of X. More generally,
the same conclusion holds (Theorem 2.6) for a subset of a BGM set which is either
a countable collection of open, connected sets, or is the complement such a set. For
an annulus in Euclidean space, the modulus of the set of curves with one or both
endpoints in the inner boundary is also determined (Lemma 2.7).

Calculation of the modulus of the set of curves in Euclidean space with both
endpoints in the outer component of the boundary of an annulus (Lemma 2.8) al-
lows a bound on volume distortion to be given for metric balls in Euclidean space
under quasiconformal maps that are isometric on the boundary (Theorem 3.1). This
result should be compared to (9.6) in [22] where the stronger inequality is stated:
Vol ϕ(U) ≤ Vol(B)

K−1
K Vol(U)

1
K , where U ⊂ B are concentric metric balls in Eu-

clidean space and ϕ : B → B is K-quasiconformal with no constraint on the be-
haviour of ϕ on the boundary. In dimension two this bound was proved for any
measurable set U by K.Astala [3] when ϕ(0) = 0 as conjectured in [18]. See also
[14]. This bound implies one of the form of that in Theorem 3.1 by applying the
inequality utv(1−t) ≤ tu + (1 − t)v which is well known to hold for any u, v ≥ 0 and
0 < t < 1.

The modulus from pseudo-distance is applicable to the problem of finding mini-
mal volume with distance (or length) bounded below. One example of this is the con-
formal filling volume. For a compact manifold V of dimension at least two equipped
with a distance function λ, the filling volume is the infimum of volumes among all
Riemannian manifolds (M, g) with compact boundary homeomorphic to V such that
dg(x, y) ≥ λ(x, y) for all x, y ∈ V . This invariant of the boundary was defined by Gro-
mov in [19] where he showed that when V has dimension at least two, the value does
not depend on the topology of the manifold M . He conjectured that this was also
true when V is the circle with Riemannian distance and showed that the minimum
area is achieved by the round hemisphere when the bounding surface is a disk. This
was extended to the case that the bounding surface is a torus with a disc removed
by Bangert, Croke, Ivanov and M. Katz [4]. The question for higher genus surfaces
remains open. (In fact the filling volume is unknown for any V .) The conformal
filling volume FillVol(M, λ, [g]) is the infimum of volumes of metrics that satisfy the
length condition and are conformal to a fixed metric g on a fixed manifold M . This
is an approach analogous to the conformal isosystolic inequalities studied by Gromov
[19] and by Bavard [5],[6]. (Indeed, isosystolic invariants are only slightly better un-
derstood than the filling volume; see the surveys of Berger [7] and Croke and M. Katz
[13] or the monograph [23].) Gromov showed that of all metrics conformal to the
round, two-dimensional hemisphere (and hence all metrics, since there is only one
conformal class) the round hemisphere is the one with minimal area satisfying a lower
bound on distance between points on the boundary given by the distance function on
the embedded boundary circle. Michèl showed for disks of constant curvature (in the
proof of Thèorème A in [25]), and Croke showed (in the proof of Theorem C in [10])
that if (M, g) is a compact manifold with boundary of general dimension satisfying
a convexity condition, then g has minimal volume among metrics in its conformal
class whose distance restricted to ∂M is bounded below by that of g. Corollary 3.3
can be seen as a generalization of this last result.
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In Corollary 3.4 estimates are made of changes in the conformal filling volume
under quasiconformal maps. The same idea yields a bound on the Ln norm of weak
upper gradients (in the sense of Heinonen and Koskela [20], who call them very weak
gradients) under quasiconformal maps (Corollary 3.2).

Proofs of basic properties stated in the first section are included as an appendix.
They are analogous to properties of the conformally invariant modulus and the proofs
closely follow those presented in [32]. The appendix is included to give details of their
adaptation to the present setting.

Basic facts about Riemannian geometry can be found in [8] and [16].
This paper owes much to the clarity with which Jussi Väisälä wrote [32] and the

author would like to thank Werner Ballmann for his suggestion to read it.

1. A modulus from distance

Throughout the paper M , M̃ , M1, M2 etc will be smooth manifolds of dimen-
sion n ≥ 2 with (possibly empty) boundary under a Riemannian metric denoted by
g, g̃, g1, g2 etc. For X ⊂ M connected and open, Ω(X) will be the set of all continuous
curves in X parameterized on the unit interval. For Y open with closure contained in
X, ΓY ⊂ Ω(X) are the curves such that γ(0), γ(1) ∈ ∂Y and γ(t) ∈ Y for 0 < t < 1.
Note that if ∂Y has more than one component then endpoints of curves in ΓY could
both be in the same component or in different components which is different from
the meaning used in [32]. We denote by βm the volume of the standard unit sphere
of dimension m.

Definition 1.1. Let X be a connected, open subset of a Riemannian manifold
(M, g), and ρ : Ω(X) → [0,∞) be invariant under re-parameterization. For all A ⊂
Ω(X), define the ρ-admissible functions for A to be the set of non-negative, Borel
measurable functions with values in [0,∞],

Fρ(A ) =

{
f ≥ 0

∣∣∣∣
∫

γ

f≥ρ(γ) ∀γ∈A

}

where the integral is with respect to the length measure on rectifiable curves induced
by g, and for non-rectifiable curves is by definition infinite unless f ◦ γ = 0 almost
everywhere, in which case it is zero. Now define the ρ-modulus of A

Mρ(A ) = inf
f∈Fρ(A )

‖f‖n
n,

where ‖·‖n denotes the Ln-norm of the Riemannian measure dµg on X ⊂ M induced
by g.

For the conformally invariant modulus ρ(γ) = 1 for any curve γ. This includes
constant curves, so the conformally invariant modulus is infinite on sets containing
such curves. The ρ-modulus is also possibly infinite. However, we have the following
lemma.

Lemma 1.2. If ρ(γ) = λ(γ(0), γ(1)) for λ : X ×X → [0,∞) such that λ(x, y) ≤
c dg(x, y) for all x, y ∈ X and if Vol(X, g) is finite, then c∈Fρ(Ω(X)), so that Mρ(A )
is finite for any A ⊂ Ω(X).

Proof. If λ(x, y) ≤ c dg(x, y), then
∫

γ
c ≥ c dg(γ(0), γ(1)) ≥ ρ(γ) for any γ ∈

Ω(X), hence the constant function c is admissible for any A ⊂ Ω(X). The lemma
follows immediately from the assumption that X has finite volume. ¤
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Next is an analogue of a theorem of Fuglede ([15] Theorem 1 or [32] Theorem 6.2).

Proposition 1.3. With definitions as above Mρ defines an outer measure on
Ω(X), i.e.

(i) Mρ(∅) = 0,
(ii) if A1⊂A2, then Mρ(A1) ≤ Mρ(A2), and
(iii) if {Aj ⊂ Ω(X)}j∈N, then Mρ (∪j∈NAj) ≤

∑
j∈N

Mρ(Aj).

(For a proof see the appendix.)

It turns out that only rectifiable curves for which ρ > 0 affect the ρ-modulus (c.f.
Theorem 6.9 in [32]). Stated another way, non-rectifiable curves as well as those for
which ρ is zero have zero ρ-modulus. Lemma 1.7 is an analogue to another theorem
of Fuglede which also characterizes a family of curves with zero ρ-modulus.

Proposition 1.4. For any A ⊂ Ω(X), if B = {γ ∈ A | γ is rectifiable and
ρ(γ) > 0}, then Mρ(A ) = Mρ(B).

(See the appendix for a proof.)

Given two manifolds M, M̃ , under metrics g, g̃, respectively, connected subsets
X ⊂ M and X̃ ⊂ M̃ , and a homeomorphism ϕ : X → X̃, let ρ̃(γ̃) = ρ(ϕ−1(γ̃)), a
non-negative function on Ω(X̃). For any A ⊂ Ω(X), denote ϕ(A ) = {ϕ ◦ γ | γ ∈
A } ⊂ Ω(X̃).

Definition 1.5. With notation as above define the inner ρ-dilation and outer
ρ-dilation of ϕ to be, respectively,

Kρ,I(ϕ) = sup

{
Mρ̃(ϕ(A ))

Mρ(A )

∣∣∣∣ A ⊂ Ω(X)

}

and

Kρ,O(ϕ) = sup

{
Mρ(A )

Mρ̃(ϕ(A ))

∣∣∣∣ A ⊂ Ω(X)

}

where the suprema are each taken over A ⊂ Ω(X) such that Mρ(A ) and Mρ̃(ϕ(A ))
are neither both zero nor both infinite, and with the convention that 0/c = 0, c/0 =
∞ and ∞/c′ = ∞ for any c ∈ (0,∞] and c′ ∈ [0,∞). The maximal ρ-dilation of ϕ is
defined by

Kρ(ϕ) = max {Kρ,I(ϕ), Kρ,O(ϕ)} .

A map ϕ is ρ-quasiconformal iff it has finite maximal ρ-dilation and (K, ρ)-quasi-
conformal iff Kρ(ϕ) ≤ K < ∞.

In this paper, a homeomorphism ϕ will be called quasiconformal if either the
maximal dilation of the conformally invariant modulus (i.e. with ρ ≡ 1) is finite, or
if the linear dilation at x,

lim sup
r→0+

max{d(ϕ(x), ϕ(y)) | d(x, y) = r}
min{d(ϕ(x), ϕ(z)) | d(x, z) = r}

is bounded independent of x. These conditions will be used interchangeably. For a
proof that they are equivalent, that they imply ϕ is differentiable almost everywhere,
and that HO(ϕ∗), HI(ϕ∗) defined below have finite essential suprema, see [32]. The
next proposition is an adaptation of Theorem 13.2 in [32] to the present setting.
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Proposition 1.6. Let M1,M2,M3 be Riemannian manifolds and Xj ⊂ Mj con-
nected. Fix functions ρj with ρ3 = ρ2 ◦ ψ = ρ1 ◦ ψ ◦ ϕ and ρj : Ω(Xj) → [0,∞)
invariant under re-parameterization. If ϕ : X1 → X2 and ψ : X2 → X3 are respec-
tively ρ1-quasiconformal and ρ2-quasiconformal maps, then the following are true.

(i) Kρ2,I(ϕ
−1) = Kρ1,O(ϕ), (iv) Kρ1,I(ψ ◦ ϕ) ≤ Kρ2,I(ψ)Kρ1,I(ϕ),

(ii) Kρ2,O(ϕ−1) = Kρ1,I(ϕ), (v) Kρ1,O(ψ ◦ ϕ) ≤ Kρ2,O(ψ)Kρ1,O(ϕ),
(iii) Kρ2(ϕ

−1) = Kρ1(ϕ), (vi) Kρ1(ψ ◦ ϕ) ≤ Kρ2(ψ)Kρ1(ϕ).

(See the appendix for a proof.)

What follows is another theorem of Fuglede adapted to the ρ-modulus.

Lemma 1.7. Let M, M̃ be Riemannian manifolds, X ⊂ M , X̃ ⊂ M̃ open,
connected subsets and ρ(γ) = λ(γ(0), γ(0)) for all γ ∈ Ω(X). If ϕ : X → X̃ is
quasiconformal and A ⊂ Ω(X) is a family of rectifiable curves such that ϕ ◦ γ is not
absolutely continuous for all γ ∈ A , then Mρ(A ) = 0.

(A proof can be found in the appendix.)

Let (M, g) and (M̃, g̃) be Riemannian manifolds, X ⊂ M , X̃ ⊂ M̃ connected
and ϕ : X → X̃ differentiable at p ∈ X. If det(ϕ∗g̃)(p) 6= 0, denote

HO(ϕ∗)(p) =
max

{‖ϕ∗v‖n
g̃

∣∣ v ∈ TpM, ‖v‖g = 1
}

√
det(ϕ∗g̃)(p)

,

HI(ϕ∗)(p) =

√
det(ϕ∗g̃)(p)

min
{‖ϕ∗v‖n

g̃

∣∣ v ∈ TpM, ‖v‖g = 1
} ,

and |ϕ∗|(p) = max {‖ϕ∗v‖g̃ | v ∈ TpM, ‖v‖g = 1} .

If det(ϕ∗g̃)(p) = 0 then define H0(ϕ∗)(p) = HI(ϕ∗)(p) = ∞.
Next it is shown that a K-quasiconformal homeomorphism is (K, ρ)-quasiconformal.

The proof closely follows Theorem 15.1 in [32]. It is stated separately because the
only assumption required of ρ is invariance under re-parameterization of curves.

Theorem 1.8. With notation as above, if ϕ : X → X̃ is a quasiconformal home-
omorphism, then

Kρ,O(ϕ) ≤ ess supp HO(ϕ∗)(p) and Kρ,I(ϕ) ≤ ess supp HI(ϕ∗)(p),

where the suprema are taken over all points p ∈ X at which ϕ is differentiable. Hence
ϕ is (K, ρ)-quasiconformal.

Proof. If Kρ,O(ϕ) ≤ ess supp HO(ϕ∗)(p), then Kρ,I(ϕ) ≤ ess supp HI(ϕ∗)(p) fol-
lows from Proposition 1.6 (ii) and the fact that HI(ϕ∗)(p) = HO(ϕ−1

∗ )(ϕ(p)) when ϕ
is quasiconformal.

If ess supp HO(ϕ∗)(p) = ∞, then the inequality is trivial, so we will assume it is
finite. Denote

L(ϕ, p) = lim sup
r→0+

max

{
1

r
dg̃(ϕ(p), ϕ(q))

∣∣∣∣ dg(p, q) = r

}
.

Take A ⊂ Ω(X). If Mρ̃(ϕ(A )) = ∞, then either Mρ(A ) = ∞, in which case A
does not affect the outer ρ-dilation, or else it is finite and

Mρ(A ) ≤ ess supp HO(ϕ∗)(p) Mρ̃(ϕ(A )).
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If Mρ̃(ϕ(A )) < ∞, then there exists f̃ ∈Fρ̃(ϕ(A )) with ‖f̃‖n < ∞. Let f(x) =

f̃ ◦ϕ(x) L(ϕ, x), and B ⊂ A be those rectifiable curves such that ϕ ◦ γ is absolutely
continuous. Since f̃ ∈Fρ̃(ϕ(A )), for any γ∈B

∫

γ

f =

∫

γ

f̃(ϕ(p))L(ϕ, p) ≥
∫

ϕ◦γ
f̃ ≥ ρ̃(ϕ ◦ γ) = ρ(γ),

the first inequality following from [32] Theorem 5.3. Therefore f ∈Fρ(B) since γ∈B
was arbitrary. Now, ϕ is quasiconformal hence differentiable almost everywhere, so
L(ϕ, p) = |ϕ∗|(p) almost everywhere. Applying Lemma 1.7, Proposition 1.3 (iii), and
Hölder’s inequality,

Mρ(A ) = Mρ(B) ≤ ‖f‖n
n =

∫

X

[
f̃ ◦ ϕ · L(ϕ, x)

]n

dµg

=

∫

X

[
f̃ ◦ ϕ

]n

HO(ϕ∗)
√

det(ϕ∗g̃) dµg

≤ ess supp HO(ϕ∗)(p)

∫

X

[
f̃ ◦ ϕ

]n√
det(ϕ∗g̃) dµg

= ess supp HO(ϕ∗)(p)

∫

X̃

f̃n dµg̃

and f̃ ∈Fρ̃(ϕ(A )) is arbitrary. Therefore, Mρ(A ) ≤ ess supp HO(ϕ∗)(p) Mρ̃(ϕ(A )).
Since A ⊂Ω(X) was also arbitrary, Kρ,O(ϕ) ≤ ess supp HO(ϕ∗)(p). ¤

The opposite inequality for the special case that ρ(γ) is equal to the Riemannian
distance between the endpoints of γ is proved separately as Theorem 1.10 below.
First we give a lemma whose proof closely follows that of Theorem 15.2 in [32].

Lemma 1.9. With the same notation as in the previous theorem, let ϕ : X → X̃
be a homeomorphism that is differentiable at p0 ∈ X. If Kρ,O(ϕ)<∞, then

|ϕ∗|n(p0) ≤ Kρ,O(ϕ)
√

det(ϕ∗g̃)(p0),

where ρ(γ) = dg(γ(0), γ(1)) is the distance function of a Riemannian metric g on M .

Proof. Take a unit vector v0 ∈ Tp0M such that a = |ϕ∗|(p0) = ‖ϕ∗(v0)‖g̃. If
a = 0, the conclusion follows since both sides of the inequality are zero. If a 6= 0, let
ṽ0 =ϕ∗(v0).

Take 0 < r < min
{
injg(p0), injg̃(ϕ(p0)), dg(p0, ∂X), dg̃(ϕ(p0), ∂X̃)

}
, and consider

Fermi coordinates η : U → Rn and ξ : V → Rn on M to, respectively, the subman-
ifolds Br(p0) ∩ expp0

(v⊥0 ) and Br(ϕ(p0)) ∩ expϕ(p0)(ṽ
⊥
0 ) centered at p0 and ϕ(p0). In

these coordinates, η∗(v0) = ∂1, ξ∗(ṽ0) = a∂1, and g(p0), g̃(ϕ(p0)) are both diagonal.
Fix 0< ε<a/2 and let Z ⊂ Rn be the closed cube centered at (δ/2, 0, . . . , 0) with side
length δ and with faces orthogonal to the coordinate axes. For δ ∈ (0, r) sufficiently
small, Z ⊂ η(U), Φ = ξ ◦ ϕ ◦ η−1 : Z → Rn is well defined and

|Φ(x)−DΦ(0)(x)| < εδ(1.1)
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for all x∈Z. Let

E = {x ∈ Z | x1 = 0},
F = {x ∈ Z | x1 = δ},
A =

{
γ ∈ Γη−1(Z◦)

∣∣ γ(0)∈η−1(E), γ(1)∈η−1(F ), and dg(γ(0), γ(1)) = δ
}

,

and Ã = {ϕ ◦ γ | γ ∈ A }.

By Lemma 2.1 Mρ(A ) and Mρ̃(Ã ) are finite, where ρ̃(γ) = ρ(ϕ−1 ◦ γ). Note that
ρ(γ) = δ > 0 for all γ ∈ A , and ρ̃(γ̃) = δ > 0 for all γ̃ ∈ Ã . It follows from (1.6)
that Mρ(A ) > 0. Therefore Mρ̃(Ã ) > 0 as well since Kρ,O < ∞ and

Kρ,O(ϕ) ≥ Mρ(A )

Mρ̃(Ã )
.

Apply Lemma 2.1 to estimate Mρ̃(Ã ) and obtain

(1.2) Kρ,O(ϕ) ≥
(

Vol(ϕ ◦ η−1(Z), g)

r̃n
δn

)−1

Mρ(A )

where r̃ = dg̃(ϕ ◦ η−1(E), ϕ ◦ η−1(F )).
Fix f ∈Fρ(A ). For every x=(0, x2, . . . , xn)∈E, let γx : [0, 1] → M be given by

γx(t) = η−1(δt, x2, . . . , xn). By choice of coordinates, γx∈A is the minimal geodesic
realizing the distance from γx(0) ∈ η−1(E) to γx(1) ∈ η−1(F ). Hölder’s inequality
gives that if f ∈ Fρ(A ),

(1.3) ρ(γx)
n ≤

(∫

γx

f

)n

≤
[(∫

γx

1

)1−1/n (∫

γx

fn

)1/n
]n

= δn−1

∫

γx

fn.

Since f ∈Ln(X) is non-negative, for almost every x ∈ E,
∣∣∣∣
∫

η◦γx

(f ◦ η−1)n
√

det g −
∫

η◦γx

(f ◦ η−1)n

∣∣∣∣ ≤ sup
Z

∣∣∣
√

det g − 1
∣∣∣
∫

η◦γx

(f ◦ η−1)n

≤ c1δ

∫

η◦γx

(f ◦ η−1)n

(1.4)

for c1 > 0 depending on the curvature of g near p0 but independent of δ. This estimate
is obtained by a standard asymptotic expansion of the pullback of the volume form
via the exponential map in terms of Jacobi fields along the curves γx. Combining
(1.3) and (1.4),

(1.5) δ1−nρ(γx)
n ≤ (1 + c2δ)

∫

η◦γx

(f ◦ η−1)n
√

det g,

where c2 > 0 is also independent of δ. By construction ρ(γ) = δ for all γ ∈ A .
Applying this to (1.5) and integrating over all x ∈ E,

δ Voln−1(E) ≤ (1 + c2δ)

∫

X

fn dµg,
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where Voln−1(E) is the (n−1)-dimensional volume of E as an isometrically immersed
submanifold of (M, g). Since f ∈ Fρ(A ) was arbitrary,

(1.6) Mρ(A ) ≥ δ Voln−1(E)

1 + c2δ
.

Applying (1.4) once more, this time taking f to be η composed with the characteristic
function of Z which is also in Fρ(A ) and again integrating over E,

Vol(η−1(Z), g) ≤ Voln−1(E) δ(1 + c1δ).

This, (1.6) and (1.2) imply

(1.7) Kρ,O(ϕ) ≥ Vol(η−1(Z), g) (r̃/δ)n

Vol(ϕ ◦ η−1(Z), g̃) (1 + c δ)2
,

where c=max{c1, c2}.
For any y = (y1, . . . , yn) ∈ Φ(E), |y1|<εδ by (1.1) and for any z = (z1, . . . , zn) ∈

Φ(F ), |z1 − aδ| < εδ, also by (1.1). Therefore, by the choice of coordinates (ξ, V ) on
M̃ ,

dg̃(ϕ(p), ϕ(q)) > aδ − 2εδ

for all p∈η−1(E) and q∈η−1(F ). Thus, r̃/δ > a−2ε, the lower bound being positive
since ε < a/2. Combining this with the estimate (1.7) gives

(1.8) Kρ,O(ϕ) ≥ Vol(η−1(Z), g) (a− 2ε)n

Vol(ϕ ◦ η−1(Z), g) (1 + c δ)2
.

Suppose that det ϕ∗g = 0. Then ker(ϕ∗)(p0) is non-empty, which would mean
that

Vol(ϕ ◦ η−1(Z), g) ≤ c3 δ ε Vol(η−1(Z), g)

for some constant c3 independent of δ, and ε. Since ε can be chosen arbitrarily
small, (1.8) would then imply that Kρ,O(ϕ) = ∞ which contradicts the hypothesis.
Therefore det ϕ∗g 6= 0, and letting δ → 0,

(1.9)
Vol(ϕ ◦ η−1(Z), g)

Vol(η−1(Z), g)
→

√
det ϕ∗g(p0).

Applying (1.9) to (1.8) for δ and ε arbitrarily small,
√

det ϕ∗g(p0)Kρ,O(ϕ) ≥ an. ¤
Next it is shown that if ρ(γ) is the Riemannian distance between the endpoints

of γ, then ρ-quasiconformality is equivalent to the definition of a quasiconformality
from the conformally invariant modulus.

Theorem 1.10. Let (M, g) and (M̃, g̃) be Riemannian manifolds, U ⊂ M , V ⊂
M̃ open and connected, and ϕ : U → V a homeomorphism. If ρ(γ) = dg(γ(0), γ(1))
for a Riemannian metric g, then Kρ(ϕ) = K < ∞ if and only if ϕ is K-quasiconformal.

Proof. Assume that ϕ is (K, ρ)-quasiconformal. Quasiconformality will follow
from showing that the linear dilation

H(x, ϕ−1) = lim sup
r→0

max{dg(ϕ
−1(x), ϕ−1(y)) | dg(x, y) = r}

min{dg(ϕ−1(x), ϕ−1(z)) | dg(x, z) = r}
is bounded independent of x ∈ V . Then ϕ is differentiable almost everywhere. From
Lemma 1.9 it follows that ϕ is K-quasiconformal.
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For r > 0 smaller than the injectivity radius at x, the exponential map based at
x is a diffeomorphism of Br(x) with a Euclidean ball. In fact, the exponential map
restricted to Br(x) is bi-Lipshitz with constant approaching one as r shrinks to zero.
Thus, it is sufficient to prove the special case of when U is a metric ball in Rn and
the Riemannian metrics are Euclidean.

Fix 0 < r < dg(x, ∂V ) and take

L = max{dg(ϕ
−1(x), ϕ−1(y)) | dg(x, y) = r}

and
` = min{dg(ϕ

−1(x), ϕ−1(z)) | dg(x, z) = r}.
Let N = {y | dg(y, ϕ−1(x)) ∈ (`, L)} and A ⊂ ΓN be those curves with one endpoint
in each component of ∂N . Denote B = {ϕ ◦ γ | γ ∈ A }, ρ(γ) the Euclidean distance
between the endpoints of γ, and ρ̃(γ) = ρ(ϕ−1(γ)). We have that L−` ≤ ρ(γ) ≤ L+`
for any γ ∈ A , hence L − ` ≤ ρ̃(γ) ≤ L + ` for all γ ∈ B as well. If f ∈ Fρ̃(B),
then,

∫
γ

1
L−`

f ≥ 1 for all γ ∈ B, so the conformally invariant modulus of B,

(1.10) M(B) ≤ (L− `)−nMρ̃(B) ≤ (L− `)−nK Mρ(A ) ≤ K βn−1| log L/`|1−n.

The last inequality follows by applying Lemma 2.7 with a = `/L and stretching by a
factor of L. This and the estimate of the modulus of B found in [32] Theorem 11.9
combine to give that

(1.11) c ≤ M(B) ≤ K βn−1 (log(L/`))1−n ,

for constant c that depends only on n, and not on L, `, x or r. From (1.11), in
a similar way to the proof in [32] of Theorem 22.3 part (1), L/` is bounded by a
constant that depends on K and n, but not on r or on x. Therefore H(x, ϕ−1) is
bounded as desired.

The converse follows from Theorem 1.8. ¤

2. Modulus estimates

First is a basic estimate that was used in the proof of Lemma 1.9.

Lemma 2.1. Let X ⊂ (M, g) be connected and open and A ⊂Ω(X) such that
the images of all curves of A lie inside a Borel set U ⊂X. If Lg(γ)≥ r > 0 for all
γ∈A , then

Mρ(A ) ≤ Vol(U, g)

rn

(
sup
γ∈A

ρ(γ)

)n

.

Proof. Either the right hand side of the estimate is finite, or else it holds trivially.
If

f(x) =
1

r
χU(x) sup

γ∈A
ρ(γ),

then
∫

β
f ≥ supγ∈A ρ(γ) for all β∈A , so f ∈Fρ(A ) and

Mρ(A ) ≤ 1

rn

(
sup
γ∈A

ρ(γ)

)n

Vol(U, g). ¤

In the case that ρ(γ) is given by the Riemannian distance between the endpoints
of γ, an analogue of Beurling’s condition for extremal length [1, Theorem 4-4] can
be used to find the ρ-modulus of certain families of curves.
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Definition 2.2. A set of curves Σ ⊂ ΓX satisfies a Beurling condition for X ⊂
M under g with respect to ρ iff Lg(γ) ≥ ρ(γ) for all γ ∈ ΓX , Lg(γ) = ρ(γ) for all
γ ∈ Σ, and if for any Borel function h such that

∫
γ
h ≥ 0 for all γ ∈ Σ, it follows

that h must also satisfy
∫
X

h dµg ≥ 0.

Lemma 2.3. If Σ satisfies a Beurling condition on X under g with respect to ρ,
then

Mρ(ΓX) = Vol(X, g).

Proof. If f ∈ Fρ(ΓX), then
∫

γ
f ≥ ρ(γ) =

∫
γ
χX for all γ ∈ Σ, so

∫
X

(f−χX) ≥ 0,

and from Hölder’s inequality it follows that
∫
M

fn dµg ≥ Vol(X, g). Since Lg(γ) ≥ ρ(γ)

for all γ ∈ ΓX , χX ∈ Fρ(ΓX), and so Mρ(ΓX) = Vol(X, g). ¤
Consider an open, pre-compact subset X with smooth boundary in a Riemannian

manifold (M, g). For any inward pointing unit tangent vector v not tangent to ∂X
let

τ(v) = inf{t > 0 | exp(tv) /∈ X}.
After [25],[19],[10], we say that X has the BGM (Boundary Geodesics Minimize)
property if τ(v) < ∞ for all inward pointing unit tangent vectors v not tangent to
∂X and if the geodesic γv : [0, τ(v)] → M given by γv(t) = exp(tv) is minimal.

Lemma 2.4. Let (M, g) be a complete Riemannian n-manifold (n ≥ 2), X ⊂ M
open with BGM closure, and ρ(γ) = dg(γ(0), γ(1)) for γ ∈ Ω(X). Then the set of all
minimal geodesics with endpoints in ∂X satisfies a Beurling condition for X under
g and so Mρ(ΓX) = Vol(X, g).

Proof. Let Σ ⊂ ΓX be the set of all minimal geodesics with endpoints in ∂X.
We have that Lg(γ) = ρ(γ) for all γ ∈ Σ. Let h be a Borel function on X such that∫

γ
h ≥ 0 for all γ ∈ Σ. Take V to be the unit tangent vectors to points in ∂X which

form an acute angle with the inward-pointing normal. Applying Santalo’s formula
[30],

βn−1

∫

X

h dµg =

∫

SX

h(π(w)) dν(w) =

∫

V

∫ τ(v)

0

h(expπ(v)(tv)) dt dν(v) ≥ 0.

Here ν is the measure on the unit tangent bundle π : SX → X given by the product
of µg with the standard measure on the sphere of dimension n− 1. Thus Σ satisfies
a Beurling condition for X under g and the conclusion follows from Lemma 2.3. ¤

Next the ρ-modulus of a set of curves is bounded above by the sum of ρ-moduli
of sets of subcurves when ρ is induced by a pseudo distance function λ.

Lemma 2.5. Let E be a path-connected, open subset of (M, g) and take ρ(γ) =
λ(γ(0), γ(1)) for all γ ∈ Ω(E), where λ is symmetric, bounded on E ×E, and obeys
the triangle inequality. If {Uj}j∈I is a countable (or finite) collection of disjoint,
connected, non-empty, open subsets of E such that E \ ⋃

j∈I

Uj has zero measure then,

Mρ(ΓE) ≤
∑

j∈I

Mρ(ΓUj
).
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Proof. If any Mρ(ΓUj
) is infinite or if their sum is infinite then the upper bound

certainly holds, so we can assume the sum converges. By Proposition 1.4, it suffices
to show that Mρ(A ) has the given upper bound where A ⊂ ΓE are all the rectifiable
curves in ΓE. Let E ′ = E \ ⋃

j∈I

Uj, a set of measure zero. Take uj ∈ Fρ(ΓUj
) with

supp uj ⊂ Uj. Let u(x) = ∞ for all x ∈ E ′ and u(x) = 0 otherwise.
For γ ∈ A parameterized proportional to arc-length and V ⊂ γ−1(Uj) any con-

nected component, denote by γV the re-parameterization of γ|V to [0, 1] proportional
to arclength. Then

∫
γV

uj ≥ ρ(γV ). Now,
∫

γ
u = ∞ whenever γ−1(E ′), has non-zero

Borel measure on [0, 1], so we are left with the case when γ−1(E ′) has measure zero.
Since [0, 1] is separable, there are countably many connected components of γ−1(Uj),
whence γ−1(

⋃
j∈I

Uj) has countably many connected components {V`}`∈N. Denote by

γ` the re-parameterization of γ|V `
to [0, 1] proportional to arclength. Since {Uj}j∈I

are disjoint, and u, u1, u2, . . . are non-negative,
∫

γ

(
un +

∑

j∈I

un
j

)1/n

≥
∑

`∈N

∫

γ`

∑

j∈I

uj ≥
∑

`∈N

ρ(γ`) ≥ ρ(γ),

the last estimate following from the triangle inequality. Therefore,
(
un+

∑
j∈I un

j

)1/n

∈ Fρ(A ), and

Mρ(A ) ≤
∫

M

(
un +

∑

j∈I

un
j

)
dµg ≤

∑

j∈I

∫

M

un
j dµg.

Since uj ∈ Fρ(ΓUj
) were arbitrary, Mρ(A ) ≤ ∑

j∈I

Mρ(ΓUj
). ¤

For certain sets the above lemma yields the modulus exactly.

Theorem 2.6. Let A ⊂ (M, g) be an open, pre-compact subset of a compact
Riemannian manifold M of dimension at least two. Fix B ⊂ A open, compactly con-
tained in A with countably many connected components such that ∂B has measure
zero, and denote B′ = A◦ \ B. If ρ(γ) = dg(γ(0), γ(1)) and Mρ(Σ) = Vol(A, g) for
some Σ ⊂ ΓA, then

Mρ(ΓB′) = Vol(B′, g) and Mρ(ΓB) = Vol(B, g).

Proof. Let {Bj}j∈I be the connected components of B. By Lemma 2.5, Lem-
ma 1.2 and Proposition 1.3

Vol(A, g) = Mρ(Σ) ≤ Mρ(ΓA) ≤ Mρ(ΓB′) +
∑

j∈I

Mρ(ΓBj
)

≤ Vol(A \B, g) +
∑

j∈I

Vol(Bj, g) = Vol(A, g),

so all the inequalities are in fact equalities. In particular, Mρ(ΓB′) = Vol(A \ B, g),
and Mρ(ΓB) = Vol(B, g). ¤

Next we will consider annuli in Euclidean space. Let V = B1(0) \ Ba(0) ⊂ Rn,
with 0 < a < 1, and Aj ⊂ ΓV be the set of curves with exactly j endpoints in ∂B(1).
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Employing a similar extremal function to that used in [32] for spherical rings, we can
find the ρ-modulus for A0 ∪A1.

Lemma 2.7. With notation as above, if ρ is induced by the Euclidean distance,
then

Mρ(A0 ∪A1) = βn−1
(1− a)n

| log a |n−1
.

Proof. Working in polar co-ordinates, let f(r, Θ) = a−1
log a

· 1
r
· χV . We will show

that f is admissible for A0 and A1, whence

Mρ(A0 ∪A1) ≤ ‖f‖n
n = βn−1

(1− a)n

| log a|n−1
.

The reverse inequality is arrived at in much the same way as in [32]. For any f̃ ∈
Fρ(A1), if θ ∈ Sn−1, then applying Hölder’s inequality,

(1− a) ≤
1∫

a

f̃(tθ) dt ≤



1∫

a

f̃(tθ) · tn−1 dt




1/n

(− log a)1−1/n ,

taking the nth power and integrating over Sn−1 gives that

‖f̃‖n
n ≥ βn−1(1− a)n/| log a|n−1,

and since f̃ was arbitrary, the result follows.
To show f ∈ Fρ(A0), consider the stereographic projection ϕ : V → Rn+1 given

by

ϕ(x) =
2a2

a2 + |x|
(

x1, . . . , xn,
a2 − |x|2

2a

)
,

where |x| is the Euclidean norm of x. This maps V to the n-sphere of radius a
sending the inner boundary to the equator. If we pull back the metric with constant
curvature 1/a2 via ϕ to V , we get a metric conformal to the Euclidean metric with
conformal factor

F (r, Θ) =
2a2

a2 + r2
χV .

Distances in this metric on the inner boundary of V (i.e. ∂Ba(0)) are at least as
large as the Euclidean distance, whence F ∈ Fρ(A0). It is elementary to show that
0 ≤ F/f ≤ 1 and therefore f(r, Θ) ≥ F (r, Θ) for all a ≤ r ≤ 1. It immediately
follows that f is ρ-admissible for A0.

To show that f is ρ-admissible for A1, consider the metric g = f 2g0 where g0

is the Euclidean metric. For this it is sufficient to show that dg(p, q) ≥ dg0(p, q)
for all p ∈ ∂Ba(0) and all q ∈ ∂B1(0). Take the standard co-ordinates (x1, . . . , xn)

with co-ordinate fields ∂1, . . . , ∂n. Consider the vector fields Y = xj

r
∂j (we use the

Einstein convention) and Z = x2∂1− x1∂2. A straightforward calculation yields that
on the 2-plane ω = {x | x3 = . . . = xn = 0}, ∇Y Y |ω = −1

r
Y |ω, and ∇ZZ|ω =

∇Y Z = ∇ZY = 0. It follows that this 2-plane is totally geodesic under g. Since g is
rotationally symmetric, in order to show that dg(p, q) ≥ dg0(p, q) for all p ∈ ∂Ba(0)
and all q ∈ ∂B1(0), it is sufficient to show this is true when restricted to this same
2-plane.

Consider polar coordinates in this two plane with co-ordinate fields ζ1 = ∂r =
x1

r
∂1 + x2

r
∂2 and ζ2 = ∂θ = −x2∂1 + x1∂2. In this co-ordinate system the Christoffel
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symbols are all zero except for Γ1
1 1 = 〈∇∂r∂r, ∂r〉g/〈∂r, ∂r〉g = −1

r
. If γ : [0, 1] → V

is a geodesic with γ(t) = (r(t), θ(t)), γ(0) = (a, 0), and γ(1) = (1, α), the geodesic
equations yield: {

r̈ − 1
r
(ṙ)2 = 0

θ̈ = 0
⇒

{
r(t) = a1−t

θ(t) = α t.

These geodesics have tangent vectors that are never orthogonal to Y . The curvature
of g can be calculated as follows. For fixed λ 6= µ (so the Einstein convention will
not apply to λ and µ) define ξ = xλ∂µ−xµ∂λ. Then we have ∇ξY = ∇Y ξ = 0, hence
[ξ, Y ] = 0 and 〈∇ξ∇Y ξ, Y 〉g = 0. Also, ∇ξξ = −xλ∂λ − xµ∂µ + (xλ)2+(xµ)2

r
Y , and

R(ξ, Y, ξ, Y ) = ∇Y∇ξξ, Y g = Y 〈∇ξξ, Y 〉g − 〈∇ξξ,∇Y Y 〉

= Y 〈∇ξξ, Y 〉g +
1

r
〈∇ξξ, Y 〉 = 0.

Since g has zero curvature on any tangent plane containing the radial direction, no
geodesic γ as above can have a conjugate point before the cut distance. Radial
symmetry of g gives that γ : [0, 1] → V must be minimizing on [0, 1] as long as
−π ≤ α ≤ π.

Integrating gives us the length of γ to be (1− a)
√

1 + (α/ log a)2. It remains to
show that

(a− 1)2

[
α2

(log a)2
+ 1

]
≥ a2 + 1− 2a cos α,

where the right hand side of the inequality is the square of the Euclidean distance
between (a, 0) and (1, α). Using elementary methods this follows for all 0 < a < 1
and −π ≤ α ≤ π. ¤

Now we will use Beurling’s condition to find the ρ-modulus of sets of curves with
both endpoints in the outer boundary. The method is similar to that found in section
4-9 of [1]). Let V = B1(0) \ Ba(x0) ⊂ Rn with |x0| + a < 1 and a > 0. Denote by
A ⊂ ΓV the set of curves with both endpoints in ∂B1(0).

Lemma 2.8. With notation as above, if ρ is induced by the Euclidean distance,
then

Mρ(A ) = Vol V.

Proof. First we will show that the lemma holds when x0 = 0. Let Σ ⊂ A be
the set of all straight line segments with both endpoints in ∂B1(0) that do not enter
Ba(0). If we can show that for dimension two Σ satisfies a Beurling condition under
the Euclidean metric, then (since we are in Euclidean space) by applying Fubini’s
theorem it follows that the Beurling condition holds for any finite dimension.

Take polar coordinates (r, θ) and consider the line segment starting at (1, θ) whose
farthest distance to ∂B1(0) is t. If s is the arclength of the segment beginning at
(1, θ), then

r2 = 1− 2s
√

2t− t2 + s2,

thus s =
√

2t− t2 −
√

2t− t2 + r2 − 1

and ds ∧ dθ =
1√

r2 − (1− t)2
r dθ ∧ dr.
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Take h to be a Borel function such that
∫
γ

h ≥ 0 for all γ ∈ Σ. Denote by χ the

characteristic function of the interval [1,∞). Now

π

2

1∫

a

2π∫

0

h(r, θ) r dθ dr =

1∫

a

2π∫

0

h(r, θ) r

1−a∫

0

(1− t)χ(t/(1− r))√
(1− t)2 − a2

√
r2 − (1− t)2

dt dθ dr

=

1−a∫

0

(1− t)√
(1− t)2 − a2

1∫

a

2π∫

0

χ(t/(1− r)) h(r, θ)√
r2 − (1− t)2

r dθ dr dt

=

1−a∫

0

(1− t)√
(1− t)2 − a2

2π∫

0

2
√

2t−t2∫

0

χ(t/(1− r(s))) h(s, θ) ds dθ dt,

≥ 0

the last inequality holding because if t is the farthest that γ ∈ Σ gets from ∂B1(0),
then t ≥ 1− r(γ).

For the general case, let Ṽ = Br(x0) \ Ba(x0) with r > |x0| + 1 and take Σ̃ to
be all the straight line segments with both endpoints in ∂Br(x0) that do not enter
Ba(x0). If h : V → R is Borel such that

∫
γ
h ≥ 0 for all γ ∈ Σ. Let H(x) = h(x)

for x ∈ V and H(x) = 0 for x ∈ Br(x0) \ V . Each γ ∈ Σ has a unique extension to
γ̃ ∈ Σ̃ and

∫
γ̃
H =

∫
γ
h ≥ 0. Furthermore if γ̃ ∈ Σ̃ doesn’t intersect V then

∫
γ̃
H = 0.

It is easy to see that Σ̃ has the Beurling property for Br(x0) \ Ba(x0) as these are
concentric metric balls. Therefore

∫
Ṽ

H ≥ 0 and
∫
V

h =
∫
Ṽ

H. ¤

3. Applications

First we will apply Theorem 1.8 and the modulus estimate Lemma 2.8 to give a
volume bound for quasiconformal maps on the unit Euclidean ball whose restriction
to the boundary is an isometry.

Theorem 3.1. Let ϕ : B1(0) → B1(0) be a K-quasiconformal map on the unit
ball in Rn that preserves distance on the boundary. For any Euclidean ball U =
Ba(0) ⊂ B1(0),

Vol ϕ(V ) ≥ 1

K
Vol V,(3.12)

Vol ϕ(U) ≤ K − 1

K
Vol B1(0) +

1

K
Vol U,(3.13)

where V = B1(0) \ U .

Proof. Extend ϕ to a map Φ: Br(0) → Br(0) for r > 1 by letting Φ(x) =
|x|ϕ(x/|x|) for |x| > 1 and Φ(x) = ϕ(x) for |x| ≤ 1. Since Φ is an isometry on
Br(0) \ B1(0), and is equal to a K-quasiconformal map on B1(0), it must itself be
K-quasiconformal. We will show that (3.12) holds when U is compactly contained
in B1(0). The more general statement follows from ϕ being a homeomorphism. Let
A be as in Lemma 2.8. Applying Lemma 2.8, and Theorem 1.8 with ρ induced by
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the Euclidean distance,

Vol V = Mρ(A ) ≤ K Mρ̃(Φ(A ))

where ρ̃ = ρ ◦ Φ−1. Since Φ preserves distance on ∂B1(0), ρ(Φ(γ)) = ρ(γ) for all
γ ∈ A . Thus the characteristic function of ϕ(V ) = Φ(V ) is ρ̃-admissible for ϕ(A ),
so Mρ̃(ϕ(A )) ≤ Vol ϕ(V ). The first estimate follows immediately and the second
one from the first and the observation that Vol U + Vol V = Vol ϕ(U) + Vol ϕ(V ) =
Vol B1(0). ¤

Next is a bound on the Ln-norm of weak upper gradients in the sense of Heinonen
and Koskela [20]. Let W be a connected open subset of (M, g) and u a real-valued
function on W . Let ρu(γ) = |u(γ(0)) − u(γ(1))| for γ ∈ Ω(W ). Suppose that there
exists a non-negative Ln function f on W such that∫

γ

f ≥ ρu(γ)

for all γ ∈ Ω(W ). We will call such an f a weak upper gradient of u.

Corollary 3.2. Let X ⊂ (M, g), Y ⊂ (M̃, g̃) be open and connected. If ψ : Y →
X is K-quasiconformal and u is a function on X that has a weak upper gradient with
finite Ln norm, then so does u ◦ ψ, and either,

1

K
≤ inf{‖f‖n

n | f is a weak upper gradient of u ◦ ψ}
inf{‖f̃‖n

n | f̃ is a weak upper gradient of u } ≤ K,

or both infima are zero.

Proof. If we let ρ = ρψ◦u and ρ̃(γ) = ρu as above, then either both infima are
zero, or else since

inf{‖f̃‖n
n | f̃ is a weak upper gradient of u} = Mρ̃(Ω(X)) = Mρ̃(Ω(ϕ(Y )))

and inf{‖f‖n
n | f is a weak upper gradient of u ◦ ψ} = Mρ(Ω(Y )),

the conclusion follows from Theorem 1.8. ¤
Next we apply Theorem 2.6 to calculate conformal filling volume and then use

Theorem 1.8 to obtain estimates for conformal filling volume. The moduli we deter-
mined in the previous section yield the conformal filling volume in a broad range of
cases that can be seen as generalizations of the conformal filling volume of the 2-disc
in [19].

Corollary 3.3. Let (M, g) be a compact, BGM, Riemannian manifold with
boundary with dimension dim(M) = n ≥ 2 and V open and compactly contained in
M with countably many components.

(i) If h is any metric on M \ V conformal to g|M\V such that dh(x, y) ≥ dg(x, y)
for all x, y ∈ ∂(M \ V ), then Vol(M \ V, h) ≥ Vol(M \ V, g).

(ii) If V is connected and h is any metric on V conformal to g|V such that
dh(x, y) ≥ dg(x, y) for all x, y ∈ ∂V , then Vol(V, h) ≥ Vol(V, g).

Proof. Let ρ(γ) = dg(γ(0), γ(1)) for γ ∈ Ω(M). Lemma 2.4 and Theorem 2.6
together show that the minimal Ln norm among ρ-admissible Ln functions for ΓV and
ΓM\V is realized by the constant function 1. Therefore the minimal Ln norm among
continuous, ρ-admissible functions (and hence minimal volume) is also realized by
this same function. ¤
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In [24] it was shown that a necessary and sufficient condition for conformal filling
volume to be realized by a continuous, positive function was the existence of a set
of curves satisfying a weaker Beurling condition (on continuous, rather than Borel
functions). In this case it can be shown that when V is compactly contained in M
the set of curves in question are the geodesics with endpoints in the boundary of V
and interiors in V .

Now we will apply Theorem 1.8 to give bounds on how conformal filling volume
varies under a quasiconformal map. This can be seen as a weak analogue to Wolpert’s
Theorem on the length of homotopy classes of closed geodesics in the hyperbolic
metric.

Corollary 3.4. Let M be a compact Riemannian manifold with boundary of
dimension at least two, and g, g̃ smooth metrics on M . If (M, g) is BGM and there
exists a K-quasiconformal map ψ : (M, g) → (M, g̃), then the conformal filling vol-
umes satisfy

FillVol(M,λ, [g̃]) ≥ 1

K
Vol(M, g),

where λ(x, y) = dg(ψ
−1(x), ψ−1(y)).

Proof. Let ρ(γ) = dg((γ(0), γ(1)) and ρ̃(γ) = ρ(ψ−1 ◦ γ) = λ(γ(0), γ(1)). Apply-
ing Corollary 3.3 and the arguments in Theorem 1.8,

Vol(M, g) = FillVol(M, dg, [g]) = Mρ(ρ)ΓM ≤ K Mρ̃(ΓM) ≤ K FillVol(M,λ, [g̃]),

the last inequality holding because the conformal filling volume is an infimum over
admissible functions that are continuous, whereas the ρ̃-modulus is an infimum over
Borel functions. ¤

Appendix

The proofs here closely follow the analogous ones in [32] and are included to
provide the details for adapting them to the present setting.

Proof of Proposition 1.3. The zero function is admissible for the empty set, so
Mρ(∅) = 0.

If A1⊂A2, then Fρ(A1)⊃Fρ(A2), hence Mρ(A1) ≤ Mρ(A2).
For {Aj ⊂ Ω(X)}j∈N, then Mρ (∪j∈NAj) ≤

∑
j∈N

Mρ(Aj) as follows. If Mρ(Aj) =

∞ for some j∈N, or if the sum is not finite, then the claim is clear. Otherwise, let
ε>0 be given. Take fj∈Fρ(Aj) such that ‖fj‖n

n < Mρ(Aj)+2−jε. Let A = ∪j∈NAj

and consider the function

f =

(∑
j∈N

fn
j

)1/n

.

Since f≥fj for all j∈N, f ∈Fρ(Aj) for all j, whence f ∈Fρ(A ). Thus,

Mρ(A ) ≤ ‖f‖n
n =

∑
j∈N

‖fj‖n
n < ε +

∑
j∈N

Mρ(Aj)

where ε is arbitrary. ¤
Proof of Proposition 1.4. By Proposition 1.3 (ii), Mρ(A ) ≥ Mρ(B) since A ⊃

B. Now we show Mρ(A ) ≤ Mρ(B). Either Mρ(B) = ∞ and we are done, or else
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we can take f ∈Fρ(B) with ‖f‖n < ∞. Fix F ∈ Ln(X) a strictly positive function,
and let

fε = (fn + εF n)1/n.

Since fε ≥ f , for all γ∈B, ∫

γ

fε ≥
∫

γ

f ≥ ρ(γ)

If ρ(γ) = 0, then
∫

γ
fε ≥ 0. If γ is not rectifiable, then

∫

γ

fε ≥
∫

γ

εF = ∞ ≥ ρ(γ).

Therefore fε ∈ Fρ(A ) and Mρ(A ) ≤ ‖fε‖n
n = ‖f‖n

n + εn ‖F‖n
n. Since ε > 0 and

f ∈Fρ(A ) were arbitrary, it follows that Mρ(A ) ≤ Mρ(B). ¤
Proof of Proposition 1.6. Both (i) and (ii) are immediate from the definition of

the inner and outer ρ-dilation, and (iii) follows immediately from them. If either
Kρ1,I(ϕ) or Kρ2,I(ψ) are infinite (iv) holds, so we assume they are both finite. In this
case, if Mρ2(ϕ(A )) = 0, then Mρ3(ψ ◦ϕ(A )) = 0—a superfluous case—as otherwise
Kρ2,I(ψ) would be infinite. Similarly, if Mρ1(A ) = 0, then Mρ2(ϕ(A )) = 0 as
otherwise Kρ1,I(ϕ) would be infinite. Using the same argument, if Mρ2(ϕ(A )) = ∞,
then Mρ1(A ) = ∞, another case that does not affect the ρj-dilation. So we only
need to consider the case that A ⊂ Ω(X1) and 0<Mρ2(ϕ(A ))<∞, whence

Mρ3(ψ ◦ ϕ (A ))

Mρ1(A )
=

Mρ3(ψ ◦ ϕ (A ))

Mρ2(ϕ(A ))

Mρ2(ϕ(A ))

Mρ1(A )
≤ Kρ,I(ψ) Kρ,I(ϕ)

from which (iv) follows; (v) is proved similarly, and (vi) follows immediately from
them. ¤

Proof of Lemma 1.7. Since ϕ is quasiconformal, there exists a sequence {ϕi} ⊂
C 1(M, M̃) such that ϕj → ϕ uniformly on compact subsets of M and such that
ϕj → ϕ in W n

1 (U, M̃) on pre-compact U ⊂ M . The proof of this closely follows that
of Theorem 3.3 in Chapter 2 of [21] combined with Theorem 27.7 and Remark 2 of
paragraph 34.8 in [32]. By Proposition 1.4 we can assume that every curve γ ∈ A is
rectifiable and ρ(γ) > 0. Let {Uj}j∈N be an exhaustion of X by open, pre-compact
sets whose closures are in X with Uj ⊂ Uj+1 for all j ∈ N. Denote by Aj ⊂ A all
curves whose images are in Uj. For any γ ∈ A , there exists a j ∈ N such that γ ∈ Aj

whence Mρ(A ) ≤ ∑
j∈N Mρ(Aj) by Proposition 1.3 (iii). Therefore, it is sufficient

to prove that Mρ(Aj) = 0 for all j ∈ N.
Now fix j ∈ N. Let fi = ‖Dϕi − Dϕ‖ be the function given by the pointwise-

defined operator norm. After passing to a subsequence, we can assume that

(3.14)
∫

Uj

fn
i < 2−i(n+1).

Let B be all rectifiable paths γ ∈ Ω(Uj) such that lim sup
i→∞

∫
γ
fi > 0. Take

Bi =

{
γ ∈ B

∣∣∣∣
∫

γ

fi > 2−iρ(γ)

}
.
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Then B ⊂ ⋃
i≥N

Bi for any N ∈ N. Also, 2 i χUj
fi ∈ Fρ(Bi), and so by (3.14),

Mρ(Bi) ≤ 2ni

∫

Uj

fn
i < 2−i.

Therefore, Mρ(B) ≤ ∑
i≥N

Mρ(Bi) < 2−N+1 so Mρ(B) = 0 since N was arbitary.

We will show that Aj ⊂ B, proving the theorem. We have

(3.15)
∫

γ

‖ϕi∗Z − ϕ∗Z‖g̃ ≤
∫

γ

‖Z‖gfi

for any continuous vector field Z along γ. When γ ∈ Ω(Uj) \ B is rectifiable, the
right-hand side of (3.15) converges to zero independent of Z. Let γ̄ : [0, `] → Uj be
the re-parameterization of γ by arclength, hence γ̄′(t) is defined and has unit length
for almost every t ∈ [0, `]. Since γ is rectifiable and ϕi is C 1, ϕi ◦ γ̄ is absolutely
continuous. Therefore for 0 ≤ t1 < t2 ≤ `,

dg̃(ϕi(γ̄(t1)), ϕi(γ̄(t2))) ≤
t2∫

t1

‖ϕi∗(γ̄′(t))‖g̃ dt ≤
t2∫

t1

‖Dϕi‖(γ̄(t)) dt.

For γ /∈ B, since ϕi → ϕ uniformly on Uj, in the limit as i →∞,

dg̃(ϕ(γ̄(t1)), ϕ(γ̄(t2))) ≤ 2

t2∫

t1

‖Dϕi‖(γ̄(t)) dt

for all i ∈ N sufficiently large, whence ϕ ◦ γ is absolutely continuous so γ /∈ Aj. ¤
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