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Abstract. We extend the parameterization of sine-type functions in terms of conformal map-
pings onto slit domains given by Eremenko and Sodin to the more general case of generating func-
tions of real complete interpolating sequences. It turns out that the cuts have to fulfill the discrete
Muckenhoupt condition studied earlier by Lyubarskii and Seip.

1. Interpolation in Paley–Wiener spaces and Riesz bases of exponentials

Let PW 2
π be the Paley–Wiener space of all entire functions of exponential type at

most π which belong to L2 on the real line. A sequence {λn}n∈Z of complex numbers
is called a complete interpolating sequence if for all complex sequences {an}n∈Z with

(1)
∑
n∈Z

|an|2e−2π| Imλn|(1 + | Imλn|) <∞

the interpolation problem
(2) f(λn) = an

has a unique solution f ∈ PW 2
π . It is known (see [22]) that for complete interpolating

sequences the function f depends continuously on the sequence {an} in the sense that
there are constants C, c > 0 independent of {an} such that

c‖f‖2
L2(R) ≤

∑
n∈Z

|an|2e−2π| Imλn|(1 + | Imλn|) ≤ C‖f‖2
L2(R).

If {λn} ⊂ R condition (1) just means that {an} ∈ l2(Z), and in the sequel we will
only consider this case.

A sequence {en} of vectors in a Hilbert space H is called a Riesz basis in H if it
is complete and there are C, c > 0 such that

c
∑
|an|2 ≤

∥∥∥∑ anen

∥∥∥2

≤ C
∑
|an|2

holds for every finite sequence {an} of numbers. See [4] for basic information on this
topic and equivalent definitions. Using the fact that the Fourier transform provides
an isometry between L2(−π, π) and PW 2

π , one can characterize complete interpola-
ting sequences as those sequences for which the set {eλnit}n∈Z is a Riesz basis for
L2(−π, π), cf. Theorem 9 in chapter 4 of [34].
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It is also well-known that a sequence {en} of vectors in a Hilbert spaceH is a Riesz
basis in H if and only if it is an unconditional basis with 0 < infn ‖en‖ ≤ supn ‖en‖ <
∞, see [9],[26]. Therefore, some of our cited references deal with unconditional bases
of exponentials.

The problem to describe all complete interpolating sequences has been studied
since the classical book [25] of Paley and Wiener. The first type of results in this
direction were perturbation statements of the set of integers, and we provide as an
example the famous theorem of Kadets [13], see also [34].

Theorem 1. A sequence {λn}n∈Z of real numbers is a complete interpolating
sequence if

sup
n∈Z
|λn − n| <

1

4
.

The constant 1
4
cannot be replaced by any larger number.

A full description of all complete interpolating sequences on the real line was
obtained by Pavlov [27], who proved the following theorem.

Theorem 2. A sequence {λn}n∈Z of real numbers is a complete interpolating
sequence if and only if

(i) it is separated, i.e.

(3) δ := inf
n6=m
|λn − λm| > 0,

(ii) the limit1

(4) F (z) = lim
R→∞

∏
|λn|<R

(
1− z

λn

)
exists uniformly on compact subsets of C and defines an entire function F of
exponential type π, the generating function,

(iii) the function w(x) := |F (x+iy)|2, x ∈ R, satisfies the Muckenhoupt condition

(A2)
∫
I

w(x) dx

∫
I

1

w(x)
dx ≤ C|I|2

for some constant C > 0, some y 6= 0 (and hence for all y 6= 0), and all
intervals I ⊂ R of finite length |I|.

This formulation of the theorem is specialized for real λn, whereas [27] contains
conditions even if the λn are in some horizontal strip. Later this restriction was
completely disposed of by Nikolskii [24] and Minkin [23].

Because of the separation condition (3) we can in the following always assume
that the {λn} are ordered, i.e. λn+1 > λn for all n ∈ Z. Besides, it is also well-known
(cf. [22]) that a (real) complete interpolating sequence is relatively dense, i.e. for some
ε > 0 the sets {λn}n∈Z ∩ [x− ε, x+ ε] are nonempty for every x ∈ R. In particular,

(5) ∆ := sup
n∈Z
|λn+1 − λn| <∞.

1If one of the numbers λn is equal to zero, the corresponding factor has to be replaced by z. This
convention will also be adopted in what follows.
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Theorem 2 has been deduced in a different manner and generalized by Sedletskii
[31], [32] and Lyubarskii and Seip [22]. In the latter paper it is shown that condition
(iii) in this theorem can be replaced by
(iii’) There is a relatively dense subsequence {λnk}k∈Z such that the numbers dk :=

|F ′(λnk)|2 satisfy the discrete Muckenhoupt condition

(Ã2)
∑
n∈I

dn
∑
n∈I

d−1
n ≤ C|I|2

for a constant C > 0 and all finite sets I of consecutive integers containing
|I| elements.

Checking the Muckenhoupt condition (A2) for a function F given by an infinite
product (converging in the Cauchy principal value sense) is practically quite hard.
Condition (Ã2) is already easier to verify since it involves only countably many sets
I instead of all finite intervals.

The goal of this paper is to give an alternative characterization of complete
interpolating sequences. In contrast to existing characterizations our result can be
regarded as a parameterization of the set of complete interpolating sequences by in-
dependent parameters. Once this is done we can easily give discrete analogues of
well-known sufficient conditions for such sequences. As a by-product we obtain a dif-
ferent way to represent the generating function. In order to motivate our construction
we revise in the next section the concept of sine-type functions.

2. Sine-type functions

An entire function F of exponential type is called a sine-type function (of type
σ) if

(i) F has exponential type σ (0 < σ < ∞) in each of the half-planes C+ :=
{Im z > 0} and C− := {Im z < 0},

(ii) the zeros {λn}n∈Z of F are located in some strip {| Im z| ≤ h} and satisfy the
separation condition (3),

(iii) for some y 6= 0, C, c > 0 and all x ∈ R we have c ≤ |f(x+ iy)| ≤ C.
This definition goes back to Levin [17], [18]. Together with Golovin [11] he proved

Theorem 3. The zeros {λn}n∈Z of a function of sine-type π form a complete
interpolating sequence.

An exposition of this result and some further developments can be found in [19]
and [34]. Though not every complete interpolating sequence coincides with the zeros
of some sine-type function, the introduction of this notion was not too far away from
the exhaustive characterization in Theorem 2, as the following theorem of Avdonin
and Joó [3] shows.

Theorem 4. If {λn}n∈Z ⊂ R is a complete interpolating sequence then there is
d ∈ (0, 1

4
) and a function F of sine-type π with zeros {µn}n∈Z such that

d(λn−1 − λn) ≤ µn − λn ≤ d(λn+1 − λn)

for all n ∈ Z.

As noticed by Levin and Ostrovskii [21], a parametric description of all sine-type
functions is desirable, and this problem was completely solved by Eremenko and Sodin
[6]. Since their construction will be of importance to us later, we describe it in some
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detail. First we recall that Levin and Ostrovskii [20] proved that a sequence {λn}n∈Z
with | Imλn| ≤ h is the zero sequence of a sine-type function if and only if {Reλn}n∈Z
is so. We can therefore restrict our considerations to sine-type functions F with real
zeros. Such functions belong to the Laguerre–Pólya class LP of real entire functions
approximable by real polynomials with real zeros uniformly on every compact subset
of C. We may number the critical points of a function F ∈ LP in increasing
order and counting multiplicities, so that the indices of all points of maximum are
even. Let cn be the value of F at the n-th critical point and denote by CrF :=
{. . . , c−1, c0, c1, . . .} the set of all critical values. If CrF is finite from the left (from
the right) and cm is its first (last) member then we set cm−1 = limx→−∞ F (x) (cm+1 =
limx→+∞ F (x)), which is allowed to be infinite. The sequence CrF is alternating, i.e.
(−1)ncn ≥ 0.

For an arbitrary alternating sequence s = {cn} a function F ∈ LP with CrF = s
can be constructed in the following way. Define a simply connected comb-like domain

Ω(s) := C \
⋃
n

{z = x+ inπ : −∞ < x ≤ log |cn|}.

If there is an infinite first (last) member cm of the sequence s we consider the domain
lying in the half plane {Im z > (m− 1)π} ({Im z < (m + 1)π}). Let ϕ : C− → Ω(s)
be a conformal map of the lower half-plane onto Ω(s) such that Reϕ(iy) → ∞ as
y → −∞. Then the function

(6) F (z) = eϕ(z)

can be extended to an entire function by the Schwarz reflection principle and it can
be shown that F ∈ LP and CrF = s. Conversely, every function F ∈ LP has
the representation (6) with ϕ a conformal map of C− onto Ω(CrF ). Eremenko and
Sodin [6] specify now conditions on the sequence {cn} in order that the function (6)
is of sine-type.

Theorem 5. A real entire function F is of sine-type if and only if it can be
represented in the form (6) where ϕ : C− → Ω(s) is a conformal map with Reϕ(iy)→
∞ as y → −∞, and the sequence s = {cn}n∈Z = CrF satisfies

(7) c ≤ |cn| ≤ C ∀n ∈ Z

with some constants C, c > 0.

In fact, [6] contains a more general statement that even characterizes sine-type
functions where the separability condition (3) in the definition is omitted, but we do
not need this since in view of condition (i) in Theorem 2 we will only be concerned
with separated sequences. Parameterizations of classes of entire functions by con-
formal mappings onto certain slit domains have a long history connected with the
names of MacLane, Vinberg, Marchenko, and Ostrovskii, see the references in [6].

3. Characterization of complete interpolating sequences

For any real complete interpolating sequence {λn}n∈Z the generating function (4)
belongs to the Laguerre–Pólya class LP and has therefore a representation (6) with
a conformal map ϕ : C− → Ω(s). It is therefore natural to ask for conditions on the
sequence s = {cn} that characterize real complete interpolating sequences. Clearly,
such conditions must be more general than (7).
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The crucial point is the Muckenhoupt condition (A2), and in order to develop an
idea we remark that any finite interval I can be decomposed into subintervals say
Ip, . . . , Iq such that the segment In + iy (y < 0 fixed) is mapped by ϕ near the n-th
endpoint of the cuts of Ω(s), i.e.

ϕ(x+ iy) ≈ log |cn|+ inπ, x ∈ In, n = p, . . . , q,

see Figure 1.

C−

Re

Im

λp λp+1 λq−1 λq λq+1

Ip + iy

Iq−1 + iy

Iq + iy

Ω(s)

Re

Im

ϕ(Iq + iy)

ϕ(Iq−1 + iy)

ϕ(Ip + iy)

log |cp|+ piπ

log |cp+1|+ (p+ 1)iπ

log |cq−1|+ (q − 1)iπ

log |cq|+ qiπ

ϕ

Figure 1. Conformal mapping of C− onto Ω(s).

If we approximate the occurring integrals by its Riemann sums we get∫
I

|F (x+ iy)|2dx ≈
q∑

n=p

c2
n|In|,

∫
I

|F (x+ iy)|−2dx ≈
q∑

n=p

c−2
n |In|.

In view of properties (3), (5) we can expect that also

δ′ ≤ |In| ≤ ∆′, n = p, . . . , q,

for some constants δ′,∆′ > 0 that do not depend on I. Hence it turns out that it
will just be the discrete Muckenhoupt condition (Ã2) for the numbers dn = c2

n that
is our desired characterization. Making these informal arguments rigorous is enough
for showing the following statement.

Theorem 6. Let s = {cn}n∈Z be a sequence with (−1)ncn ≥ 0, and let {dn}n∈Z =
{c2
n}n∈Z satisfy the discrete Muckenhoupt condition (Ã2). Then for every conformal

map ϕ : C− → Ω(s) with limy→−∞Reϕ(iy) = ∞ the function F in (6) is an entire
function of exponential type. ϕ can be normalized so that the exponential type of
F is π, and in this case the zero set {λn}n∈Z ⊂ R of F is a complete interpolating
sequence. Conversely, every complete interpolating sequence is obtained in this way.

Proof. It suffices to adapt arguments from [6], which make use of ideas from [10].
For the reader’s convenience we provide the details. In order to structure the proof
we formulate important steps as lemmas.

First suppose that the sequence {dn}n∈Z = {c2
n}n∈Z satisfies the discrete Mucken-

houpt condition (Ã2), and ϕ : C− → Ω(s) is a conformal map with limy→−∞Reϕ(iy)
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=∞. Choosing I = {p, p+ 1, . . . , q} in (Ã2) we obtain

c2
pc
−2
q ≤

q∑
n=p

c2
n

q∑
n=p

c−2
n ≤ C(q − p+ 1)2.

Hence for some C1 > 0 we have

(8) | log |cp| − log |cq|| ≤ C1 + log |p− q| ∀p 6= q,

and in particular

−C2 − log |n| ≤ log |cn| ≤ C2 + log |n| ∀n ∈ Z \ {0},(9)

where C2 := log |c0| + C1. For r > | log |c0|| let L(r) be the connected arc of Ω(s) ∩
{|z| = r} that intersects the positive real axis and let l(r) denote its length. Next
we show that the preimage of L(r) is almost a semicircle in C−.

Lemma 1. For r →∞ the relations

(10) sup
z∈L(r)

|ϕ−1(z)| = A(1 + o(1))r and inf
z∈L(r)

|ϕ−1(z)| = A(1 + o(1))r

hold with a constant A > 0.

Proof. Let Ω(r1, r2) (0 < r1 < r2) be the component of Ω(s) \ (L(r1) ∪ L(r2))
which contains 1

2
(r1 + r2) and M(r1, r2) := mod Γr1,r2 be the module of the family

Γr1,r2 of curves in Ω(r1, r2) separating L(r1) and L(r2). The paper [10] provides the
following consequence of one of Teichmüller’s module theorems: If Φ(r), r ≥ r0, is a
function such that

(11) lim
r1,r2→∞

M(r1, r2)− (Φ(r2)− Φ(r1)) = 0

then there is A > 0 such that

sup
z∈L(r)

|ϕ−1(z)| = (1 + o(1))AeπΦ(r) and inf
z∈L(r)

|ϕ−1(z)| = (1 + o(1))AeπΦ(r).

Applying this theorem for Φ(r) = 1
π

log r, we obtain the desired conclusion.
Let a(r), b(r) be the endpoints of L(r). Then a(r) = x(r) + iπn(r) for some

n = n(r) > 0, and x = x(r) ≤ log |cn|. If x(r) ≤ 0 then log |cn+1| + iπ(n + 1) lies
outside the circle of radius r centered at the origin, hence

(log |cn+1|)2 + π2(n+ 1)2 > r2 = x2 + π2n2

and (9) yields
(C2 + log(n+ 1))2 + (2n+ 1)π2 > x2,

and therefore with r ≥ πn

−x(r) ≤ C3

√
n ≤ π−

1
2C3

√
r

with some constant C3 > 0 independent of n and r. For x(r) ≥ 0 we apply (9) to
obtain

(12) x(r) ≤ log |cn| ≤ C2 + log n ≤ C2 − log π + log r.

The analogous estimate

(13) −π−
1
2C3

√
r ≤ Re b(r) ≤ C2 − log π + log r



Complete interpolating sequences, the discrete Muckenhoupt condition, and conformal mapping 29

is valid for the other endpoint. Hence we find for the length of L(r)

πr − 2r arcsin

(
C2 − log π + log r

r

)
≤ l(r) ≤ πr + 2r arcsin

(
π−

1
2C3

√
r

r

)
,

and therefore

(14) π(r − C4 log r) ≤ l(r) ≤ π(r + C4

√
r)

with a constant C4 > 0. By elementary properties of the module (cf. [1], Chapter 4),
M(r1, r2) is bounded from above by the module s(r1, r2) of the family of curves
joining the noncircular sides of

(15) S(r1, r2) := {z ∈ C : r1 < |z| < r2, | arg z| < π

2
(r − C4 log r)/r},

i.e.

(16) M(r1, r2) ≤ s(r1, r2).

We postpone the proof that

(17)
∣∣∣∣s(r1, r2)− 1

π
log

r2

r1

∣∣∣∣→ 0 as r1, r2 →∞

to Lemma 7. A lower estimate of the module follows from the Grötzsch principle (cf.
[28], Proposition 11.12)

M(r1, r2) ≥
∫ r2

r1

dr

l(r)
.

With the help of (14) we find

(18) M(r1, r2)− 1

π
log

r2

r1

≥ 1

π

∫ r2

r1

dr

r + C4

√
r
− 1

π

∫ r2

r1

dr

r
= − 1

π

∫ r2

r1

C4 dr

(r + C4

√
r)
√
r
.

Since the right hand side of (18) tends to 0 as r1, r2 →∞, (16) and (17) imply (11)
and the lemma is proved. �

From (10) follows that for every sufficiently large R > 0 the preimage ϕ−1(L(r))
for r = 2

A
R and an interval of the real axis are the boundary of a domain containing

C− ∩ {|z| = R} in its interior. Thus C− ∩ {|z| = R} is mapped by ϕ into the
component of Ω(s) \L(r) not containing r+ 1. Consequently, for every z ∈ C− with
|z| = R either

Reϕ(z) ≤ |ϕ(z)| ≤ r =
2

A
R =

2

A
|z|

or (by (12) and (13))

Reϕ(z) ≤ C2 − log π + log r = C5 + logR = C5 + log |z|,
and we have proved

|F (z)| = O
(
eC6|z|

)
, C6 := max

(
2

A
, 1

)
,

i.e. F (z) is of exponential type in C−. Since F is continuous in C− and real-valued on
the real axis, it can be extended to C by the reflection principle and is of exponential
type there.

Note that for a > 0 also ϕ(az) is a conformal map of C− onto Ω(s). Choosing
a > 0 appropriately we can always achieve that the exponential type of F is equal
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to π, and we assume this normalization for the rest of the proof for a = 1. Then we
have to show that {λn}n∈Z = F−1(0) is a complete interpolating sequence.

Lemma 2. The sequence {λn}n∈Z is separated.

Proof. For ζ ∈ Ω(s) let Lζ(r) be the connected arc of {|ζ − z| = r} ∩ Ω(s) that
contains ζ + r and Ωζ(r) the component of Ω(s) \ Lζ(r) that contains ζ + r/2.

Denote by Pt, t ∈ R the polygonal line

Pt :=
⋃
n∈Z

{x(log |cn|+ inπ) + (1− x)(log |cn+1|+ i(n+ 1)π) + t : x ∈ [0, 1]}.

P0 just connects the endpoints of the slits of Ω(s). For fixed t > 0 and every ζ ∈ Pt
the length lζ(r) of Lζ(r) satisfies the estimate (14) with a constant C4 > 0 that does
not depend on ζ (but, of course, on t). Hence we conclude as in Lemma 1

A(1 + g1(ζ, r))r ≤ inf
z∈Lζ(r)

|ϕ−1(z)| ≤ sup
z∈Lζ(r)

|ϕ−1(z)| ≤ A(1 + g2(ζ, r))r, r ≥ r0(ζ),

where g1, g2 are such that

lim
r→∞

gj(ζ, r) = 0, j = 1, 2, ζ ∈ Pt.

According to [8, IV.6], [33], the harmonic measure ωζ(r) of the boundary arc Lζ(r)
at the point ζ with respect to the domain Ωζ(r) allows the estimate

ωζ(r) ≤ C7 exp

−π r∫
rζ

d%

lζ(%)

 ≤ C7 exp

− r∫
rζ

d%

%+ C4
√
%

 ≤ C8

r
,

where rζ = dist (ζ, ∂Ω(s)) > 0. For the harmonic function − Imϕ−1 we find now

− Imϕ−1(ζ) ≤ ωζ(r) sup
z∈Lζ(r)

|ϕ−1(z)| ≤ C8

r
A(1 + g2(ζ, r))r.

Letting r →∞ we conclude

(19) 0 > Imϕ−1(ζ) ≥ −AC8, ζ ∈ Pt,

i.e. the “left” component of Ω(s) \ Pt is mapped into some strip below the real axis.
Let xn := ϕ−1(log |cn| + inπ) be the critical points of F and consider the non-

Euclidean segments Hn,m ⊂ C− connecting xn and xm, i.e. Hn,m are Euclidean
semicircles with centers (xn +xm)/2. ϕ(Hn,m) is a curve connecting the endpoints of
the n-th and m-th slit of Ω(s), and according to the Gehring–Hayman Theorem (see
[28], Theorem 4.20) it is not much longer than any curve γn,m ⊂ Ω(s) connecting the
same endpoints, i.e.

length (ϕ(Hn,m)) ≤ C9 length (γn,m),

where C9 > 0 is a universal constant. Choosing γn,n+1 as the straight line segment
between two successive slit endpoints and noting that by (8) this segment is not
longer than

√
π2 + C2

1 , we find that

(20) length(ϕ(Hn,n+1)) ≤ C9

√
π2 + C2

1 , n ∈ Z,
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and thus ϕ(Hn,n+1) ∩ Pt = ∅ for all n ∈ Z provided that t > 0 has been chosen
sufficiently large. From (19) follows that

Hn,n+1 ⊂ {z ∈ C : − AC8 ≤ Im z ≤ 0}, n ∈ Z,

and hence the (Euclidean) radii of the semicircles Hn,n+1 are bounded. We infer

(21) ∆1 := sup
n∈Z
|xn+1 − xn| <∞.

Let G be the auxiliary domain

G := {x+ iy ∈ C : x > max(log |y|,−C10)},

where C10 > 0 is chosen so large that G has the property that for every n ∈ Z
there is ζn ∈ C such that G + ζn ⊂ Ω(s) and −C10 + 1 + ζn is “left” of Pt0 for
t0 = −C9

√
π2 + C2

1 . Let further ψ : C− → G be a conformal mapping with

ψ(∞) =∞, lim
|z|→∞

|ψ(z)|
|z|

= A,

and let y0 < 0 be so close to 0 that −C10 + 1 ∈ ψ(R+ iy0). Then ζn +ψ(z) maps C−
onto G + ζn, and according to the Lindelöf principle (cf. [16, IV.§1.61]) ϕ(R + iy0)
lies in the “left” component of Ω(s) \ (ψ(R + iy0) + ζn), see Figure 2.

C−

Re

iy0

0

Im

Hn,n+1

xn xn+1

log |cn+2|+ (n+ 2)iπ

log |cn+1|+ (n+ 1)iπ

log |cn|+ niπ

log |cn−1|+(n−1)iπ

G+ ζn

Pt0

−C10 + 1 + ζn

ϕ(Hn,n+1)

ϕ(R + iy0) ψ(R+iy0)+ζn

ϕ

Figure 2. The auxiliary domain G+ ζn.

Since ϕ(Hn,n+1) lies to the right of Pt0 , the curves ϕ(R+iy0) and ϕ(Hn,n+1) have
a non-empty intersection. Hence also (R + iy0) ∩Hn,n+1 6= ∅ for all n ∈ Z and thus
the (Euclidean) radius of Hn,n+1 cannot be smaller than |y0|. We infer

(22) δ1 := inf
n∈Z
|xn − xn+1| > 0.

Let the zero set {λn}n∈Z = F−1(0) = ϕ−1(−∞) be numbered such that xn < λn <
xn+1 for all n ∈ Z. Let En be the set En := {x + inπ : x ≤ log |cn| − 2C1} ∪ {x +
i(n + 1)π : x ≤ log |xn+1| − 2C1} and let Ẽn ⊂ (xn, xn+1) be such that ϕ(Ẽn) = En.
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We look at the family Γ
(n)
1 of curves connecting Ẽn with [xn+1,∞) in C− and at the

family Γ
(n)
2 of curves connecting Ẽn with (−∞, xn] in C−. Further let

E±n :=
∞⋃

k=n+1

{x+ ikπ : x ≤ log |cn| ± C1 ± log |k − n|},

Ω±n := C \
⋃

k∈Z\{n}

{x+ ikπ : x ≤ log |cn| ∓ C1 ∓ log |k − n|} ∪ {x+ inπ : x ≤ log |cn|},

and Γ
(n)
− the family of curves γ connecting En with E−n in Ω−n such that if γ : (0, 1)→

C then we have nπ < Im γ(t) < (n+1)π for t sufficiently close to 0 and Im γ(t) > (n+

1)π for t sufficiently close to 1. Similarly, let Γ
(n)
+ be the family of curves γ connecting

En with E+
n in Ω+

n such that if γ : (0, 1)→ C then we have nπ < Im γ(t) < (n+ 1)π
for t sufficiently close to 0 and Im γ(t) > (n + 1)π for t sufficiently close to 1. We
have

(23) mod Γ
(n)
− ≤ modϕ(Γ

(n)
1 ) ≤ mod Γ

(n)
+

by the monotonicity properties of the module. Since all domains Ω+
n (Ω−n ) and all

sets E+
n (E−n ) differ only by a translation, the upper (lower) bound in (23) is in fact

independent of n ∈ Z. By the conformal invariance of the module we have thus

0 < C11 ≤ mod Γ
(n)
1 ≤ C12 <∞,

and a similar estimate holds for Γ
(n)
2 . From the subsequent Lemma 8 we obtain the

existence of δ2 ∈ (0, 1) such that

Ẽn ⊂
[
xn + xn+1

2
− δ2

xn+1 − xn
2

,
xn + xn+1

2
+ δ2

xn+1 − xn
2

]
, n ∈ Z.

Since λn ∈ Ẽn, (22) implies infn∈Z |xn − λn| > 0, infn∈Z |xn+1 − λn| > 0, and δ :=
infn∈Z |λn − λn+1| > 0. Hence the set {λn}n∈Z is separated and condition (i) of
Theorem 2 is fulfilled. �

Condition (ii) of Theorem 2 is now quite easy to establish, since the limit

F (z) = F (0) lim
R→∞

∏
|λn|<R

(
1− z

λn

)
is known to exist for all functions F of the Cartwright class, i.e. entire functions F
of exponential type such that

(24)
∞∫

−∞

log+ |F (t)|
1 + t2

dt <∞,

see [19], p. 130.

Lemma 3. F belongs to the Cartwright class.

Proof. We have to show the existence of the integral (24). Relation (3) implies

|λn| ≥ −|λ0|+ |n|δ, n ∈ Z,
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and (21) implies that also (5) holds. For t ∈ (λn−1, λn) we know that ϕ(t) is on a slit
of Ω(s) such that Imϕ(t) = nπ and Reϕ(t) ≤ log |cn|. Hence by (9)

log |F (t)| = Reϕ(t) ≤ C2 + log |n|,

and also
log+ |F (t)| ≤ C2 + log |n|

for all |n| ≥ n0 such that the right hand side of this inequality is positive. We obtain
λn∫

λn−1

log+ |F (t)|
1 + t2

dt ≤ (C2 + log |n|)
λn∫

λn−1

dt

1 + t2
≤ (C2 + log |n|)(λn − λn−1)

1 + min(|λn−1|, |λn|)2

≤ (C2 + log |n|)∆
1 + (−|λ0|+ (|n| − 1)δ)2

≤ C13
log |n|
|n|2

,

provided that |n| ≥ n1, where n1 ≥ n0 is such that −|λ0| + (n1 − 1)δ > 0. Conse-
quently,

∞∫
−∞

log+ |F (t)|
1 + t2

dt ≤

λn1+1∫
λ−n1

log+ |F (t)|
1 + t2

dt+ C13

∑
|n|≥n1

log |n|
|n|2

<∞. �

Next we have to show condition (iii) of Theorem 2, i.e. the Muckenhoupt con-
dition (A2). For that purpose we choose y < 0 such that the line iy + R is dis-
joint from all semicircles Hn,n+1 (n ∈ Z), which is possible in view of (21). Let
In := [(xn−1 + xn)/2(xn + xn+1)/2]. According to (3) for some integer N > 0 the
intervals In + iy lie inside Hn−N,n+N for all n ∈ Z. Using again the Gehring–Hayman
Theorem we find that there is C14 > 0 with

|Re(ϕ(xn)− ϕ(z))| < C14, z ∈ In + iy, n ∈ Z.

This implies immediately

|eϕ(z)| ≤ |cn|eC14 and |e−ϕ(z)| ≤ |cn|−1eC14

for z ∈ In + iy, n ∈ Z.
Given any interval I ⊂ R we denote by Ip, . . . , Iq all intervals among {In}n∈Z

that are not disjoint with I. Further we find∫
In

|F (x+ iy)|2 dx ≤ c2
ne2C14∆1,

∫
In

|F (x+ iy)|−2 dx ≤ c−2
n e2C14∆1, n = p, . . . , q.

Adding these inequalities for n = p, . . . , q and multiplying the results yields∫
I

|F (x+ iy)|2 dx
∫
I

|F (x+ iy)|−2 dx ≤
q∑

n=p

∫
In

|F (x+ iy)|2 dx
q∑

n=p

∫
In

|F (x+ iy)|−2 dx

≤ e4C14∆2
1

q∑
n=p

c2
n

q∑
n=p

c−2
n .

First assume q − p > 1. Since at least (q − p − 1) of the intervals Ip, . . . , Iq are
contained in I we have |I| ≥ δ1(q− p− 1) ≥ δ1

3
(q − p+ 1), and using the assumption



34 Gunter Semmler

(Ã2) we get ∫
I

|F (x+ iy)|2 dx
∫
I

|F (x+ iy)|−2 dx ≤ e4C14∆2
1C

9

δ2
1

|I|2,

and thus (A2).
In the special case p = q the interval I is contained in Ip = Iq and we can estimate∫

I

|F (x+ iy)|2 dx
∫
I

|F (x+ iy)|−2 dx ≤ c2
pe

2C14|I|c−2
p e2C14|I| = e4C14|I|2.

If finally q = p + 1 then the interval I is contained in Ip ∪ Ip+1. Using c2
p/(4C) ≤

c2
p+1 ≤ 4Cc2

p we handle this case in the following way:∫
I

|F (x+ iy)|2 dx
∫
I

|F (x+ iy)|−2 dx ≤ (c2
p + c2

p+1)e2C14|I|(c−2
p + c−2

p+1)e2C14|I|

≤ (1 + 4C)2e4C14|I|2.
The Muckenhoupt condition is hence always fulfilled and Theorem 2 implies that
{λn}n∈Z is a complete interpolating sequence.

Next we have to show that every complete interpolating sequence {λn}n∈Z can
be obtained in this way. From (ii) of Theorem 2 we know that the numbers {λn}n∈Z
are the zeros of an entire function F of exponential type π, which also belongs to the
Laguerre–Pólya class LP. We can assume that (−1)ncn ≥ 0 holds for the sequence
{cn}n∈Z = CrF , otherwise we consider −F . Hence we have the representation (6)
with a conformal map ϕ : C− → Ω(CrF ). Letting R→∞ in∏

|λn|<R

∣∣∣∣1− iy

λn

∣∣∣∣2 =
∏
|λn|<R

(
1 +

y2

λ2
n

)
≥
∑
|λn|<R

y2

λ2
n

, y ∈ R,

we obtain

|F (iy)| ≥ |y|

(∑
n∈Z

1

λ2
n

)1/2

, y ∈ R,

and hence lim
y→−∞

Reϕ(iy) = lim
y→−∞

log |F (iy)| =∞.

It remains to show condition (Ã2) for the sequence {dn}n∈Z = {c2
n}n∈Z. Fix y < 0

and recall that w(x) = |F (x+ iy)|2 satisfies the Muckenhoupt condition (A2) with a
constant C > 0. Next we need that the distance between neighboring slit endpoints
is bounded.

Lemma 4. There is C15 > 0 such that

(25) | log |cn| − log |cn+1|| ≤ C15 ∀n ∈ Z.

Proof. By Lemma 6.5 of chapter VI of [7], the function ψ(x) := 1
2

logw(x) =
log |F (x+ iy)| = Reϕ(x+ iy) belongs to the space BMO(R), i.e.

‖ψ‖∗ := sup
I

1

|I|

∫
I

|ψ(x)− ψI | dx <∞, ψI :=
1

|I|

∫
I

ψ(x) dx,

where the supremum is taken over all bounded intervals. This implies (Ibid.,Theorem
1.2) that ∫

R

log+ |F (x+ iy)|
1 + x2

dx ≤
∫

R

|ψ(x)|
1 + x2

dx <∞,
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and the representation

log |F (x)| = B|y|+
∑
n∈Z

log

∣∣∣∣1− (x− iy)/(λn − iy)

1− (x− iy)/(λn + iy)

∣∣∣∣
+

1

π

∫
R

|y|
|x− iy − t|2

log |F (t+ iy) dt, x ∈ R,

(26)

with B := lim supt→∞ log |F (it)|/t is valid, cf. section III.G.3 of [14]. This formula
shows among other things that Reϕ restricted to R has logarithmic singularities in
the points λn, whereas on R + iy this function is continuous. Therefore we cannot
compare Reϕ on R and R+iy directly, but have to resort to mean values. Let δ > 0
be the separation constant defined in (3) and let Ix (x ∈ R) be the interval of length
δ centered at x. By Lemma 1.1(b) of chapter VI of [7]2 we know that

(27) |ψIx1 − ψIx2 | ≤ C16 log(1 +
1

δ
|x1 − x2|)

for all x1, x2 ∈ R and some constant C16 > 0. Let x ∈ R \ {λn}n∈Z and assume
λn−1 < x < λn for some n ∈ Z. Then |x − λk| ≥ δ(k − n) for k ≥ n and |x − λk| ≥
δ(n− k − 1) for k ≤ n− 1, so that we find

0 >
∑

k∈Z\{n−1,n}

log

∣∣∣∣1− (x− iy)/(λk − iy)

1− (x− iy)/(λk + iy)

∣∣∣∣
=

∑
k∈Z\{n−1,n}

1

2
log

(
1− 4y2

(λk − x)2 + 4y2

)

≥
∞∑
k=1

log

(
1− 4y2

k2δ2 + 4y2

)
=: C17 > −∞.

If I ⊂ [λn−1, λn] is an interval we obtain

0 >

∫
I

log

∣∣∣∣1− (x− iy)/(λn−1 − iy)

1− (x− iy)/(λn−1 + iy)

∣∣∣∣+ log

∣∣∣∣1− (x− iy)/(λn − iy)

1− (x− iy)/(λn + iy)

∣∣∣∣ dx
≥
∫ λn

λn−1

log

(
1− 4y2

(λn−1 − x)2 + 4y2

)
+ log

(
1− 4y2

(λn − x)2 + 4y2

)
dx

= 4y arctan
λn−1 − λn

2y
− 2(λn−1 − λn) log

(
1− 4y2

(λn−1 − λn)2 + 4y2

)
≥ C18 > −∞,

where C18 is independent of I and n since the function

λ 7→ 4y arctan
λ

2y
− 2λ log

(
1− 4y2

λ2 + 4y2

)

2Inequality (8) can be interpreted as a discrete analogue of this lemma. That it holds is par-
ticularly delicate in view of an example of Avdonin [2] who constructed a complete interpolating
sequence so that ψ oscillates so much that sup|x1−x2|≤1 |ψ(x1)− ψ(x2)| =∞.
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is bounded on R. Altogether we have shown that for intervals I not containing any
λn in its interior

(28) 0 >
1

|I|

∫
I

∑
n∈Z

log

∣∣∣∣1− (x− iy)/(λn − iy)

1− (x− iy)/(λn + iy)

∣∣∣∣ dx ≥ C17 +
1

|I|
C18.

For any interval Ix̃ we have

1

|Ix̃|

∫
Ix̃

1

π

∫
R

|y|
|x− iy − t|2

log |F (t+ iy)| dt dx

=
1

δ

∫
Ix̃

1

π

∫
R

|y|
|x̃− iy − s|2

log |F (s+ x− x̃+ iy)| ds dx

=
1

π

∫
R

|y|
|x̃− iy − s|2

1

δ

∫
Ix̃

log |F (s+ x− x̃+ iy)| dx ds

=
1

π

∫
R

|y|
|x̃− iy − s|2

ψIs ds,

(29)

and the latter integral can be estimated using (27) in the following way∣∣∣∣ 1π
∫

R

|y|
|x̃− iy − s|2

ψIs ds− ψIx̃

∣∣∣∣
=

∣∣∣∣ 1π
∫

R

|y|
|x̃− iy − s|2

ψIs ds−
1

π

∫
R

|y|
|x̃− iy − s|2

ψIx̃ ds

∣∣∣∣
≤ 1

π

∫
R

|y|C16 log(1 + 1
δ
|x̃− s|)

|x̃− iy − s|2
ds =

C16

π

∫
R

|y| log(1 + |t|/δ)
t2 + y2

dt =: C19 <∞.

Combining this with (26), (28), and (29) we arrive at∣∣∣∣ 1

|Ix̃|

∫
Ix̃

log |F (x)| dx− ψIx̃

∣∣∣∣ ≤ B|y|+ |C17|+
1

δ
|C18|+ C19 =: C20

for all intervals Ix̃ of length δ centered at x̃ and not containing any λn in its interior.
Assume that x̃n is such that Ix̃n ⊂ [λn−1, λn]. Then we have Reϕ(x) ≤ log |cn| for all
x ∈ Ix̃n and thus

1

|Ix̃n|

∫
Ix̃n

log |F (x)| dx ≤ log |cn|, n ∈ Z,

and also

(30) ψIx̃n − C20 ≤ log |cn|, n ∈ Z.

In order to get an upper bound for log |cn| we recall that Reϕ(xn) = log |cn| for some
xn ∈ (λn−1, λn) and hence (26) yields

(31) log |cn| ≤ B|y|+ 1

π

∫
R

|y|
|xn − iy − t|2

log |F (t+ iy)| dt.
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Now we compute∣∣∣∣ 1π
∫

R

|y|
|xn − iy − t|2

log |F (t+ iy)| dt− ψIx̃n

∣∣∣∣
=

∣∣∣∣ 1π
∫

R

|y|
|xn − iy − t|2

(
ψ(t)− ψIx̃n

)
dt

∣∣∣∣
≤ 1

π

∑
k∈Z

∫
Ix̃n+kδ

|y|
(xn − t)2 + y2

(∣∣ψ(t)− ψIx̃n+kδ

∣∣+
∣∣ψIx̃n+kδ − ψIx̃n

∣∣) dt.
For t ∈ Ix̃n + kδ and k ≥ 0 we have t − xn ≥ (λn−1 + kδ) − λn ≥ kδ −∆, where ∆
is defined in (5). For k ≤ 0 we find similarly xn − t ≥ −kδ −∆. Thus for all k with
|k| > k0 := ∆/δ we have |xn − t| ≥ |k|δ −∆ > 0 and we can continue the previous
chain of inequalities using (27)

. . . ≤ 1

π

∑
|k|≤k0

δ

|y|

1

δ

∫
Ix̃n+kδ

∣∣ψ(t)− ψIx̃n+kδ

∣∣ dt+ C16 log(1 + |k|)


+

1

π

∑
|k|>k0

|y|δ
(|k|δ −∆)2 + y2

1

δ

∫
Ix̃n+kδ

∣∣ψ(t)− ψIx̃n+kδ

∣∣ dt+ C16 log(1 + |k|)


≤ ‖ψ‖∗

π

∑
|k|≤k0

δ

|y|
+
∑
|k|>k0

|y|δ
(|k|δ −∆)2 + y2


+
C16

π

∑
|k|≤k0

δ

|y|
log(1 + |k|) +

∑
|k|>k0

|y|δ log(1 + |k|)
(|k|δ −∆)2 + y2

 =: C21 <∞.

In view of (31) we get thus the upper estimate

log |cn| ≤ B|y|+ ψIx̃n + C21, n ∈ Z.

Considering also (30) we find

(32) | log |cn| − ψIx̃n | ≤ C22, n ∈ Z,

where C22 := max(C20, B|y|+C21). Using once more (27) we conclude (25) with the
constant C15 := 2C22 + C16 log(1 + 2∆/δ), and the lemma is proved. �

Condition (5) implies that supn∈Z |xn+1− xn| ≤ 2∆, and hence R + iy is disjoint
with all semicircles Hn,n+1 connecting xn and xn+1 in C−, provided that y had been
chosen so that |y| > 2∆. Condition (3) makes it possible to choose N > 0 so large
that the intervals [λn−1, λn] + iy lie inside the semicircles Hn−N,n+N for all n ∈ Z.
The Gehring–Hayman Theorem and (25) give the estimate

length (ϕ(Hn,n+1)) ≤ C9

√
π2 + C2

15, length (ϕ(Hn−N,n+N)) ≤ 2NC9

√
π2 + C2

15.

Hence
|Re(ϕ(xn)− ϕ(z))| < C23, z ∈ [λn−1, λn] + iy, n ∈ Z,

with a constant C23 > 0, and also

|cn| ≤ eC23
∣∣eϕ(z)

∣∣ , |cn|−1 ≤ eC23
∣∣e−ϕ(z)

∣∣ , z ∈ [λn−1, λn] + iy, n ∈ Z.
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For any set I = {p, . . . , q} of consecutive integers we exploit (A2) for the interval
[λp−1, λq] to obtain

q∑
n=p

c2
n

q∑
n=p

c−2
n ≤

q∑
n=p

1

λn − λn−1

λn∫
λn−1

e2C23
∣∣eϕ(x+iy)

∣∣2 dx · · ·
q∑

n=p

1

λn − λn−1

λn∫
λn−1

e2C23
∣∣e−ϕ(x+iy)

∣∣2 dx
≤ e4C23

δ2

λq∫
λp−1

w(x) dx

λq∫
λp−1

1

w(x)
dx

≤ e4C23

δ2
C(λq − λp−1)2 ≤ e4C23

δ2
C∆2|I|2,

i.e. (Ã2) is established and we are done. �

4. Sufficient conditions for complete interpolating sequences

This section serves to shed some light on the result obtained in the the previous
chapter. As before let {cn}n∈Z be the sequence of critical values of an entire function
in the Laguerre–Pólya class LP. It is easy to see that condition (7) with constants
C, c > 0 implies the discrete Muckenhoupt condition (Ã2) for the numbers dn = c2

n.
In view of the criterion of Eremenko and Sodin in Theorem 5, Theorem 3 is contained
in Theorem 6. This can be regarded as the discrete analogue of the observation that
Theorem 2 contains Theorem 3 as a special case, since sine-type functions are easily
seen to fulfill the Muckenhoupt condition (A2).

On the other hand, the sequence

dn = (1 + |n|)2α, −1
2
< α < 1

2
,

is not bounded away from 0 (for −1
2
< α < 0) or ∞ (for 0 < α < 1

2
), but satisfies

(Ã2). Hence the generating function of a complete interpolating sequence is not
always of sine-type. That the discrete Muckenhoupt condition is indeed fulfilled
for this example follows from the subsequent sufficient condition. For two positive
sequences an and bn, we write an � bn if the ratio an/bn is bounded from above and
below by positive constants that are independent of n.

Lemma 5. If the condition dn � (1 + |n|)2α holds for a sequence {dn}n∈Z and
some α ∈

(
−1

2
, 1

2

)
, then the discrete Muckenhoupt condition (Ã2) is fulfilled.

Proof. The assumption dn � (1+|n|)2α means that there are constants C1, C2 > 0
such that

C1(1 + |n|)2α ≤ dn ≤ C2(1 + |n|)2α, ∀n ∈ Z.
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For every set I = {p, . . . , q} of consecutive integers we can estimate∑
n∈I

dn
∑
n∈I

d−1
n ≤ C2

q∑
n=p

(1 + |n|)2α · C−1
1

q∑
n=p

(1 + |n|)−2α

≤ C2C
−1
1

q+1∫
p−1

(1 + |x|)2αdx

q+1∫
p−1

(1 + |x|)−2αdx.

First consider the case 0 < p < q. Using the left inequality proved in Lemma 9 below
we find∑

n∈I

dn
∑
n∈I

d−1
n ≤

C2

C1(1− 2α)(1 + 2α)
[(2 + q)1−2α − p1−2α][(2 + q)1+2α − p1+2α]

= C3[(2 + q)2 − p1−2α(2 + q)1+2α − (2 + q)1−2αp1+2α + p2]

≤ C3[(2 + q)2 − 2(2 + q)p+ p2] = C3(q − p+ 2)2

≤ 4C3(q − p+ 1)2 = 4C3|I|2.

In case p ≤ 0 < q we use the right inequality of Lemma 9 to obtain∑
n∈I

dn
∑
n∈I

d−1
n ≤ C3[(2 + q)1−2α + (|p|+ 1)1−2α][(2 + q)1+2α + (|p|+ 1)1+2α]

= C3[(2 + q)2 + (1− p)1−2α(2 + q)1+2α + (2 + q)1−2α(1− p)1+2α

+ (1− p)2] ≤ 2C3[(2 + q)2 + (1− p)2] ≤ 2C3(q − p+ 3)2

≤ 18C3(q − p+ 1)2 = 18C3|I|2.

The remaining cases are similar. �

The preceding lemma leads to a sufficient condition for complete interpolating
sequences which is analogous to the following generalization of Theorem 3.

Theorem 7. A sequence {λn}n∈Z ⊂ R is a complete interpolating sequence if
conditions (i), (ii) of Theorem 2 hold as well as

|F (x+ iy)| � (1 + |x|)α, −1

2
< α <

1

2
.

Pavlov [27] attributes this statement to a private communication of Katsnelson,
and it is also contained in more general results by Avdonin [2] and Sedletskii [30].
[19] contains an example which shows that the theorem becomes false for |α| ≥ 1

2
.

Of course, the case α = 0 reduces to Theorem 3.
Theorem 6 and Lemma 5 imply the following discrete analogue.

Corollary 1. Let s = {cn}n∈Z be a sequence with (−1)ncn ≥ 0 and

|cn| � (1 + |n|)α, −1

2
< α <

1

2
,

and let ϕ : C− → Ω(s) be a conformal map with limy→−∞Re(iy) = ∞. If ϕ is
appropriately normalized then the entire function F in (6) has exponential type π,
and {λn}n∈Z = F−1(0) is a complete interpolating sequence.

It is not difficult to see that this statement becomes false for other values of α
since also Lemma 5 fails in this case.
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Next we remark that the condition limy→−∞Re(iy) =∞ in Theorem 6 determines
ϕ up to conformal self-maps of C− that fix ∞. Hence ϕ(az + b), a > 0, b ∈ R
describes the set of all conformal mappings of C− onto Ω(s) with this condition if ϕ
is one such mapping. Though we know that F (z) = eϕ(az+b) has exponential type,
it is not clear for which a > 0 the type is equal to π. Obviously, the type does not
depend on b, whereas it is a linear function of a. Hence there is exactly one a > 0
such that the type of F is equal to π. In order to indentify this value we introduce
the upper and lower density of a sequence {λn}n∈Z by

D+ := lim
r→∞

max
x∈R

|{λn} ∩ [x− r, x+ r)|
2r

, D− := lim
r→∞

min
x∈R

|{λn} ∩ [x− r, x+ r)|
2r

.

It follows from results of Landau [15] that D+ = D− = 1 is necessary (but not
sufficient) for complete interpolating sequences. The densities of F−1(0), regarded as
a function of a, are of the form const/a. Hence the density conditions are sufficient
to identify the right conformal mapping.

Corollary 2. A sequence {λn}n∈Z ⊂ R is a complete interpolating sequence if
and only if it is the zero set of F in (6), and D+ = 1 (D− = 1), where ϕ : C− → Ω(s)
is a conformal map and {dn}n∈Z = {c2

n}n∈Z satisfies (Ã2).

Now it becomes clear what was meant by a parameterization of the set of com-
plete interpolating sequences by independent parameters. For any sequence {dn}n∈Z
of positive real numbers satisfying (Ã2) there is a unique sequence s = {cn}n∈Z
with c2

n = dn and (−1)ncn ≥ 0. Let ϕ : C− → Ω(s) be a conformal map such that
D+ = D− = 1 holds for {λn}n∈Z := ϕ−1(−∞). Then {λn}n∈Z is uniquely determined
up to shifts λ 7→ λ + b, b ∈ R. If we fix one value of the sequence {λn}n∈Z, this
sequence is even unique. Conversely, if we start with a complete interpolating se-
quence {λn}n∈Z, the generating function and hence also the sequence of its critical
values is unique up to multiplication by a positive constant. Thus we have proved

Corollary 3. Let λ ∈ R, d > 0. Theorem 6 describes a one-to-one correspon-
dence between all positive sequences {dn}n∈R with (Ã2) and d0 = d, and all real
complete interpolating sequences {λn}n∈Z with λ0 = λ.

5. Connection with the discrete Muckenhoupt condition
for values of the derivative

As mentioned in section 1, the discrete Muckenhoupt condition (Ã2) was studied
by Lyubarskii and Seip [22] for the numbers |F ′(λn)|2. It is intuitively clear that
there is a connection between the values {cn}n∈Z of F at its critical points and the
magnitude of the derivative at the zeros of F . This will be made precise in the
following lemma.

Lemma 6. Let {λn}n∈Z ⊂ R be a complete interpolating sequence, F its gen-
erating function, and {cn}n∈Z its critical values. Then

|F ′(λn)| � |cn|.
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Proof. The proof relies on the same technique as Lemma 4. Subtract log |x−λn|
on both sides of (26) and then let x→ λn. We obtain

log |F ′(λn)| = B|y|+
∑

k∈Z\{n}

1

2
log

(
1− 4y2

(λk − λn)2 + 4y2

)
− log(2|y|)

+
1

π

∫
R

|y|
|λn − iy + t|2

log |F (t+ iy)| dt.

Using |λn − λk| ≥ δ|n− k|, where δ ist the separation constant from (3), we obtain∣∣∣∣log |F ′(λn)| − 1

π

∫
R

|y|
|λn − iy + t|2

log |F (t+ iy)| dt
∣∣∣∣

≤ B|y|+ | log(2|y|)| −
∞∑
k=1

log

(
1− 4y2

k2δ2 + 4y2

)
=: C1.

(33)

If Ix̃n ⊂ [λn−1, λn] is again an interval of length δ centered at x̃n, and ψ(x) =
log |F (x+ iy)|, a similar computation as in Lemma 4 shows

(34)
∣∣∣∣ 1π
∫

R

|y|
|λn − iy + t|2

log |F (t+ iy)| dt− ψIx̃n

∣∣∣∣ ≤ C2, n ∈ Z,

for a positive constant C2 independent of n. From the estimate (32) in the proof of
Lemma 4, (33), and (34) we get

| log |F ′(λn)| − log |cn|| ≤ C22 + C1 + C2,

hence the quotient |F ′(λn)|/|cn| lies between certain positive constants for all values
of n. �

We remark that it is not necessary for the preceding lemma that the critical value
cn is assumed in the interval (λn−1, λn). From (8) follows that |cn| � |cn+N | for every
fixed value of N , therefore the critical points and zeros of F only have to be both in
ascending order.

Lemma 6 can be used to show a version of Pavlov’s theorem involving the values
|F ′(λn)|. In contrast to condition (iii’) in section 1, every relatively dense subsequence
{λnk}k∈Z can be considered, i.e. also the full sequence {λn}n∈Z3.

Corollary 4. A sequence {λn}n∈Z ⊂ R is a complete interpolating sequence if
and only if conditions (i), (ii) of Theorem 2 hold as well as
(iii”) For one (and then for every) relatively dense subsequence {λnk}k∈Z and the

values dk := |F ′(λnk)|2 the discrete Muckenhoupt condition (Ã2) is true.

Proof. We will not reprove the sufficiency of (i),(ii),(iii”) which is done in [22]. We
only show the discrete Muckenhoupt condition for the sequence {dk}k∈Z if {λnk}k∈Z
is any relatively dense subsequence . We can assume that nk < nk+1 for all k ∈ Z.
The relative density yields

∆2 := sup
k∈Z
|λnk − λnk+1

| <∞,

and thus
δ|np − nq| ≤ |λnp − λnq | ≤ |p− q|∆2, ∀p, q ∈ Z.

3It seems that the arguments in [22] show the same, only the formulation of the result is weaker.
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For any finite set I = {p, . . . , q} of consecutive integers, Theorem 6 and Lemma 6
imply ∑

k∈I

|F ′(λnk)|2
∑
k∈I

|F ′(λnk)|−2 ≤ C
∑
k∈I

c2
nk

∑
k∈I

c−2
nk
≤ C

nq∑
k=np

c2
k

nq∑
k=np

c−2
k

≤ C ′(nq − np + 1)2 ≤ C ′((q − p)∆2

δ
+ 1)2 ≤ C ′max

(
∆2

δ
, 1

)2

|I|2. �

6. Summary and open questions

The main result of this paper is Theorem 6 which characterizes complete inter-
polating sequences. In contrast to known characterizations of such sequences, the
separation of the points and the exponential type of the generating function fol-
low automatically. The relation with conformal mappings makes the application of
distortion theorems possible, and the discrete version (Ã2) of the Muckenhoupt con-
dition (A2) is easier to verify for concrete applications. Unfortunately, our approach
does not give an independent proof of these characterizations, but is based on a com-
parison argument with the classical Theorem 2. For this reason, one can expect to
extend this argument to known generalizations of Pavlov’s Theorem, for example the
one given in [22] for Paley–Wiener spaces PW p

π .
An entire function of exponential type at most π is said to be in PW p

π , 1 < p <∞,
if it belongs to Lp on the real line, and a sequence {λn}n∈Z is called complete inter-
polating sequence for PW p

π if for every sequence {an}n∈Z with (1) the interpolation
problem (2) has a unique solution f ∈ PW p

π . It is straightforward to see that a
characterization analogous to Theorem 6 of real complete interpolating sequences is
valid, if we impose the discrete Muckenhoupt condition

(Ãp)
∑
n∈I

dn
∑
n∈I

d−1/(p−1)
n ≤ C|I|p

on the sequence {dn}n∈Z = {|cn|p}n∈Z.
On the other hand, the restriction to real sequences can not so easily be disposed

of. As long as the imaginary parts of {λn}n∈Z are bounded we can refer to Corollary 1
in section 8 of Chapter 4 in [34] which asserts that {eReλnit}n∈Z is a Riesz basis in
L2(−π, π) if and only if {eλnit}n∈Z is so. It would be very interesting to know if a
representation by conformal mappings of the generating function can also be found
in the general case, where the reflection principle does not work immediately.

7. Lemmas

In this section we give the proofs of some lemmas that had been postponed in
the main text.

Lemma 7. For the module s(r1, r2) of the family of curves connecting the non-
circular sides of S(r1, r2) defined in (15) we have (17).

Proof. The principal value of the logarithm maps S(r1, r2) conformally onto

S̃(r1, r2) := {x+ iy : log r1 < x < log r2, ϕ2(x) < y < ϕ1(x)},
where ϕ1(x) := π

2
(1− C4xe−x) and ϕ2(x) := −ϕ1(x), see Figure 3.
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0 r1 r2

Re

Im

S(r1, r2)

|z| = r2

|z| = r1 log

log r1 log r2

π
2

−π
2

x

x+ iϕ1(x)

x+ iϕ2(x)

S̃(r1, r2)

0

Re

Im

Figure 3. Conformal mapping of S(r1, r2) onto S̃(r1, r2).

By the conformal invariance of the module we know that

(36) s(r1, r2) = s̃(r1, r2),

where s̃(r1, r2) is the module of the family of all curves joining {x+ iϕ1(x) : log r1 ≤
x ≤ log r2} and {x + iϕ2(x) : log r1 ≤ x ≤ log r2} in S̃(r1, r2). Denoting ϑ(x) :=
ϕ1(x) − ϕ2(x) = π(1 − C4xe−x) and applying formula (13.4) from [29] we get the
estimate

(37)

log r2∫
log r1

dx

ϑ(x)
≤ s̃(r1, r2) ≤

log r2∫
log r1

dx

ϑ(x)
+R(r1, r2),

where

(38) 0 ≤ R(r1, r2) ≤
log r2∫

log r1

ϕ′1(x)2 + ϕ′2(x)2

ϑ(x)
dx.

We compute ∣∣∣∣∣∣
log r2∫

log r1

dx

ϑ(x)
− 1

π
log

r2

r1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1π
log r2∫

log r1

dx

1− C4xe−x
− 1

π

log r2∫
log r1

dx

∣∣∣∣∣∣
=

1

π

log r2∫
log r1

C4xe−x

1− C4xe−x
dx→ 0

(39)

as r1, r2 →∞. On the other hand, (38) yields

(40) R(r1, r2)→ 0 as r1, r2 →∞,
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since
∞∫

x0

ϕ′1(x)2 + ϕ′2(x)2

ϑ(x)
dx is readily seen to converge. Now (36), (37), (39) and (40)

imply the assertion (17). �

Let mod(E1, E2) denote the module of the family of curves connecting two sets
E1, E2 in C−. Then we have the following lemma.

Lemma 8. For every ε > 0 there is δ ∈ (0, 1) with the property that for all
−1 < a < b < 1 with ε < mod([a, b], [1,∞)) < 1/ε and ε < mod([a, b], (−∞,−1]) <
1/ε we have |a|, |b| ≤ δ.

Proof. As in [1] we denote by Λ(R) the extremal distance of [−1, 0] from [R,∞)
in C. The module of all curves joining [−1, 0] and [R,∞) in C− is then 1/(2Λ(R)),
and we get

mod([a, b], [1,∞)) =
1

2Λ

(
1− b
b− a

) , mod([a, b], (−∞,−1]) =
1

2Λ

(
1 + a

b− a

) .
Since Λ(R) is monotonical, tends to +∞ as R → +∞, and to 0 as R → 0, our
assumptions imply that there are constants C, c > 0 depending only on ε such that

c ≤ 1− b
b− a

≤ C, c ≤ 1 + a

b− a
≤ C.

Adding both inequalities yields after elementary manipulations

b− a ≥ 2

2C + 1
.

Hence
1− b ≥ 2c

2C + 1
, a+ 1 ≥ 2c

2C + 1
,

and the assertion is true if we put δ := 1− (2c)/(2C + 1). �

Lemma 9. For real numbers p, q, α with p, q > 0 and −1
2
≤ α ≤ 1

2
holds

2pq ≤ p1+2αq1−2α + p1−2αq1+2α ≤ p2 + q2.

Proof. We fix p and q and consider the function g(α) := p1+2αq1−2α+p1−2αq1+2α.
We have g(0) = 2pq, g(1

2
) = p2 + q2, and computation of g′(α) shows that g(α) grows

monotonically on [0, 1
2
]. For negative α the result follows from g(α) = g(−α).

An elementary proof can be given using the arithmetic-geometric means inequal-
ity for the left estimate and the rearrangement inequality [12] for the right estimate.
The statement is also contained in Muirhead’s inequality [12]. �
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