
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 35, 2010, 115–130

COMPACT EMBEDDINGS FOR SOBOLEV SPACES
OF VARIABLE EXPONENTS AND EXISTENCE
OF SOLUTIONS FOR NONLINEAR ELLIPTIC
PROBLEMS INVOLVING THE p(x)-LAPLACIAN

AND ITS CRITICAL EXPONENT

Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

Hiroshima University, Department of Mathematics, Graduate School of Science
Higashi-Hiroshima 739-8521, Japan; mizuta@mis.hiroshima-u.ac.jp

Hiroshima National College of Maritime Technology, General Arts
Higashino Oosakikamijima Toyotagun 725-0231, Japan; ohno@hiroshima-cmt.ac.jp

Hiroshima University, Department of Mathematics, Graduate School of Education
Higashi-Hiroshima 739-8524, Japan; tshimo@hiroshima-u.ac.jp

Yokohama National University, Department of Mathematics
Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; shioji@math.sci.ynu.ac.jp

Abstract. We give a sufficient condition for the compact embedding from W
k,p(·)
0 (Ω) to

Lq(·)(Ω) in case ess infx∈Ω(Np(x)/(N − kp(x))− q(x)) = 0, where Ω is a bounded open set in RN .
As an application, we find a nontrivial nonnegative weak solution of the nonlinear elliptic equation

−div
(
|∇u(x)|p(x)−2∇u(x)

)
= |u(x)|q(x)−2u(x) in Ω, u(x) = 0 on ∂Ω.

We also consider the existence of a weak solution to the problem above even if the embedding is
not compact.

1. Introduction

In recent years, many authors have studied the generalized Lebesgue spaces;
see [2, 5, 8–23, 26–29, 32]. First, let us recall some definitions. Following Orlicz [29]
and Kovácik and Rákosník [22], for an open set Ω in RN with N ≥ 1 and a measurable
function p(·) : Ω → [1,∞), we define the Lp(·)(Ω)-norm of a measurable function f
on Ω by

‖f‖Lp(·)(Ω) = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}

and denote by Lp(·)(Ω) the family of all measurable functions whose Lp(·)(Ω)-norms
are finite. Further we denote by W k,p(·)(Ω) with k ∈ N the family of all measurable
functions u on Ω such that

‖u‖W k,p(·)(Ω) =
∑

0≤|α|≤k

‖Dαu‖Lp(·)(Ω) < ∞

and by W
k,p(·)
0 (Ω) the closure of C∞

0 (Ω) in W k,p(·)(Ω).
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Recently, Kurata and the fourth author [23] posed the following problem: if a
variable exponent q(·) satisfies 2 < ess infx∈Ωq(x) ≤ ess supx∈Ωq(x) ≤ 2N/(N − 2)
(N ≥ 3) and q(·) is equal to 2N/(N − 2) at a point, then does the problem

(1.1) −∆u(x) = |u(x)|q(x)−2u(x) in Ω and u(x) = 0 on ∂Ω

have a positive solution? When q(·) is a constant, problem (1.1) has been studied by
many researchers. If q(·) is a constant smaller than 2N/(N −2), then the embedding
from W 1,2

0 (Ω) to Lq(·)(Ω) is compact, and hence the existence of a positive solution
to (1.1) is easily obtained by the standard mountain pass theorem. When q(·) ≡
2N/(N−2), problem (1.1) is quite interesting. If Ω is star-shaped, then Pohozaev [31]
showed that there is no solution. If Ω has a nontrivial topology in the sense of Z2-
homology, then Bahri and Coron [3] showed that the problem has a positive solution;
see also [7]. Even if Ω is contractible, then, under some condition on the shape of
Ω, Passaseo [30] obtained a positive solution. In the case when q(·) is a variable
exponent and q(·) coincides with 2N/(N −2) at a point in Ω, since the embedding of
W 1,2

0 (Ω) to Lq(·)(Ω) may not be compact, the existence of positive solution to (1.1) is
not trivial. Kurata and the fourth author showed that if there exist x0 ∈ Ω, C0 > 0,
η > 0 and 0 < l < 1 such that ess supx∈Ω\Bη(x0)q(x) < 2N/(N − 2) and

(1.2) q(x) ≤ 2N

N − 2
− C0

(log(1/|x− x0|))l
for almost every x ∈ Ω ∩Bη(x0),

then the embedding from W 1,2
0 (Ω) to Lq(·)(Ω) is compact; see [23, Theorem 2]. As

an application of the compact embedding, they obtained a positive solution to (1.1).
Our first aim in this paper is to establish the compact embedding from W

k,p(·)
0 (Ω)

to Lq(·)(Ω) when q(·) is an exponent satisfying a condition weaker than (1.2). As an
application, we show the existence of a nontrivial nonnegative weak solution to the
nonlinear elliptic equation

(1.3)

{
−div (|∇u(x)|p(x)−2∇u(x)

)
= |u(x)|q(x)−2u(x) in Ω,

u(x) = 0 on ∂Ω.

Here u is called a weak solution of (1.3) if u ∈ W
1,p(·)
0 (Ω) and

∫

Ω

(|∇u(x)|p(x)−2∇u(x)∇v(x)− |u(x)|q(x)−2u(x)v(x)
)

dx = 0

for all v ∈ W
1,p(·)
0 (Ω). Our final goal is to find nontrivial nonnegative weak solutions

to (1.3), even if the embedding might not be compact.

2. Preliminaries

Throughout this paper, we use the symbol C to denote various positive constants
independent of the variables in question. We only use N as the dimension of the
Euclidean space RN and we set Br(x) = {y ∈ RN : |y − x| < r} for x ∈ RN and
r > 0. For a measurable subset E of RN , we denote by |E| the Lebesgue measure
of E. For a measurable function u, we set u+ = max{u, 0}. Unless otherwise stated,
we assume that N ≥ 2 and Ω is a bounded open set in RN .
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A measurable function p(·) : Ω → [1,∞) is called a variable exponent on Ω. We
set

p∗ = ess inf
x∈Ω

p(x) and p∗ = ess sup
x∈Ω

p(x).

It is worth noting the next result, which follows readily from the definition of
Lp(·)-norm (see [17, Theorem 1.3]).

Lemma 2.1. If p(·) is a variable exponent on Ω satisfying 1 ≤ p∗ ≤ p∗ < ∞,
then

min
{
‖u‖p∗

Lp(·)(Ω)
, ‖u‖p∗

Lp(·)(Ω)

}
≤

∫

Ω

|u(x)|p(x)dx ≤ max
{
‖u‖p∗

Lp(·)(Ω)
, ‖u‖p∗

Lp(·)(Ω)

}
.

A variable exponent p(·) is said to satisfy the log-Hölder condition on Ω if

|p(x)− p(y)| ≤ C

log(1/|x− y|) for each x, y ∈ Ω with |x− y| < 1

2
,

where C is a positive constant. We set

p]
k(x) =

{
Np(x)/(N − kp(x)) if 1 ≤ p(x) < N/k,
∞ if p(x) ≥ N/k

for each k ∈ N.
We know the following Sobolev inequality for functions in W

1,p(·)
0 (Ω); see [20,

Proposition 4.2 (1)].

Lemma 2.2. Let p(·) be a variable exponent on Ω satisfying the log-Hölder
condition and 1 ≤ p∗ ≤ p∗ < ∞. If p∗ < N , then there exists a constant C > 0 such
that

‖u‖
Lp

]
1(·)(Ω)

≤ C‖∇u‖Lp(·)(Ω)

for u ∈ W
1,p(·)
0 (Ω).

Corollary 2.3. Let p(·) be as in the previous lemma. If p∗ < N/k with k ∈ N,
then there exists a constant C > 0 such that

‖u‖
L

p
]
k
(·)

(Ω)
≤ C

∑

|α|=k

‖Dαu‖Lp(·)(Ω)

for u ∈ W
k,p(·)
0 (Ω).

Proof. Assume p∗ < N/k with k ∈ N. Let u ∈ W
k,p(·)
0 (Ω) and let ` be a positive

integer with ` ≤ k. Then we see from Lemma 2.2 that u ∈ W
k−`,p]

`(·)
0 (Ω), so that

‖Dαu‖
L

p
]
`
(·)

(Ω)
≤ C

∑

|β|=k−`+1

‖Dβu‖
L

p
]
`−1

(·)
(Ω)

for |α| = k − `, where p]
0(x) = p(x). This proves the required result. ¤

3. Compact embeddings

In this section, we assume that p(·) is a variable exponent on Ω satisfying the
log-Hölder condition and 1 ≤ p∗ ≤ p∗ < ∞. For a set K in RN , we define

K(r) = {x ∈ RN : δK(x) ≤ r} for r > 0,

where δK(x) denotes the distance of x to K.



118 Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

First, as in [23], we show the following noncompact embedding from W
k,p(·)
0 (Ω)

to Lq(·)(Ω).

Proposition 3.1. Let x0 ∈ Ω and k ∈ N, and let q(·) : Ω → [1,∞) be a variable
exponent on Ω such that there exist C > 0 and η > 0 satisfying

(3.1) q(x) ≥ p]
k(x)− C

log(1/|x− x0|) for almost every x ∈ Ω ∩Bη(x0).

If p(x0) < N/k, then the embedding from W
k,p(·)
0 (Ω) to Lq(·)(Ω) is not compact.

Proof. Assume p(x0) < N/k. We may assume that x0 = 0 and B1(0) ⊂ Ω. Let
ψ ∈ C∞

0 (R) be a function such that 0 ≤ ψ(r) ≤ 1, ψ(r) = 0 for r > 1 and ψ(r) = 1
for 0 ≤ r < 1/2. Set

ψn(x) = nN/p]
k(0)ψ(n|x|)

for each n ∈ N. Then, for n ≥ 2 and 0 ≤ |α| ≤ k, we note∫

Ω

|Dαψn(x)|p(x)dx ≤ C

∫

B1/n(0)

n(N/p]
k(0)+|α|)p(x)dx

≤ Cn(N/p]
k(0)+|α|)(p(0)+C/ log n)

∫

B1/n(0)

dx ≤ C

by the log-Hölder condition on p(·). Using (3.1), we have∫

Ω

|ψn(x)|q(x)dx ≥
∫

B1/(2n)(0)

nNq(x)/p]
k(0)|ψ(n|x|)|q(x)dx ≥ CnN

∫

B1/(2n)(0)

dx = C > 0,

which implies that the embedding from W
k,p(·)
0 (Ω) to Lq(·)(Ω) is not compact since∫

Ω
|ψn(x)|p(x)dx → 0 as n →∞. ¤
As a direct consequence, we have the following result:

Corollary 3.2. Let K be a set in RN , and let x0 ∈ K ∩ Ω and k ∈ N. Let
q(·) : Ω → [1,∞) be a variable exponent on Ω such that there exist C > 0 and r > 0
satisfying

q(x) ≥ p]
k(x)− C

log(1/δK(x))
for almost every x ∈ K(r) ∩ Ω.

If p(x0) < N/k, then the embedding from W
k,p(·)
0 (Ω) to Lq(·)(Ω) is not compact.

Proof. Assume p(x0) < N/k. Since δK(x) ≤ |x− x0| for each x ∈ RN , we obtain
the conclusion by the previous proposition. ¤

For the compact embeddings, we first give the following result.

Proposition 3.3. Assume that p∗ < N/k with some k ∈ N. Let q(·) be a
variable exponent on Ω such that 1 ≤ q∗ and

(3.2) ess inf
x∈Ω

(
p]

k(x)− q(x)
)

> 0.

Then the following hold.
(i) The embedding of W

k,p(·)
0 (Ω) to Lq(·)(Ω) is compact.

(ii) If Ω satisfies the cone condition, then the embedding of W k,p(·)(Ω) to Lq(·)(Ω)
is compact.
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The case (i) in the proposition is essentially a special case of [22, Theorem 3.8];
the case (ii) is a slight generalization of [14, Theorem 1.3] to the case 1 ≤ p∗.

Proof of Proposition 3.3. We only give a proof of (ii), since (i) can be proved
similarly. Assume that Ω satisfies the cone condition. By (3.2), take ε > 0 such that
p]

k(x)− q(x) > 2ε > 0 for almost every x ∈ Ω. Since p(·) is uniformly continuous on
Ω, one can find open balls {Bj}l

j=1 and {B̃j}l
j=1 with l ∈ N such that Ω ⊂ ⋃l

i=1 Bi,
Bj ⊂ B̃j and

inf
x∈B̃j∩Ω

p]
k(x)− ε ≥ sup

x∈B̃j∩Ω

p]
k(x)− 2ε ≥ ess sup

x∈B̃j∩Ω

q(x) for each j = 1, . . . , l.

Setting pj = infx∈B̃j∩Ω p(x) and qj = ess supx∈B̃j∩Ωq(x), we see that qj < Npj/(N −
kpj) and the embedding from {u ∈ W k,p(·)(Ω): u = 0 on Ω \ B̃j} to W k,pj(Ω) and the
embedding from {u ∈ Lqj(Ω) : u = 0 on Ω \ B̃j} to Lq(·)(Ω) are continuous. By the
Rellich-Kondrachov theorem (see [1, Theorem 6.3]), W k,pj(Ω) is compactly embedded
into Lqj(Ω). Now, take ϕj ∈ C1(Ω; [0, 1]) such that |∇ϕj| ≤ C on Ω, ϕj = 1 on Ω∩Bj

and ϕj = 0 on Ω\ B̃j. It is easy to see that the linear operator u 7→ ϕju is continuous
on W k,p(·)(Ω). Noting ϕju = 0 on Ω \ B̃j for each u ∈ W k,p(·)(Ω), we can infer that
{ϕju : u ∈ W k,p(·)(Ω)} is compactly embedded into Lq(·)(Ω). Passing to subsequences
repeatedly, we obtain the conclusion. ¤

For a compact set K in RN and s ∈ [0, N ], following Mattila [25], we say that
the (N − s)-dimensional upper Minkowski content of K is finite if

|K(r)| ≤ Crs for small r > 0.

Now we are concerned with the compact embedding from W
k,p(·)
0 (Ω) to Lq(·)(Ω)

when q(·) and p]
k(·) coincides on some part of Ω.

Theorem 3.4. Let ϕ(·) : [1/r0,∞) → (0,∞) be a continuous function such that
(i) ϕ(r)/ log r is nonincreasing on [1/r0,∞),
(ii) ϕ(r) →∞ as r →∞

for some r0 ∈ (0, 1/e). Let K be a compact set in RN whose (N − s)-dimensional
upper Minkowski content is finite for some s with 0 < s ≤ N . Let k ∈ N and let q(·)
be a variable exponent on Ω such that

(iii) 1 ≤ q∗ ≤ q∗ < ∞,
(iv) ess infΩ\K(r0)

(
p]

k(x)− q(x)
)

> 0,

(v) q(x) ≤ p]
k(x)− ϕ(1/δK(x))

log(1/δK(x))
for almost every x ∈ K(r0) ∩ Ω.

Then the embedding from W
k,p(·)
0 (Ω) to Lq(·)(Ω) is compact.

Proof. Without loss of generality, we may assume ϕ(r)/ log r → 0 as r → ∞;
otherwise, we have ess infx∈Ω(p]

k(x) − q(x)) > 0, so that the conclusion follows from
Proposition 3.3 (i).

First, consider the case p∗ < N/k. Let us prove that

(3.3) lim
ε→+0

sup

{∫

K(ε)∩Ω

|v(x)|q(x)dx : v ∈ W
k,p(·)
0 (Ω), ‖v‖W k,p(·)(Ω) ≤ 1

}
= 0.
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For this purpose, take β with 0 < β < s/(p∗)]
k. Let ε > 0 such that ε−1 > 1/r0 and

ϕ(1/ε) ≥ 1. We set ηn = ε−βn for each n ∈ N. Then, by the assumptions on ϕ, we
have for each n ∈ N and x ∈ (K(εn) \K(εn+1)) ∩ Ω,

η
q(x)−p]

k(x)
n ≤ η

− ϕ(1/δK (x))

log(1/δK (x))
n ≤ η

− ϕ(1/εn+1)

log(1/εn+1)
n = exp(−(βn/(n + 1))ϕ(1/εn+1)) ≡ An.

Since
|K(r) ∩ Ω| ≤ Crs for all r > 0

by the boundedness of Ω, we have∫

(K(εn)\K(εn+1))∩Ω

ηq(x)
n dx ≤ η

(p∗)]
k

n

∫

K(εn)∩Ω

dx ≤ Cεn(s−β(p∗)]
k).

Hence we have∫

(K(εn)\K(εn+1))∩Ω

|v(x)|q(x)dx

≤
∫

(K(εn)\K(εn+1))∩Ω

|v(x)|q(x)

( |v(x)|
ηn

)p]
k(x)−q(x)

dx +

∫

(K(εn)\K(εn+1))∩Ω

ηq(x)
n dx

≤ An

∫

(K(εn)\K(εn+1))∩Ω

|v(x)|p]
k(x)dx + Cεn(s−β(p∗)]

k),

so that for each n0 ∈ N, we obtain
∫

K(εn0 )∩Ω

|v(x)|q(x)dx =
∞∑

n=n0

∫

(K(εn)\K(εn+1))∩Ω

|v(x)|q(x)dx

≤
(

sup
n≥n0

An

) ∫

Ω

|v(x)|p]
k(x)dx + C

∞∑
n=n0

εn(s−β(p∗)]
k).

Since An → 0 as n → ∞, s − β(p∗)]
k > 0 and ‖v‖

L
p
]
k
(·)

(Ω)
≤ C‖v‖W k,p(·)(Ω) for all

v ∈ W
k,p(·)
0 (Ω) by Corollary 2.3, (3.3) is obtained by letting n0 →∞.

Let {vj} be a bounded sequence in W
k,p(·)
0 (Ω). We may assume that it con-

verges weakly to some v ∈ W
k,p(·)
0 (Ω). By Proposition 3.3 (ii), the embedding from

W k,p(·)(B) to Lq(·)(B) is compact for each ball B ⊂ Ω such that ess infx∈B(p]
k(x) −

q(x)) > 0. Let n ∈ N. Since Ω \K(2−n) is a bounded open set in RN , there exists a
finite family of balls contained in RN \K(2−n−1) whose union contains Ω \K(2−n).
Since ess infx∈Ω\K(2−n−1)(p

]
k(x)− q(x)) > 0, we can find a subsequence {vjk,n} of {vj}

such that vjk,n → v in Lq(·)(Ω \K(2−n)) as well as almost everywhere on Ω \K(2−n).
Using the diagonal method, we can find a subsequence {vjn} such that vjn → v in
Lq(·)(Ω \K(ε)) for each small ε > 0 and vjn → v almost everywhere on Ω. It follows
that

lim
n→∞

∫

Ω

|vjn(x)− v(x)|q(x)dx

= lim
n→∞

(∫

K(ε)∩Ω

|vjn(x)− v(x)|q(x)dx +

∫

Ω\K(ε)

|vjn(x)− v(x)|q(x)dx

)

= lim
n→∞

∫

K(ε)∩Ω

|vjn(x)− v(x)|q(x)dx
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for each small ε > 0, which together with (3.3) implies that ‖vjn − v‖Lq(·)(Ω) → 0 as
n →∞.

Next consider the general case. We choose ε0 > 0 such that

q∗ < N(N/k − ε0)/(kε0)− ϕ(1/r0)/ log(1/r0).

We set pε0(x) = min{p(x), N/k − ε0}. Since the embedding from W
k,p(·)
0 (Ω) to

W
k,pε0 (·)
0 (Ω) is bounded, we can apply the first considerations to obtain the required

result. ¤
As a special case of Theorem 3.4, we have the following corollary, which gives

an extension of [23, Theorem 2]. We put log1 r = log r and logn+1 r = log(logn r),
inductively.

Corollary 3.5. Let k ∈ N and let q(·) be a variable exponent on Ω such that
1 ≤ q∗ ≤ q∗ < ∞. Suppose there exist x0 ∈ Ω, C > 0, n ∈ N and small r0 > 0 such
that

ess inf
x∈Ω\Br0 (x0)

(
p]

k(x)− q(x)
)

> 0

and

q(x) ≤ p]
k(x)− C logn(1/|x− x0|)

log(1/|x− x0|) for almost every x ∈ Br0(x0).

Then the embedding from W
k,p(·)
0 (Ω) to Lq(·)(Ω) is compact.

4. Existence of a solution to (1.3): compact embedding case

In this section, we assume that p(·) is a variable exponent on Ω satisfying the
log-Hölder condition and 1 < p∗ ≤ p∗ < N . Further let q(·) be a variable exponent
on Ω such that p∗ < q∗ ≤ q(x) ≤ p]

1(x) for almost every x ∈ Ω.
As an application of Theorem 3.4, we show an existence result of nontrivial

nonnegative weak solutions to (1.3) as follows.

Theorem 4.1. Assume that the embedding from W
1,p(·)
0 (Ω) to Lq(·)(Ω) is com-

pact. Then there exists a nontrivial nonnegative weak solution of (1.3).

In the case of ess infx∈Ω(p]
1(x)− q(x)) > 0, Fan and Zhang obtained such a result

in [15, Theorem 4.7]. Although q(·) can be equal to p]
1(·) at some points, the proof

in [15] also works in our case with minor changes since we consider the case that
the embedding from W

1,p(·)
0 (Ω) to Lq(·)(Ω) is compact. However, for the reader’s

convenience, we give a proof of our theorem.
Let X be a Banach space. We say that u ∈ X is a critical point of I ∈ C1(X;R) if

the Fréchet derivative I ′(u) of I at u is zero. We say that {un} ⊂ X is a Palais–Smale
sequence for I if {I(un)} is bounded and I ′(un) → 0 as n → ∞ in the dual space
of X. We also say that I satisfies the Palais–Smale condition if every Palais–Smale
sequence for I has a convergent subsequence.

We consider a functional I : W
1,p(·)
0 (Ω) → R defined by

I(u) =

∫

Ω

(
1

p(x)
|∇u(x)|p(x) − 1

q(x)
u+(x)q(x)

)
dx for u ∈ W

1,p(·)
0 (Ω).
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The Gâteaux derivative I ′(u) of I at u ∈ W
1,p(·)
0 (Ω) is given by

〈I ′(u), v〉 = lim
t→0

I(u + tv)− I(u)

t

=

∫

Ω

(|∇u(x)|p(x)−2∇u(x)∇v(x)− u+(x)q(x)−1v(x)
)

dx

for each v ∈ W
1,p(·)
0 (Ω). By the Vitali convergence theorem, we see that I ′ is continu-

ous from W
1,p(·)
0 (Ω) to its dual space (W

1,p(·)
0 (Ω))′, and hence I ∈ C1(W

1,p(·)
0 (Ω);R).

The following is essentially due to Boccardo and Murat [4, Theorem 2.1].

Proposition 4.2. Let {un} ⊂ W
1,p(·)
0 (Ω) be a Palais–Smale sequence for I. Then

{un} is bounded in W
1,p(·)
0 (Ω). Further there exist a subsequence {uni

} of {un} and
u ∈ W

1,p(·)
0 (Ω) such that {∇uni

(x)} converges to ∇u(x) for almost every x ∈ Ω.

Proof. Setting β = supn∈N I(un), we have

(4.1)
∫

Ω

(
1

p∗
|∇un(x)|p(x) − 1

q∗
u+

n (x)q(x)

)
dx ≤ I(un) ≤ β for all n ∈ N.

Since I ′(un) → 0 as n →∞ in (W
1,p(·)
0 (Ω))′, we have

(4.2)
∫

Ω

(|∇un(x)|p(x) − u+
n (x)q(x)

)
dx = 〈I ′(un), un〉 ≥ −‖un‖W 1,p(·)(Ω)

for each large positive integer n. Subtracting (4.2) divided by q∗ from (4.1) gives
(

1

p∗
− 1

q∗

) ∫

Ω

|∇un(x)|p(x)dx ≤ β +
1

q∗
‖un‖W 1,p(·)(Ω) ≤ C(‖∇un‖Lp(·)(Ω) + 1);

we used Lemma 2.2 in the second inequality. Thus Lemma 2.1 gives

‖∇un‖Lp(·)(Ω) + 1 ≥ C min
{
‖∇un‖p∗

Lp(·)(Ω)
, ‖∇un‖p∗

Lp(·)(Ω)

}
,

so that {un} is bounded in W
1,p(·)
0 (Ω). Hence, passing to a subsequence, we may

assume that {un} converges weakly to some u in W
1,p(·)
0 (Ω) and {un(x)} converges

to u(x) for almost every x ∈ Ω. For η > 0, let Tη : R → R be a function such that

Tη(t) = t for |t| ≤ η, Tη(t) = ηt/|t| for |t| > η.

Since {Tη(un−u)} converges weakly to 0 in W
1,p(·)
0 (Ω) and {un} is bounded in Lq(·)(Ω)

by Lemma 2.2, we have

lim
n→∞

∫

Ω

(|∇un(x)|p(x)−2∇un(x)− |∇u(x)|p(x)−2∇u(x)
)∇(Tη(un(x)− u(x))) dx

= lim
n→∞

∫

Ω

u+
n (x)q(x)−1Tη(un(x)− u(x)) dx ≤ Cη,

where C > 0 is a constant which is independent of η > 0. We set

ρn(x) =
(|∇un(x)|p(x)−2∇un(x)− |∇u(x)|p(x)−2∇u(x)

)
(∇un(x)−∇u(x)) .

We note that ρn ≥ 0 almost everywhere for each n ∈ N. Further we set

En = {x ∈ Ω: |un(x)− u(x)| ≤ η}, Fn = {x ∈ Ω: |un(x)− u(x)| > η}
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for each n ∈ N. We fix θ ∈ (0, 1). Since
∫

Ω

ρn(x)θ dx ≤
(∫

En

ρn(x) dx

)θ

|En|1−θ +

(∫

Fn

ρn(x) dx

)θ

|Fn|1−θ for each n ∈ N,

|Fn| → 0 and {ρn} is bounded in L1(Ω), we have

lim
n→∞

∫

Ω

ρn(x)θ dx ≤ (Cη)θ|Ω|1−θ.

Letting η → 0, we have
∫
Ω

ρn(x)θ dx → 0. Thus we may assume {ρn(x)} converges
to 0 for almost every x ∈ Ω. Since p∗ > 1, we see that a subsequence of {∇un(x)}
converges to ∇u(x) for almost every x ∈ Ω. ¤

Lemma 4.3. Suppose the embedding from W
1,p(·)
0 (Ω) to Lq(·)(Ω) is compact.

Then the functional I satisfies the Palais-Smale condition.

Proof. Let {un} ⊂ W
1,p(·)
0 (Ω) be a Palais–Smale sequence for I. By the previous

proposition, we may assume that {un} converges weakly to some u ∈ W
1,p(·)
0 (Ω), and

{un(x)} and {∇un(x)} converge to u(x) and ∇u(x) almost every x ∈ Ω, respectively.
Since 〈I ′(un), u〉 → 0, the Vitali convergence theorem implies that∫

Ω

|∇u(x)|p(x) dx =

∫

Ω

u+(x)q(x) dx.

This equality together with 〈I ′(un), un〉 → 0 and the compact embedding assumption
give

lim
n→∞

∫

Ω

|∇un(x)|p(x) dx = lim
n→∞

∫

Ω

u+
n (x)q(x) dx

=

∫

Ω

u+(x)q(x) dx =

∫

Ω

|∇u(x)|p(x) dx.

(4.3)

Now, we consider the function

wn(x) = 2p∗−1
(|∇un(x)|p(x) + |∇u(x)|p(x)

)− |∇un(x)−∇u(x)|p(x) .

Since wn(x) ≥ 0 for almost every x ∈ Ω, we see from Fatou’s lemma and (4.3) that

2p∗
∫

Ω

|∇u(x)|p(x)dx− lim
n→∞

∫

Ω

|∇un(x)−∇u(x)|p(x) dx

≥
∫

Ω

lim
n→∞

wn(x)dx = 2p∗
∫

Ω

|∇u(x)|p(x)dx,

so that
lim

n→∞

∫

Ω

|∇un(x)−∇u(x)|p(x) dx = 0.

Hence we see that {un} converges strongly to u in W
1,p(·)
0 (Ω). ¤

We recall the following variant of the mountain pass theorem; see e.g., [34].

Theorem 4.4. Let X be a Banach space and let I be a C1 functional on X such
that I(0) = 0,

(i) there exist positive constants κ, r > 0 such that I(u) ≥ κ for all u ∈ X with
‖u‖ = r, and

(ii) there exists an element v ∈ X such that I(v) < 0 and ‖v‖ > r.
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Define

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)),

where

(4.4) Γ = {γ ∈ C([0, 1]; X) : γ(0) = 0, I(γ(1)) < 0, ‖γ(1)‖ > r}.
Then c > 0 and for each ε > 0, there exists u ∈ X such that |I(u) − c| ≤ ε and
‖I ′(u)‖ ≤ ε.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1.. First we find r > 0 such that

(4.5) inf{I(u) : u ∈ W
1,p(·)
0 (Ω), ‖u‖W 1,p(·)(Ω) = r} > 0.

Taking r > 0 so small, by Lemma 2.2, we have ‖∇u‖Lp(·)(Ω) ≤ 1 and ‖u‖Lq(·)(Ω) ≤ 1

for all u ∈ W
1,p(·)
0 (Ω) with ‖u‖W 1,p(·)(Ω) = r. Then for each u ∈ W

1,p(·)
0 (Ω) with

‖u‖W 1,p(·)(Ω) = r, we have
∫

Ω

u+(x)q(x)dx ≤ ‖u‖q∗
Lq(·)(Ω)

≤ C‖u‖q∗

Lp
]
1(·)(Ω)

≤ C‖∇u‖q∗
Lp(·)(Ω)

by Lemmas 2.1 and 2.2, so that

I(u) ≥ 1

p∗
‖∇u‖p∗

Lp(·)(Ω)
− C

q∗
‖∇u‖q∗

Lp(·)(Ω)
.

Since p∗ < q∗, we have (4.5) if r > 0 is small.
Next we prove I(tu) → −∞ as t → ∞ for u ∈ W

1,p(·)
0 (Ω) with u+ 6= 0. In fact,

if u ∈ W
1,p(·)
0 (Ω) such that u+ 6= 0, then we see that

I(tu) ≤ tp
∗
∫

Ω

1

p(x)
|∇u(x)|p(x)dx− tq∗

∫

Ω

1

q(x)
u+(x)q(x)dx → −∞

as t →∞, since p∗ < q∗.
Now the required result follows from Lemma 4.3 and Theorem 4.4. ¤
As a direct consequence of Theorem 4.1, we have the following:

Corollary 4.5. Suppose all hypotheses in Theorem 3.4 hold for k = 1. Then
there exists a nontrivial nonnegative weak solution of (1.3).

5. Existence of a solution to (1.3): noncompact embedding case

Our final aim is to deal with the existence result of a nontrivial nonnegative weak
solution to (1.3) in the case that the embedding may not be compact.

For real sequences {an} and {bn}, we write an = bn + o(1) or an ≤ bn + o(1) if
limn(an − bn) = 0 or limn(an − bn) ≤ 0, respectively.

Proposition 5.1. Let p(·) be a log-Hölder continuous function on Ω with 1 <
p∗ ≤ p∗ < N and let q(·) be a measurable function on Ω such that p∗ < q∗ ≤ q(x) ≤
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p]
1(x) for almost every x ∈ Ω. Assume infu∈NI

I(u) < infu∈NJ
J(u), where

I(u) =

∫

Ω

(
1

p(x)
|∇u(x)|p(x) − 1

q(x)
u+(x)q(x)

)
dx for u ∈ W

1,p(·)
0 (Ω),

J(u) =

∫

Ω

(
1

p(x)
|∇u(x)|p(x) − 1

p]
1(x)

u+(x)p]
1(x)

)
dx for u ∈ W

1,p(·)
0 (Ω),

NI =

{
u ∈ W

1,p(·)
0 (Ω) \ {0} :

∫

Ω

|∇u(x)|p(x) dx =

∫

Ω

u+(x)q(x) dx

}
,

NJ =

{
u ∈ W

1,p(·)
0 (Ω) \ {0} :

∫

Ω

|∇u(x)|p(x) dx =

∫

Ω

u+(x)p]
1(x) dx

}
.

Then problem (1.3) has a nontrivial nonnegative weak solution.

Proof. We set c = infu∈NI
I(u), and define Γ by (4.4) with X = W

1,p(·)
0 (Ω). Along

the similar lines as those in the proof of Theorem 4.1, we can easily see that Γ 6= ∅,
NJ 6= ∅, NI 6= ∅ and (4.5) holds for small r > 0.

First we show

(5.1) c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)).

Let u ∈ NI . For αu > 1 large enough, consider the path γu ∈ Γ defined by γu(t) =
tαuu for t ∈ [0, 1]. Since I(u) = max0≤t≤1 I(γu(t)), we have

c ≥ inf
γ∈Γ

max
0≤t≤1

I(γ(t)).

On the other hand, let γ ∈ Γ. Then∫

Ω

(|∇γ(1)|p(x) − (γ(1)+)q(x)) dx < 0.

As in the proof of Theorem 4.1, we find a small t > 0 satisfying∫

Ω

(|∇γ(t)|p(x) − (γ(t)+)q(x)) dx > 0.

By the intermediate value theorem, there exists t ∈ (0, 1) such that γ(t) ∈ NI , which
implies c ≤ infγ∈Γ max0≤t≤1 I(γ(t)). Thus (5.1) holds.

Now, in view of Theorem 4.4, c > 0. Moreover there exists {un} ⊂ W
1,p(·)
0 (Ω)

such that I(un) → c and I ′(un) → 0 in (W
1,p(·)
0 (Ω))′. By Proposition 4.2 and c > 0,

we find a constant C > 0 such that

(5.2)
1

C
≤

∫

Ω

|∇un(x)|p(x) dx ≤ C for large n ∈ N.

Here we may assume that {un} converges weakly to some u ∈ W
1,p(·)
0 (Ω); further

{un(x)} and {∇un(x)} converge to u(x) and ∇u(x) for almost every x ∈ Ω, respec-
tively. Then it follows that I ′(u) = 0. If we show that u 6= 0, then u is a nontrivial
nonnegative weak solution of (1.3).

On the contrary, suppose u = 0. Since I(un) → c > 0 and 〈I ′(un), un〉 → 0,
taking a subsequence if necessary, we may assume u+

n 6= 0 for all n ∈ N. Then for
each n ∈ N, there exists a unique tn ∈ (0,∞) such that∫

Ω

|∇(tnun(x))|p(x) dx =

∫

Ω

(tnu
+
n (x))p]

1(x) dx,
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i.e., tnun ∈ NJ . We will show tn ≤ 1 + o(1). On the contrary, if there exists ε > 0
such that tn ≥ 1 + ε for all n ∈ N, then

tp
∗

n

∫

Ω

|∇un(x)|p(x) dx ≥
∫

Ω

|∇(tnun(x))|p(x) dx

=

∫

Ω

(tnu+
n (x))p]

1(x) dx ≥ tq∗n

∫

Ω

u+
n (x)p]

1(x) dx

for all n ∈ N. Using Lebesgue’s convergence theorem, we have∫

Ω

|∇un(x)|p(x) dx =

∫

Ω

u+
n (x)q(x) dx + o(1)

=

∫

{x∈Ω:un(x)≤1}
u+

n (x)q(x) dx +

∫

{x∈Ω:un(x)>1}
u+

n (x)q(x) dx + o(1)

≤
∫

Ω

min{u+
n (x), 1} dx +

∫

Ω

u+
n (x)p]

1(x) dx + o(1)

≤
∫

Ω

u+
n (x)p]

1(x) dx + o(1).

Hence it follows that∫

Ω

|∇un(x)|p(x) dx ≥ tq∗−p∗
n

∫

Ω

u+
n (x)p]

1(x) dx ≥ (1 + ε)q∗−p∗
∫

Ω

u+
n (x)p]

1(x) dx

≥ (1 + ε)q∗−p∗
(∫

Ω

|∇un(x)|p(x) dx + o(1)

)
,

which together with (5.2) yields a contradiction. Thus we have shown tn ≤ 1 + o(1).
On the other hand, for each n ∈ N, take a unique number sn > 0 such that

(5.3)
∫

Ω

|∇(snun(x))|p(x) dx =

∫

Ω

(snu
+
n (x))q(x) dx,

i.e., snun ∈ NI . We see easily that I(snun) = maxs≥0 I(sun) for each n ∈ N. By
(5.2), (5.3) and 〈I ′(un), un〉 = o(1), we infer that sn = 1 + o(1), so that

I(un) = I(snun) + o(1) = max
s≥0

I(sun) + o(1) ≥ I(tnun) + o(1).

Let ε ∈ (0, 1). Then, noting∫

{x∈Ω:q(x)≤p]
1(x)−ε}

(tnu
+
n (x))q(x) dx ≤

∫

Ω

min{tnu+
n (x), 1} dx +

∫

Ω

(tnu
+
n (x))p]

1(x)−ε dx

= o(1),

we obtain

c = I(un) + o(1) ≥ I(tnun) + o(1)

≥
∫

Ω

(
1

p(x)
|∇(tnun(x))|p(x) − 1

p]
1(x)− ε

(tnu
+
n (x))p]

1(x)

)
dx + o(1)

= J(tnun) +

∫

Ω

(
1

p]
1(x)

− 1

p]
1(x)− ε

)
(tnu+

n (x))p]
1(x) dx + o(1) ≥ inf

v∈NJ

J(v)− Cε,

where C is a constant which is independent of ε ∈ (0, 1). Since ε ∈ (0, 1) is arbitrary,
we conclude that c ≥ infv∈NJ

J(v), which contradicts our assumption. Hence it
follows that u 6= 0, as required. ¤
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We denote by D1,p(·)(RN) the completion of C∞
0 (RN) by the norm ‖∇u‖Lp(·)(RN )

in C∞
0 (RN).

Theorem 5.2. Let p(·) : RN → R be a log-Hölder continuous function with
1 < p∗ ≤ p∗ < N , and let q(·) : RN → R be a measurable function such that
p∗ < q∗ ≤ q(x) ≤ p]

1(x) for almost every x ∈ RN . Assume that D1,p(·)(RN) is
continuously embedded into Lp]

1(·)(RN), i.e., there exists a constant C > 0 such that

(5.4) ‖u‖
Lp

]
1(·)(RN )

≤ C‖∇u‖Lp(·)(RN ) for all u ∈ D1,p(·)(RN).

Assume also that there exist a measurable subset D of RN and a number q0 such
that

(5.5) lim
R→∞

|{x ∈ B1(0) : Rx ∈ D}| < |B1(0)|,
Np/(N + p∗ − p) < q0 < Np/(N − p), and ess supx∈RN\Dq(x) ≤ q0, where p =

lim|x|→∞ p(x). Then there exists R > 0 such that for each bounded open set Ω in RN

which contains BR(0), problem (1.3) has a nontrivial nonnegative weak solution.

Proof. We set

JRN (u) =

∫

RN

(
1

p(x)
|∇u(x)|p(x) − 1

p]
1(x)

u+(x)p]
1(x)

)
dx for u ∈ D1,p(·)(RN),

NJ
RN

=

{
u ∈ D1,p(·)(RN) \ {0} :

∫

RN

|∇u(x)|p(x) dx =

∫

RN

u+(x)p]
1(x) dx

}
.

By Lemma 2.1 we have for u ∈ NJ
RN

min
{
‖∇u‖p∗

Lp(·)(RN )
, ‖∇u‖p∗

Lp(·)(RN )

}
≤

∫

RN

|∇u(x)|p(x) dx

=

∫

RN

u+(x)p]
1(x) dx ≤ max

{
‖u+‖(p]

1)∗

Lp
]
1(·)(RN )

, ‖u+‖(p]
1)∗

Lp
]
1(·)(RN )

}
,

which together with (5.4) implies that

inf
u∈NJ

RN

‖∇u‖Lp(·)(RN ) > 0.

Hence we infer that
inf

u∈NJ
RN

JRN (u) > 0.

Choose any p0 such that

(5.6) 1 < p0 < p and
Np0

N + p∗ − p0

< q0 <
Np0

N − p0

.

Let ū1 ∈ W 1,p0

0 (B1(0)) be a weak solution of the problem

(5.7)





−div
(|∇u(x)|p0−2∇u(x)

)
= u(x)q0−1 in B1(0),

u(x) > 0 in B1(0),
u(x) = 0 on ∂B1(0).

According to [24, Theorem 1] or [33, Proposition 2.1], we see that ū1 ∈ C1,β(B1(0))
for some β ∈ (0, 1). Hence, for each R > 0, ūR(x) ≡ R−p0/(q0−p0)ū1(x/R) is a weak
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solution of (5.7). Take R1 > 0 such that max|x|≤R ūR(x) ≤ 1 for R ≥ R1. For each
R > 0, there exists a unique tR ∈ (0,∞) such that∫

BR(0)

|∇(tRūR(x))|p(x) dx =

∫

BR(0)

|tRūR(x)|q(x) dx.

From (5.5), we find δ > 0 and R2 ≥ R1 such that

|{x ∈ B1(0) : Rx ∈ D}| ≤ |B1(0)| − δ for each R ≥ R2.

We will show {tR : R ≥ R2} is bounded. If tR > 1 with R ≥ R2, then we have

tp
∗

R

∫

BR(0)

|∇ūR(x)|p(x) dx ≥
∫

BR(0)

|tRūR(x)|q(x) dx ≥ tq∗R

∫

BR(0)\D
|ūR(x)|q0 dx

= tq∗R

(∫

BR(0)

|ūR(x)|q0 dx−
∫

BR(0)∩D

|ūR(x)|q0 dx

)
,

which implies

tq∗−p∗
R ≤

∫
B1(0)

R
q0(p0−p(Rx))

q0−p0 |∇ū1(x)|p(Rx) dx∫
B1(0)

|ū1(x)|q0 dx− sup{∫
A
|ū1(x)|q0 dx : A ⊂ B1(0), |A| ≤ |B1(0)| − δ} .

Let r0 > 0 such that p(x) > p0 for all x ∈ RN with |x| ≥ r0. By (5.6) and the
boundedness of |∇ū1|, we have for R ≥ r0,∫

B1(0)

R
q0(p0−p(Rx))

q0−p0 |∇ū1(x)|p(Rx) dx ≤ C

( ∫

|x|<r0/R

R
q0(p0−p(Rx))

q0−p0 dx

+

∫

r0/R≤|x|≤1

R
q0(p0−p(Rx))

q0−p0 dx

)
≤ C

(
R

q0(p0−p∗)
q0−p0

(r0

R

)N

+ 1

)
≤ C,

where each C is a positive constant which is independent of R. Hence we insist that
{tR : R ≥ R2} is bounded. Then we have

∫

BR(0)

(
1

p(x)
|∇(tRūR(x))|p(x) − 1

q(x)
|tRūR(x)|q(x)

)
dx ≤ C

∫

BR(0)

|∇ūR(x)|p(x) dx

= C

∫

B1(0)

R
− q0p(Rx)

q0−p0
+N |∇ū1(x)|p(Rx) dx ≤ C

(
R
− q0p∗

q0−p0 rN
0 + R

− q0p0
q0−p0

+N
)
→ 0

as R →∞. Hence we can find R ≥ R2 satisfying
∫

BR(0)

(
1

p(x)
|∇(tRūR(x))|p(x) − 1

q(x)
|tRūR(x)|q(x)

)
dx < inf

v∈NJ
RN

JRN (v).

Now, let Ω be any bounded open set which contains BR(0). Extending ūR on Ω with
ūR(x) = 0 for x ∈ Ω \ BR(0), we have ūR ∈ W

1,p(·)
0 (Ω). Letting I, J , NI and NJ be

as in the previous proposition, we have

inf
v∈NI

I(v) ≤ I(tRūR) < inf
v∈NJ

RN

JRN (v) ≤ inf
v∈NJ

J(v).

Hence problem (1.3) has a nontrivial nonnegative weak solution on Ω by the propo-
sition. ¤

Finally, we give a sufficient condition for (5.4). We recall the following result,
which is a special case of [6, Theorem 1.8].
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Lemma 5.3. Let p(·) : RN → R be a log-Hölder continuous function which
satisfies 1 < p∗ ≤ p∗ < N and

|p(x)− p(y)| ≤ C

log(e + |x|) for each x, y ∈ RN with |y| ≥ |x|.
Then the fractional integral operator

u 7→
∫

RN

u(y)

|x− y|N−1
dy

is bounded from Lp(·)(RN) to Lp]
1(·)(RN).

Corollary 5.4. Let p(·) : RN → R be as in the previous lemma, and let D, q0

and q(·) be as in Theorem 5.2. Then there exists R > 0 such that for each bounded
open set Ω in RN which contains BR(0), problem (1.3) has a nontrivial nonnegative
weak solution.

Proof. Using the previous lemma, we can show that D1,p(·)(RN) is continuously
embedded into Lp]

1(·)(RN) by similar lines as those in [35, p. 88]. Hence we obtain
the conclusion by Theorem 5.2. ¤

References

[1] Adams, R.A., and J. J. F. Fournier: Sobolev spaces. - Academic Press, 2003.

[2] Alves, C.O., andM.A. S. Souto: Existence of solutions for a class of problems in RN involv-
ing the p(x)-Laplacian. - In: Contribution to Nonlinear Analysis, Progr. Nonlinear Differential
Equations Appl. 66, 2006, 17–32.

[3] Bahri, A., and M. Coron: On a nonlinear elliptic equation involving the critical Sobolev
exponent: the effect of the topology of the domain. - Comm. Pure Appl. Math. 41, 1988,
253–294.

[4] Boccardo, L., and F. Murat: Almost everywhere convergence of the gradients of solutions
to elliptic and parabolic equations. - Nonlinear Anal. 19, 1992, 581–597.

[5] Boureanu, M.-M.: Existence of solutions for an elliptic equation involving the p(x)-Laplace
operator. - Electron. J. Differential Equations 2006:97, 2006, 1–10.

[6] Capone, C., D. Cruz-Uribe, SFO, and A. Fiorenza: The fractional maximal operators
on variable Lp spaces. - Rev. Mat. Iberoamericana 23:3, 2007, 743–770.

[7] Coron, J.: Topologie et cas limite des injections de Sobolev. - C. R. Acad. Sci. Paris Sér. I
Math. 299, 1984, 209–212.

[8] Diening, L.: Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev
spaces Lp(·) and W k,p(·). - Math. Nachr. 268, 2004, 31–43.

[9] Dinu, T.-L.: Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces
with variable exponent. - Nonlinear Anal. 65, 2006, 1414–1424.

[10] Edmunds, D. E., and J. Rákosník: Sobolev embeddings with variable exponent. - Studia
Math. 143, 2000, 267–293.

[11] Fan, X.: Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients. - J. Math.
Anal. Appl. 312, 2005, 464–477.

[12] Fan, X., and C. Ji: Existence of infinitely many solutions for a Neumann problem involving
the p(x)-Laplacian. - J. Math. Anal. Appl. 334, 2007, 248–260.

[13] Fan, X., and X. Han: Existence and multiplicity of solutions for p(x)-Laplacian equations in
RN . - Nonlinear Anal. 59, 2004, 173–188.

[14] Fan, X., J. Shen, and D. Zhao: Sobolev embedding theorems for spaces W k,p(x)(Ω). - J.
Math. Anal. Appl. 262, 2001, 749–760.



130 Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

[15] Fan, X., and G.-H. Zhang: Existence of solutions for p(x)-Laplacian Dirichlet problem. -
Nonlinear Anal. 52, 2003, 1843–1852.

[16] Fan, X., and D. Zhao: A class of De Giorgi type and Hölder continuity. - Nonlinear Anal.
36, 1999, 295–318.

[17] Fan, X., and D. Zhao: On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). - J. Math. Anal. Appl. 263,
2001, 424–446.

[18] Futamura, T., Y. Mizuta, and T. Shimomura: Sobolev embeddings for Riesz potential
space of variable exponent. - Math. Nachr. 279, 2006, 1463–1473.

[19] Futamura, T., Y. Mizuta, and T. Shimomura: Sobolev embeddings for variable exponent
Riesz potentials on metric spaces. - Ann. Acad. Sci. Fenn. Math. 31, 2006, 495–522.

[20] Harjulehto, P., and P. Hästö: Sobolev inequalities for variable exponents attaining the
values 1 and n. - Publ. Mat. 52:2, 2008, 347–363.

[21] Harjulehto, P., P. Hästö,M. Koskenoja, and S. Varonen: The Dirichlet energy integral
and variable exponent Sobolev spaces with zero boundary values. - Potential Anal. 25, 2006,
205–222.

[22] Kovácik, O., and J. Rákosník: On spaces Lp(x) and W k,p(x). - Czechoslovak Math. J. 41,
1991, 592–618.

[23] Kurata, K., andN. Shioji: Compact embedding from W 1,2
0 (Ω) to Lq(x)(Ω) and its application

to nonlinear elliptic boundary value problem with variable critical exponent. - J. Math. Anal.
Appl. 339, 2008, 1386–1394.

[24] Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. - Non-
linear Anal. 12, 1988, 1203–1219.

[25] Mattila, P.: Geometry of sets and measures in Euclidean spaces. - Cambridge Univ. Press,
1995.

[26] Mizuta, Y., T. Ohno, and T. Shimomura: Integrability of maximal functions for generalized
Lebesgue spaces with variable exponent. - Math. Nachr. 281, 2008, 386–395.

[27] Mizuta, Y., T. Ohno, and T. Shimomura: Sobolev’s inequalities and vanishing integrability
for Riesz potentials of functions in the generalized Lebesgue space Lp(·)(log L)q(·). - J. Math.
Anal. Appl. (to appear).

[28] Mizuta, Y., and T. Shimomura: Sobolev’s inequality for Riesz potentials with variable
exponent satisfying a log-Hölder condition at infinity. - J. Math. Anal. Appl. 311, 2005, 268–
288.

[29] Orlicz, W.: Über konjugierte Exponentenfolgen. - Studia Math. 3, 1931, 200–211.

[30] Passaseo, D.: Multiplicity of positive solutions of nonlinear elliptic equations with critical
Sobolev exponent in some contractile domains. - Manuscripta Math. 65:2, 1989, 147–165.

[31] Pohozaev, S.: Eigenfunctions of the equation ∆u + λf(u) = 0. - Soviet Math. Dokl. 6, 1965,
1408–1411.

[32] Růžička, M.: Electrorheological fluids: modeling and mathematical theory. - Lecture Notes
in Math. 1748, Springer, 2000.

[33] Takáč, P.: Nonlinear spectral problems for degenerate elliptic operators. - In: Stationary
partial differential equations, Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004,
385–489.

[34] Willem, M.: Minimax theorems. - Progr. Nonlinear Differential Equations Appl. 24,
Birkhäuser Boston, Inc., Boston, MA, 1996.

[35] Ziemer, W.P.: Weakly differentiable functions. - Grad. Texts in Math. 120, Springer-Verlag,
Berlin, 1989.

Received 25 August 2008


