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Abstract. We give a sufficient condition for the compact embedding from W(f P (')(Q) to
L1O)(Q) in case essinf,eq(Np(x)/(N — kp(z)) — q(x)) = 0, where Q is a bounded open set in RV,
As an application, we find a nontrivial nonnegative weak solution of the nonlinear elliptic equation

_div(\vu(x)v’(@*?vu(x)) = [u(@)]"@2u(z) nQ,  u(@)=0 ond.

We also consider the existence of a weak solution to the problem above even if the embedding is
not compact.

1. Introduction

In recent years, many authors have studied the generalized Lebesgue spaces;
see [2,5,8-23,26-29,32|. First, let us recall some definitions. Following Orlicz [29]
and Kovacik and Réakosnik [22], for an open set  in RY with N > 1 and a measurable
function p(-): Q — [1,00), we define the LP*)(Q)-norm of a measurable function f

on () by
p(z)
11l zror ) :inf{)\>0;/ dr < 1}
Q

and denote by LP()(Q) the family of all measurable functions whose LP()(Q)-norms
are finite. Further we denote by W#*?()(Q) with k& € N the family of all measurable
functions u on €2 such that

[ullwrror @) = Z [D%ul| o) () < 00
0<|a|<k

and by W(f’p(')(Q) the closure of Cg°(€2) in W*»0) ().
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Recently, Kurata and the fourth author [23] posed the following problem: if a
variable exponent ¢(-) satisfies 2 < essinf,coq(z) < esssup,cqq(z) < 2N/(N — 2)
(N > 3) and q(-) is equal to 2N/(N — 2) at a point, then does the problem

(1.1) —Au(z) = |u(z)|"2u(z) inQ and u(z) =0 on dQ

have a positive solution? When ¢(-) is a constant, problem (1.1) has been studied by
many researchers. If ¢(-) is a constant smaller than 2N/(N —2), then the embedding
from W, *(Q) to L4(-)(R2) is compact, and hence the existence of a positive solution
to (1.1) is easily obtained by the standard mountain pass theorem. When ¢(-) =
2N/(N —2), problem (1.1) is quite interesting. If €2 is star-shaped, then Pohozaev [31]
showed that there is no solution. If {2 has a nontrivial topology in the sense of Zs-
homology, then Bahri and Coron [3] showed that the problem has a positive solution;
see also [7]. Even if Q is contractible, then, under some condition on the shape of
(2, Passaseo [30] obtained a positive solution. In the case when ¢(-) is a variable
exponent and ¢(-) coincides with 2N/(N —2) at a point in €2, since the embedding of
Wy () to L) (Q) may not be compact, the existence of positive solution to (1.1) is
not trivial. Kurata and the fourth author showed that if there exist zq € Q, Cy > 0,
n>0and 0 <! <1 such that esssup,cq\p, (z,)2(¥) < 2N/(N —2) and

< 2N Co
- N—-2  (log(1/|z —zol))’

(1.2) q(z) for almost every z € QN B, (o),
then the embedding from W,*(Q) to LI)(Q) is compact; see 23, Theorem 2|. As
an application of the compact embedding, they obtained a positive solution to (1.1).

Our first aim in this paper is to establish the compact embedding from W(f #() (Q)
to L20)(Q) when ¢(-) is an exponent satisfying a condition weaker than (1.2). As an
application, we show the existence of a nontrivial nonnegative weak solution to the
nonlinear elliptic equation

{ —div (|Vu(z)[PD2Vu(z)) = Ju(z)]1@2u(z) in Q,

(1:3) u(z) =0 on OS).

Here u is called a weak solution of (1.3) if u € Wol’p(')(Q) and

/Q (|Vu(x)]p(x)’2Vu(:1:)Vv(:c) — |u(a:)\q(“)’2u(:c)v(:c)) de =0

for all v € W, (')(Q). Our final goal is to find nontrivial nonnegative weak solutions
to (1.3), even if the embedding might not be compact.

2. Preliminaries

Throughout this paper, we use the symbol C' to denote various positive constants
independent of the variables in question. We only use N as the dimension of the
Euclidean space R" and we set B,.(zr) = {y € R": |y — z| < r} for x € R and
r > 0. For a measurable subset E of R, we denote by |E| the Lebesgue measure
of E. For a measurable function u, we set vt = max{u,0}. Unless otherwise stated,
we assume that N > 2 and € is a bounded open set in R,
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A measurable function p(-): © — [1,00) is called a variable exponent on 2. We
set
p. =essinf p(x) and p* = esssupp(x).
e zeQ
It is worth noting the next result, which follows readily from the definition of

LP0)-norm (see [17, Theorem 1.3]).

Lemma 2.1. If p(-) is a variable exponent on € satisfying 1 < p, < p* < o0,
then

Px
L) (Q

Px
Lr()(Q

min {||u ip(.)(m} < /Q u(z) PP dz < maX{Hu ip@(g)} .

A variable exponent p(+) is said to satisfy the log-Holder condition on 2 if
| < #
~ log(1/]z —yl)

where C' is a positive constant. We set

o) = {Np(a:)/(fv —kp(x)) i 1 < p(x) < N/k,

Ll [

1
for each z,y € Q with |z —y| < =,

Ip(z) — p(y) 5

F 00 if p(z) > N/k

for each k& € N.
We know the following Sobolev inequality for functions in Wy *(Q); see [20,
Proposition 4.2 (1)].

Lemma 2.2. Let p(-) be a variable exponent on ) satisfying the log-Holder
condition and 1 < p, < p* < co. If p* < N, then there exists a constant C' > 0 such
that

] < Ol Vaull ey g)

Lp%(')(Q) —
for u € Wy (Q).

Corollary 2.3. Let p(-) be as in the previous lemma. If p* < N/k with k € N,
then there exists a constant C' > 0 such that

HuHLpi(»)(Q) =C Z [1D%ul Lo
|a|=k
for u € WiP9(Q).
Proof. Assume p* < N/k with k € N. Let u € W(f:’p(’)(@) and let £ be a positive

—eph(
integer with ¢ < k. Then we see from Lemma 2.2 that u € W: bril )(Q), so that

D~ <C D?
” uHLpg(J(Q) — |ﬁ;€+1 || U/HLPg—l(‘)(Q)

for |a| = k — ¢, where pf(x) = p(z). This proves the required result. O

3. Compact embeddings

In this section, we assume that p(-) is a variable exponent on 2 satisfying the
log-Hélder condition and 1 < p, < p* < co. For a set K in R, we define

K(r)={r € R": §g(z) <r} forr >0,

where 0 (z) denotes the distance of = to K.
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First, as in [23], we show the following noncompact embedding from W™ (‘)(Q)
to L) (Q).

Proposition 3.1. Let xy € Q and k € N, and let ¢(-): Q@ — [1,00) be a variable
exponent on €) such that there exist C' > 0 and n > 0 satisfying

C
3.1 x) > ph(x) —
If p(z9) < N/k, then the embedding from Wéc’p(')(Q) to LI0)(Q) is not compact.
Proof. Assume p(z¢) < N/k. We may assume that zo = 0 and B;(0) C €. Let
Y € C3°(R) be a function such that 0 < ¢(r) < 1,¢(r) =0 for r > 1 and ¢(r) =1
for 0 <r < 1/2. Set

for almost every x € QN B, (xo).

() = POy (nfa])
for each n € N. Then, for n > 2 and 0 < |a| < k, we note

/ | D4y ()PP < C / nN/P0)+HaDp()
Q

Bl/n(o)
< CnN/PLO)+Ha(p(0)+C/ log ) / dr < C
by the log-Hélder condition on p(-). Using (3.1), we have
[lon@lde= [ N Ol ez ¥ [ de=cs
Q By /(2n)(0) B /(20 (0)

which implies that the embedding from W(f’p(')(Q) to LI0)(Q) is not compact since
fQ Wn(x”p(x)dﬂﬁ — 0 as n — o0. -

As a direct consequence, we have the following result:

Corollary 3.2. Let K be a set in RY, and let v € KN and k € N. Let
q(-): Q@ — [1,00) be a variable exponent on §) such that there exist C' > 0 and r > 0
satisfying

B C
log(1/0k (x))
If p(x¢) < N/k, then the embedding from Wg’p(')(ﬂ) to L) (Q) is not compact.

Proof. Assume p(z¢) < N/k. Since dx(z) < |x — x| for each z € RY, we obtain
the conclusion by the previous proposition. [l

q(z) > pi(x) for almost every x € K(r) N Q.

For the compact embeddings, we first give the following result.

Proposition 3.3. Assume that p* < N/k with some k € N. Let q(-) be a
variable exponent on §2 such that 1 < ¢, and

. 4 _
(3.2) esxseglf (pk(:v) q(:v)) > 0.
Then the following hold.

(i) The embedding of WE () to L10)(Q) is compact.
(ii) If Q satisfies the cone condition, then the embedding of W*»()(Q) to L) (1)
is compact.
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The case (i) in the proposition is essentially a special case of [22, Theorem 3.8];
the case (ii) is a slight generalization of [14, Theorem 1.3] to the case 1 < p,.

Proof of Proposition 3.3. We only give a proof of (ii), since (i) can be proved

similarly. Assume that 2 satisfies the cone condition. By (3.2), take € > 0 such that
pl(z) — g(x) > 2e > 0 for almost every = € Q. Since p(-) is uniformly continuous on
Q, one can find open balls {B;},_; and {B;},_, with [ € N such that Qc Ui‘:l B,

B, C Bj and
inf pﬁk(x) —e> sup pi(m) — 2¢ > esssupg(x) foreach j=1,...,1
zeB;NQ z€B;NQ z€B;NQ

Setting p; = infxeéjmp(x) and ¢; = ess supxeéjmq(x), we see that ¢; < Np,;/(N —
kp,) and the embedding from {u € W*?()(Q): u = 0 on Q\ B;} to W#»i(Q) and the
embedding from {u € L%(Q): u=0on Q\ B;} to LI)(Q) are continuous. By the
Rellich-Kondrachov theorem (see |1, Theorem 6.3]), W*?i(Q) is compactly embedded
into L% (§2). Now, take ¢; € C'(€;[0,1]) such that [V;| < ConQ, ¢; =1 on QNB;
and p; = 0 on Q\ B;. It is easy to see that the linear operator u — ¢;u is continuous
on WkPL)(Q). Noting ¢ju = 0 on Q\ B; for each u € W*?()(Q), we can infer that
{pju: u € WEPO(Q)} is compactly embedded into L) (€2). Passing to subsequences
repeatedly, we obtain the conclusion. O

For a compact set K in RV and s € [0, N], following Mattila 25|, we say that
the (N — s)-dimensional upper Minkowski content of K is finite if

|K(r)] < Cr® for small r > 0.

Now we are concerned with the compact embedding from W™ (')(Q) to L10)(Q)
when ¢(-) and pf(-) coincides on some part of Q.
Theorem 3.4. Let o(-): [1/r9,00) — (0,00) be a continuous function such that
(i) p(r)/logr is nonincreasing on [1/rg, 00),
(i) p(r) — o0 asr — oo
for some ry € (0,1/€). Let K be a compact set in RN whose (N — s)-dimensional
upper Minkowski content is finite for some s with 0 < s < N. Let k € N and let q(-)
be a variable exponent on §2 such that
(i) 1 < g < ¢F < o0,
(iv) essinfo k(rg) (pi(x) — q(x)) >0,
p(1/0k(z))
v) q(z) < pl(z) — o
Then the embedding from WEPY(Q) to L10(Q) is compact.

Proof. Without loss of generality, we may assume ¢(r)/logr — 0 as r — o0;
otherwise, we have ess infxeg(pi(x) —q(x)) > 0, so that the conclusion follows from
Proposition 3.3 (i).

First, consider the case p* < N/k. Let us prove that

for almost every x € K(ry) N <.

(3.3) lim_sup { /K - [0(2)]*@dz: v € Wy Q) [0lwrso o) < 1} = 0.
g)N

e—+40
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For this purpose, take f with 0 < 3 < s/(p*)i Let € > 0 such that 7! > 1/r and
©(1/e) > 1. We set 1, = e P" for each n € N. Then, by the assumptions on ¢, we
have for each n € N and z € (K(¢") \ K(¢"1)) N Q,

0(1/6 5 (2)) p(1/emt)

2)—ph (z g/ &) Tog(1/771)
) < R < T (B (n 4 1))p(1/") = A,

Since
IK(r)nQ < Cr® forallr >0
by the boundedness of €2, we have

=\ *
/ T]Z(w)dx < nr(Lp )k / do < Cents—h )uk)'
(K (em)\ K (en+1))NQ2 K(e")NQ

Hence we have

/ ()1
(K (eM)\K ()N
f
ph(@)—q(@)
S/ v(z)]7® <M) da:—l—/ n?@ dz:
(K (eM)\K(e™+1)n "I (K(e)\K (e%1)n%
gAn/ [v() |5 da + Cene=0R),
(K (e)\K (e"+1))nQ

so that for each ng € N, we obtain

[o() | da = / 1 ()1 dz
/K(a”O)ﬂQ Z K(e)\K(ent1)N

n=ng
S(supAn)/]v ]pk d:v—i—C'Ze B,
n>ng
n=ng

Since A, — 0 as n — oo, s — B(p*)L > 0 and |jv|| ; < O]l ) for all

p ()(Q)
(NS W:’p(')(Q) by Corollary 2.3, (3.3) is obtained by letting ng — oo.

Let {v;} be a bounded sequence in W™ (')(Q). We may assume that it con-
verges weakly to some v € W, (')(Q). By Proposition 3.3 (ii), the embedding from
WHP0)(B) to LI(B) is compact for each ball B C € such that essinf,cp(p(z) —
q(x)) > 0. Let n € N. Since Q\ K(27") is a bounded open set in RY, there exists a
finite family of balls contained in RY \ K (27™"!) whose union contains Q2 \ K(27").
Since ess inf,co\ k(2-n- 1)(pk( x) —q(z)) > 0, we can find a subsequence {v;, ,} of {v;}
such that v, , — v in LIO(Q\ K(27")) as well as almost everywhere on Q\ K(27").
Using the diagonal method, we can find a subsequence {v;, } such that v; — v in

L1O(Q\ K(g)) for each small ¢ > 0 and v;, — v almost everywhere on . It follows
that

[ oy, (@) - (@)

n—oo

S ([ @ @ [ - )
" N K (9o Q\K(e)

G [ o) - @)
N0 JK(e)NQ
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for each small e > 0, which together with (3.3) implies that [lv;, — v|| e () — O as
n — oo.
Next consider the general case. We choose €5 > 0 such that

¢" < N(N/k —¢e0)/(keo) — (1/r0)/ log(1/ro).

We set p.,(z) = min{p(z), N/k — g¢}. Since the embedding from W[f’p(')(Q) to
Wéc ’pso(')(Q) is bounded, we can apply the first considerations to obtain the required
result. 0

As a special case of Theorem 3.4, we have the following corollary, which gives
an extension of [23, Theorem 2|. We put log' r = logr and log"™'r = log(log™ ),
inductively.

Corollary 3.5. Let k € N and let q(-) be a variable exponent on ) such that
1 <q. < q* < o0. Suppose there exist xg € 2, C > 0, n € N and small ry > 0 such
that

ess inf (pﬁk(x) — q(x)) >0

x€Q\ By (o)

and
_ Clog"(1/|x — o)
log(1/]z — xo])

Then the embedding from Wéc’p(')(Q) to L1)(Q) is compact.

q(z) < pl(z) for almost every z € B, (o).

4. Existence of a solution to (1.3): compact embedding case

In this section, we assume that p(-) is a variable exponent on 2 satisfying the
log-Hoélder condition and 1 < p, < p* < N. Further let ¢(-) be a variable exponent
on 2 such that p* < ¢, < ¢(x) < pﬁ (x) for almost every = € Q.

As an application of Theorem 3.4, we show an existence result of nontrivial
nonnegative weak solutions to (1.3) as follows.

Theorem 4.1. Assume that the embedding from Wol’p(')(Q) to L1V (Q) is com-
pact. Then there exists a nontrivial nonnegative weak solution of (1.3).

In the case of essinf,eq(pf(z) — ¢(x)) > 0, Fan and Zhang obtained such a result
in [15, Theorem 4.7]. Although ¢(-) can be equal to p(-) at some points, the proof
in [15] also works in our case with minor changes since we consider the case that

the embedding from W,? (')(Q) to L10)(Q) is compact. However, for the reader’s
convenience, we give a proof of our theorem.

Let X be a Banach space. We say that u € X is a critical point of I € C*(X; R) if
the Fréchet derivative I'(u) of I at u is zero. We say that {u,} C X is a Palais-Smale
sequence for [ if {I(u,)} is bounded and I'(u,) — 0 as n — oo in the dual space
of X. We also say that I satisfies the Palais—Smale condition if every Palais—Smale
sequence for I has a convergent subsequence.

We consider a functional I: W (Q) — R defined by

0= [ (o iva@r® — Lt 9@ ) de for e e
10 = [ (Tl - L@ Yo foru e W),
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The Gateaux derivative I'(u) of I at u € Wol’p(')(Q) is given by

/ o T(uAtv) = I(u)
(1), ) = g

= /Q (|Vu(x)|p($)_2Vu(x)Vv(x) - uﬂa:)qu)_lv(x)) dx

for each v € Wy ” (')(Q). By the Vitali convergence theorem, we see that I’ is continu-
ous from Wol’p(')(Q) to its dual space (Wol’p(')(Q))’, and hence I € 01(W017p(~)(9); R).
The following is essentially due to Boccardo and Murat [4, Theorem 2.1].

Proposition 4.2. Let {u,} C Wol’p(') (2) be a Palais—Smale sequence for I. Then
{u,} is bounded in Wol’p(')(Q). Further there exist a subsequence {u,,} of {u,} and
u € Wol’p(')(Q) such that {Vu,,(x)} converges to Vu(z) for almost every x € (.

Proof. Setting § = sup,,en I (u,,), we have

1 1
(4.1) / (—*|Vun(x)‘p(a:) — —u;{(;c)q(z)> de < I(u,) <[ foralln e N.
Q \P q

*

Since I'(u,) — 0 as n — oo in (Wol’p(')(Q))’, we have

(4.2) /Q (IVun (@) P =t (2)7) d = (I’ (un), un) > —|ltinllwr.00 (@)

for each large positive integer n. Subtracting (4.2) divided by ¢, from (4.1) gives

1 1 1
(]; - q—) / |V ()PP de < 6+ q—HunHWLp(-)(Q) < C(IVunll pror ) +1);
* Q *

we used Lemma 2.2 in the second inequality. Thus Lemma 2.1 gives

Hvun”LP<'>(Q) +1> C’min{HVun }17;(-)(9)7 |’VU1’LHI£p(-)(Q)} )

so that {u,} is bounded in W,” (')(Q). Hence, passing to a subsequence, we may

assume that {u,} converges weakly to some u in Wy” (')(Q) and {u,(z)} converges
to u(x) for almost every x € Q2. For n > 0, let 7;,: R — R be a function such that

T,(t) =t for |t| <n, T,(t) =nt/|t| for |t| > n.
Since {T,,(u, —u)} converges weakly to 0 in Wol’p(') (Q) and {u,,} is bounded in L") (Q)

by Lemma 2.2, we have

lim (|Vun(x)]p(x)_2Vun(a:) - |Vu(a:)|p(x)_2Vu(a:)) V(T (un(z) — u(x))) d

n—oo Q

= Tim | u} (@)™ (ua(2) — u(x)) dz < O,

n—oo Q
where C' > 0 is a constant which is independent of n > 0. We set
pn(x) = (|Vun ()P >V (z) = [Vu(@)[PD > Vu(z)) (Vua(z) — Vu(z)) .
We note that p, > 0 almost everywhere for each n € N. Further we set

E,={z € Q: |u,(z) —u(x)| <n}, F,={z¢€Q: |u,(x)—u(x)| >n}
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for each n € N. We fix 6 € (0, 1). Since

0 0
/pn(x)e dzx < </ pn () dx) |E, "0 + (/ Pn(x) dx) |F,|'~? for each n € N,
Q n n

|F.| — 0 and {p,} is bounded in L'(2), we have

i [ po(e)’ de < (Cn)°|Qf.

n—oo QO

Letting 7 — 0, we have [, po(2)? dz — 0. Thus we may assume {p,(x)} converges
to 0 for almost every x € Q. Since p, > 1, we see that a subsequence of {Vu,(z)}
converges to Vu(z) for almost every = € ). O

Lemma 4.3. Suppose the embedding from Wol’p(')(Q) to L1O)(Q) is compact.
Then the functional I satisfies the Palais-Smale condition.

Proof. Let {u,} ¢ W, (')(Q) be a Palais-Smale sequence for /. By the previous

proposition, we may assume that {u,} converges weakly to some u € W, (')(Q), and
{un(z)} and {Vu,(z)} converge to u(x) and Vu(z) almost every x € 2, respectively.
Since (I'(u,),u) — 0, the Vitali convergence theorem implies that

/]Vu(:v)\p(x) dxz/u*(a:)q(”‘") d.
Q

Q

This equality together with (I’(u,,), u,) — 0 and the compact embedding assumption
give

lim [ |Vu,(2)[P® dr = lim | uf(2)?® d

" = [t @y e = [ 19u)p ae

Now, we consider the function
wp(x) = 2771 (IVun (2) @) + V(@) P)) = [Vun(2) = Va(a)[

Since wy,(x) > 0 for almost every x € €2, we see from Fatou’s lemma and (4.3) that

op* / |Vu(x)|l’(m)dx — lim |V, (x) — Vu(x)|p(x) dx
Q

n—oo

Q
> / lim w,(2)dz = 2 / Vu(a) PP de,
Q Q

so that
im [ |Vun(z) — Vu(z) "™ de = 0.
n—oo QO
Hence we see that {u,} converges strongly to u in W, * (')(Q). O

We recall the following variant of the mountain pass theorem; see e.g., [34].

Theorem 4.4. Let X be a Banach space and let I be a C' functional on X such
that 1(0) =0,
(1) there exist positive constants k,r > 0 such that I(u) > k for all uw € X with
|lu|| = r, and
(ii) there exists an element v € X such that I(v) < 0 and ||v|| > 7.
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Define
o=t T00)
where
@4 T={e00.1:X) (0= 0. 16(1) < 0. |y > ).

Then ¢ > 0 and for each ¢ > 0, there exists u € X such that |I(u) — ¢| < ¢ and
()] <e.

Now we are ready to prove Theorem 4.1.
Proof of Theorem 4.1.. First we find r > 0 such that
(4.5) inf{7(u): u € Wy (Q), ullyrro ) =1} > 0.

Taking 7 > 0 so small, by Lemma 2.2, we have ||Vl o)) < 1 and ||ul perq) < 1

for all u € Wy (Q) with |ullwrsc@ = 7. Then for each u € WP () with
[ullwro0 () = 7, we have

[t

by Lemmas 2.1 and 2.2, so that

()

I(u) > —||Vu||m ||Vu||mm

Since p* < ¢, we have (4.5) if r > 0 is small.
Next we prove [(tu) — —oo as t — oo for u € Wol’p(’)(Q) with u™ # 0. In fact,
if u e Wol’p(')(Q) such that u™ # 0, then we see that

. 1 1
I(tu) < tP /—Vu x p(x)dx—tq*/—qu )@ dy — —c0
)= ) py V) aan" "

as t — oo, since p* < g,.
Now the required result follows from Lemma 4.3 and Theorem 4.4. 0

As a direct consequence of Theorem 4.1, we have the following:

Corollary 4.5. Suppose all hypotheses in Theorem 3.4 hold for k = 1. Then
there exists a nontrivial nonnegative weak solution of (1.3).

5. Existence of a solution to (1.3): noncompact embedding case

Our final aim is to deal with the existence result of a nontrivial nonnegative weak
solution to (1.3) in the case that the embedding may not be compact.

For real sequences {a,} and {b,}, we write a,, = b, + o(1) or a,, < b, + o(1) if
lim, (a, — b,) = 0 or lim, (a, — b,) < 0, respectively.

Proposition 5.1. Let p(-) be a log-Holder continuous function on €2 with 1 <
P« < p* < N and let q(-) be a measurable function on ) such that p* < q. < q(z) <
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pi(x) for almost every x € Q. Assume inf,e 4, I(u) < inf,e s, J(u), where

= [ (o vur® — Lt 0191 @ ) de for w e WO

100 = (G Ve = et @) e o2 W00
u) = 1 wlz)P@) — 1 uHP @) dr foru Lp(")

J(u) /Q(p(x)yv @ @) ) do for u € WO(Q),

;= {u e WHO@)\ {0} /Q V()P dz = /Q ot ()@ dx} |
Ny = {u e WP Q) \ {0}: /Q Vu(z)[?® do = /Q ut(z)Pi@ dx} .

Then problem (1.3) has a nontrivial nonnegative weak solution.

Proof. We set ¢ = infye 4, I(u), and define I" by (4.4) with X = Wy (€). Along
the similar lines as those in the proof of Theorem 4.1, we can easily see that I" # (),
Ny # 0, A1 # 0 and (4.5) holds for small r > 0.

First we show

(5.1) ¢ = inf max I(7(t)).

Let u € A7. For o, > 1 large enough, consider the path v, € I" defined by ~,(t) =
tau for t € [0, 1]. Since I(u) = maxo<i<1 I(7,(t)), we have

> i .
2 Inf iy 1)

On the other hand, let v € I'. Then

KﬁvwnW@—wuﬁw@mx<o

As in the proof of Theorem 4.1, we find a small ¢ > 0 satisfying

/Q(WV(??)V’“) — (v ()")") dz > 0.

By the intermediate value theorem, there exists ¢ € (0, 1) such that v(¢) € .47, which
implies ¢ < inf.ep maxo<;<1 £(7(¢)). Thus (5.1) holds.

Now, in view of Theorem 4.4, ¢ > 0. Moreover there exists {u,} C W,” (')(Q)
such that I(u,) — c and I'(u,) — 0 in (Wol’p(')(Q))’. By Proposition 4.2 and ¢ > 0,
we find a constant C' > 0 such that

1
(5.2) - < / |V, (2)[P®) de < C for large n € N.
Q

Here we may assume that {u,} converges weakly to some u € W™ (')(Q); further
{un(z)} and {Vu,(x)} converge to u(z) and Vu(z) for almost every = € Q, respec-
tively. Then it follows that I'(u) = 0. If we show that u # 0, then u is a nontrivial
nonnegative weak solution of (1.3).

On the contrary, suppose u = 0. Since I(u,) — ¢ > 0 and (I'(u,),u,) — 0,
taking a subsequence if necessary, we may assume u,;” # 0 for all n € N. Then for
each n € N, there exists a unique ¢,, € (0, 00) such that

w (2N P@ dp — uF (2P @ gy
léwwn4>n d A@nﬂ)) dr,
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ie., tyu, € A7. We will show ¢, < 1+ o(1). On the contrary, if there exists £ > 0
such that ¢, > 1 + ¢ for all n € N, then

/|Vu |w>dm>/|v i (2)) [P

_/Q(t uf (@)@ dp > g0 /Q ()@ dg

for all n € N. Using Lebesgue’s convergence theorem, we have

/|Vu ()P dx—/ )@ dx + 0(1)

_ / (@)1 d + / (@)™ d + of1)
{z€Qiun(x)<1} {z€Qiun(z)>1}

/mln{u 1}dx+/Q @ dg 4 o(1)
< [ @yt de -+ o),

Hence it follows that

[vu@Pede 0 [ upapio s (e [ e
Q Q Q

> (1 +¢e)¢F (/Q|Vu (z )|p(x)dx+o(1))

which together with (5.2) yields a contradiction. Thus we have shown ¢, <1+ o(1).
On the other hand, for each n € N, take a unique number s,, > 0 such that

(5.3) / IV (81t () [P) e = /(snu ()7 dg,
Q
ie., syu, € 7. We see easily that I(s,u,) = maxssoI(su,) for each n € N. By
(5.2), (5.3) and (I'(u,),u,) = o(1), we infer that s, = 1+ o(1), so that
I(uy,) = I(spun,) +0(1) = max I(sup,) 4+ o(1) > I(tyu,) + o(1).

Let € € (0,1). Then, noting

/ (tout ()1 dw < / min{t,u,; (z), 1} dz + /(tnujb(x))p’i(:r)e du
{z€Q:q(2)<p ()¢} 0 0
= o(1),

we obtain

c=1I(up) +o(1) > I(tyu,) + o(1)

v enr® — P ® Y de o
> [ (It @) = i @) de+ot)

1
1 1
= J(tnun)~|—/ ( TR ) (thut (z ))pl(x dr +o(1) > inf J(v)— Ce,
o \pj(x) pi(z)—c¢ vEN;
where C'is a constant which is independent of € € (0, 1). Since € € (0, 1) is arbitrary,

we conclude that ¢ > inf,c 4, J(v), which contradicts our assumption. Hence it
follows that u # 0, as required. U
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We denote by 2'*0)(RY) the completion of C5°(RY) by the norm || Vul| o) g
in C°(RY).

Theorem 5.2. Let p(-): RY — R be a log-Hélder continuous function with
1 < p. <p* <N, and let q(-): RN — R be a measurable function such that
P < ¢ < q(x) < pi(x) for almost every x € RN. Assume that 2'*O(RN) is
continuously embedded into Lpg(')(RN), i.e., there exists a constant C' > 0 such that

(5.4) ”“”LP’MRN) < C||Vul oy for all w € 27O(RN).

Assume also that there exist a measurable subset D of RN and a number gy such
that

(5.5) §E|@ezimnyeDH<L&mm
Np/(N +p. —p) < @ < Np/(N — p), and esssup,cgv\pq(r) < qo, where p =

lim, . p(x). Then there exists R > 0 such that for each bounded open set ) in RN
which contains Bg(0), problem (1.3) has a nontrivial nonnegative weak solution.

Proof. We set

1 1 #
Jrw (U :/ <— Vou(x)[P@ — ut(x pl(’”)) dx  for u e 2" (RVN),
r () o () (2)] ) (x) (R)

Nion = {u c 2'PORN)\ {0} / V()P do = / uﬂx)pg(x) da:} .
RN RN

By Lemma 2.1 we have for u € A]_

Tome )< [ V@)@ da

; fy
= [t <max (g e L
RY )

LP%(')(RN Lp’i(')(RN)

7w

p
Lp(-)(RN

min{HVuH .

which together with (5.4) implies that

ue,/VJRN

Hence we infer that

ueNs

Choose any pg such that

Npo < g < Npo
N +p« —po N —po
Let @ € Wy (B1(0)) be a weak solution of the problem

—div (|Vu(z)[ > Vu(z)) = u(z)®" in By(0),
(5.7) u(z) >0 in By(0),
u(z) =0 on 0B (0).

(5.6) 1 <po<p and

According to [24, Theorem 1] or [33, Proposition 2.1, we see that @, € C*#(B;(0))
for some 3 € (0,1). Hence, for each R > 0, tig(x) = R77/(@=P)g,(2/R) is a weak



128 Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

solution of (5.7). Take Ry > 0 such that maxj,<gtr(z) <1 for R > R;. For each
R > 0, there exists a unique tg € (0, 00) such that

[ Wnntep de= [ fiat)o de
BRr(0)

Br(0)
From (5.5), we find § > 0 and Ry > R; such that

{z € B1(0): Rx € D}| <|By(0)] — 0 for each R > R,.
We will show {tg: R > R»} is bounded. If tp > 1 with R > Rs, then we have
t / |Viig(z)[P™) do > / |trtR(z)|") do > th / g (z)|® do
Br(0) Br(0)

Br(0)\D
- ( R A da:) |
Br(0) Bgr(0)ND

qQ(pQ—P(Rw))

J5.0 w-ro |V (x) PP da
5,0 1 ()]0 dz —SUP{fA|U1 z)|® dr: A C Bi(0),]|A| < |B1(0)| — 0}

Let ro > 0 such that p(z) > po for all x € RY with |z| > 7. By (5.6) and the
boundedness of |V, |, we have for R > rq,

90(po—p(Rz)) _ (Rz) 20(po—p(Rzx))
R wro |V (z)P" de < C R w0 dx
B1(0) |

z|<ro/R

(po—p(Rz)) q0(Pg—px) N
+ / =T dx) <c (R e ()" 1) <
ro/ R<z/<1 R

where each C' is a positive constant which is independent of R. Hence we insist that
{tr: R > Ry} is bounded. Then we have

1 1
SR~ S enin@) ) de < € [ [an) da
/BR(O) (P(ﬂf) e q(z) e Br(0) f
- O/ R0 ™|y (o) P de < (J(R wrord + R™ q?)”p;’owv) 0
B1(0)

which implies

tQ* —p* <

as R — oo. Hence we can find R > R, satisfying

1 1
— |V (trug(x p(m)——tRﬂRQJ q(x)) dex < inf Jr~(v).
[ (W in(a)® = e st o)
Now, let 2 be any bounded open set which contains Br(0). Extending ug on € with
ugr(x) =0 for x € Q\ Bg(0), we have ug € Wol’p(')(Q). Letting I, J, A7 and A4 be
as in the previous proposition, we have
: < _ : < .
vlen/fV[ I(v) < I(tgug) < UGIJIViN Jr (v) < ulerbf{, J(v)

Hence problem (1.3) has a nontrivial nonnegative weak solution on €2 by the propo-
sition. U

Finally, we give a sufficient condition for (5.4). We recall the following result,
which is a special case of [6, Theorem 1.8].
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Lemma 5.3. Let p(-): RY — R be a log-Holder continuous function which
satisfies 1 < p, < p* < N and

C .
Ip(z) — p(y)| < log(e + |2]) for each z,y € RY with |y| > |x].
Then the fractional integral operator
u(y)
——
T ry |z —y[V! Y

is bounded from L) (RY) to LP1O(RY).

Corollary 5.4. Let p(-): RY — R be as in the previous lemma, and let D, g,
and q(-) be as in Theorem 5.2. Then there exists R > 0 such that for each bounded
open set 2 in RN which contains Bg(0), problem (1.3) has a nontrivial nonnegative
weak solution.

Proof. Using the previous lemma, we can show that 2'2)(R") is continuously

embedded into Lpg(')(RN ) by similar lines as those in [35, p. 88|. Hence we obtain
the conclusion by Theorem 5.2. O
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