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Abstract. We use heat kernels or eigenfunctions of the Laplacian to construct local coordi-
nates on large classes of Euclidean domains and Riemannian manifolds (not necessarily smooth,
e.g. with C α metric). These coordinates are bi-Lipschitz on embedded balls of the domain or man-
ifold, with distortion constants that depend only on natural geometric properties of the domain
or manifold. The proof of these results relies on estimates, from above and below, for the heat
kernel and its gradient, as well as for the eigenfunctions of the Laplacian and their gradient. These
estimates hold in the non-smooth category, and are stable with respect to perturbations within this
category. Finally, these coordinate systems are intrinsic and efficiently computable, and are of value
in applications.

1. Introduction

The concept of a coordinate chart for a manifold is quite old, but it has only
recently become a subject of intensive study for data sets. In this paper we will state
and prove a new theorem for coordinate charts on Riemannian manifolds. This result
is meant to explain the empirically observed robustness of certain coordinate charts
for data sets, Before stating our results, we explain in more detail the setting, first
for manifolds, and then for data sets.

Let M be a Riemannian manifold. A coordinate chart (more precisely, a restric-
tion of one) can be viewed as a mapping from a metric ball B ⊂ M into Rd, where
d is the topological dimension of M . This mapping has the form

F (x) =
(
f1(x), f2(x), . . . , fd(x)

)
.

It is natural to ask for F to have low distortion. Let F (B) = B̃ ⊂ Rd. By assumption
F is a one to one mapping from B to B̃. The Lipschitz norm of F is defined as

‖F‖Lip = sup
x,y∈B
x6=y

‖F (x)− F (y)‖
dM (x, y)
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where dM (· , ·) is the metric on M and ‖ · ‖ is the usual Euclidean metric on Rd.
Similarly, one sets

‖F−1‖Lip = sup
x,y∈B
x6=y

dM (x, y)

‖F (x)− F (y)‖ .

Then the distortion of F on B is defined to be

(1.0.1) Distortion(F,B) := ‖F‖Lip × ‖F−1‖Lip.
It is worth recalling at this point a prime example of a coordinate chart, namely

the coordinate chart on a simply connected planar domain D given by a Riemann
mapping F from D to the unit disc D. Let z0 ∈ D and define r = dist(z0, ∂D). If
we choose our Riemann map F to satisfy F (z0) = 0, then the distortion theorems of
classical complex analysis (see e.g. [38, page 21]) state that F maps the disc B(z0,

r
2
)

onto “almost” the unit disc, with low distortion:

B(0, κ−1) ⊂ F
(
B(z0,

r

2
)
) ⊂ B(0, 1− κ−1),(1.0.2)

Distortion
(
F,B(z0,

r

2
)
) ≤ κ.(1.0.3)

In other words, on B(z0,
r
2
), F is a perturbation (in the proper sense) of the linear

map given by z → F ′(z0)(z − z0), and |F ′(z0)| ∼ 1
r
.

In this paper we will look for an analogue of (1.0.2) and (1.0.3) above, but in
the setting of Riemannian manifolds. We will show that on Riemannian manifolds
of finite volume there is a locally defined F that has these properties, and that this
choice of F will come from globally defined Laplacian eigenfunctions. On a metric
embedded ball B ⊂ M we will choose global Laplacian eigenfunctions ϕi1 , ϕi2 , . . . , ϕid

and constants γ1, γ2, . . . , γd ≤ κ (for a universal constant κ) and define

(1.0.4) Φ :=
(
γ1ϕi1 , γ2ϕi2 , . . . , γdϕid

)
.

This choice of Φ, depending heavily on z0 and r, is globally defined, and on B(z0, κ
−1r)

enjoys the same properties as the Riemann map does in (1.0.2) and (1.0.3). In other
words, Φ maps B(z0, κ

−1r) to, roughly, a ball of unit size, with low distortion. Here
we should point out the 1994 paper of Bérard et al. [5] where a weighted infinite
sequence of eigenfunctions is shown to provide a global coordinate system (points in
the manifold are mapped to `2). To our knowledge this was the first result of this
type in Riemannian geometry. Our results can be viewed as a strengthening of their
work, and have as a consequence the statement that for a compact manifold without
boundary, a good global coordinate system is given by the eigenfunctions ϕj with
eigenvalues λj < κR−2

inj . Here Rinj is the inradius of M , i.e. the largest r > 0 such
that for all x ∈ M , B(x, r) is an embedded ball.

The impetus for this paper and its results comes from certain recent results in
the analysis of data sets. A recurrent idea is to approximate a data set, or a portion
of it, lying in high dimensional space, by a manifold of low dimension, and find a
parametrization of such data set or manifold. This process sometimes goes under
the name of manifold learning, or linear or nonlinear dimensionality reduction. This
type of work has been in part motivated by spectral graph theory [8] and spectral
geometry [7, 23, 17] (and references therein). Let {xj}N

1 be a collection of data points
in a metric space X. It is frequently quite difficult to extract any information from the
data as it is presented. One solution is to embed the points in Rn for n perhaps quite
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large, and then use linear methods (e.g. those using singular value decomposition) to
obtain a dimensional reduction of the data set. In certain situations however linear
methods are insufficient. For this reason, there has recently been great interest in
nonlinear methods.1 Unfortunately such techniques seldomly come with guarantees
on their capabilities of indeed finding local parametrization (but see, for example,
[18, 19, 52]), or on quantitative statements on the quality of such parametrizations.

One of these methods, diffusion geometry, operates by first defining a kernel
K(xj, xk) on the data set, and then altering this slightly to obtain a self-adjoint
matrix (mj,k) that roughly corresponds to the generator of a diffusion process. The
eigenvectors of the matrix, should be seen as corresponding to Laplacian eigenfunc-
tions on a manifold. One (judiciously) selects a collection vi1 , vi2 , . . . , vim of eigen-
vectors and maps

(1.0.5) xk → (vi1 , vi2 , . . . , vim) ∈ Rm.

Careful choices of collections of eigenvectors have been empirically observed to give
excellent representations of the data in a very low dimensional Euclidean space. What
has been unclear is why this method should prove so successful. Our results show
that in the case of Riemannian manifolds, one can prove that this philosophy is not
just correct, but also robust. It is to be said that researchers so far have restricted
their attention to the case when the lowest frequency eigenfunctions are selected, i.e.
i1 = 1, i2 = 2, . . . , im = m [47, 2, 4, 10, 12, 9].

Given these results, it is plausible to guess that an analogous result should hold
for a local piece of a data set if that piece has in some sense a “local dimension”
approximately d. There are certain difficulties with this philosophy. The first is that
graph eigenfunctions are global objects and any definition of “local dimension” may
change from point to point in the data set. A second difficulty is that our results for
manifolds depend on classical estimates for eigenfunctions. This smoothness may be
lacking in graph eigenfunctions.

It turns out that another of our manifold results does not suffer from these serious
problems when working on a data set. We introduce simple “heat coordinate” systems
on manifolds. Roughly speaking (and in the language of the previous paragraph)
these are d choices of manifold heat kernels that form a robust coordinate system on
B(z0, κ

−1r). We call this method “heat triangulation” in analogy with triangulation
as practiced in surveying, cartography, navigation, and modern GPS. Indeed our
method is a simple translation of these classical triangulation methods, and has
a closed formula on Rd, which we note has infinite volume! (Our result on heat
kernels makes no assumptions on the volume of the manifold.) For data sets, heat
triangulation is a much more stable object than eigenfunction coordinates because:

• Heat kernels are local objects (see e.g. Proposition 3.3.2).
• If a manifold M is approximated by discrete sets X, the corresponding graph
heat kernels converge rather nicely to the manifold heat kernel. This is studied
for example in [29, 10, 11, 3].

1Examples of such disparate applications include document analysis [14], face recognition [25],
clustering [35, 1], machine learning [4, 36, 50, 32, 31, 51], nonlinear image denoising and segmentation
[43, 50], processing of articulated images [19], cataloguing of galaxies [20], pattern analysis of brain
potentials [30] and EEG data [42], and the study of brain tumors [6]. A variety of algorithms for
manifold learning have been proposed [39, 3, 4, 29, 10, 12, 13, 52, 57, 19, 53, 54, 41, 40].
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• One has good statistical control on smoothness of the heat kernel, simply
because one can easily examine it and because one can use the Hilbert space
{f ∈ L2 : ∇f ∈ L2}.

• Our results that use eigenfunctions rely in a crucial manner on Weyl’s Lemma,
whereas heat kernel estimates do not.

In a future paper we will return to applications of this method to data sets.
The philosophy used in this paper is as follows.

Step 1. Find suitable points yj, 1 ≤ j ≤ d and a time t so that the mapping given by
heat kernels (x → Kt(x, y1), . . . , Kt(x, yd)) is a good local coordinate system
on B(z, κ−1r). (This is heat triangulation.)

Step 2. Use Weyl’s Lemma to find suitable eigenfunctions ϕij so that (with Kj(x) =
Kt(x, yj)) one has large gradient.

Each point y ∈ M gives rise to a heat kernel Kt(x, y). One may think of Step 1 as
sampling this family of heat kernels Kt(x, y) at d different choices y1, . . . , yd. Indeed,
with high probability, randomly chosen points from the appropriate annulus will be
suitable. Step 2 corresponds to sampling the vector {ϕj(x)eλjt}j d times, once for
each point y1, . . . , yd. This last sampling, where we choose an index j, cannot be
performed randomly! (See example in Section 5.1).

At this point we would like to note an advantage that local parametrization by
eigenfunctions has over heat kernel triangulation (which we do not discuss in this
paper). Consider the planar domain [0, 3ε] × [0, 3]. Then, using only two Neumann
eigenfunctions, one gets a good parametrization of the rectangle [ε, 2ε] × [1, 2]. On
the other hand, in order to get parametrization of similar distortion using heat kernel
triangulation, on needs to use ∼ 1

ε
different heat kernels.

To see where our philosophy comes from, we return for a moment to the setting
of a simply connected planar domain D of area = 1. Let z0 ∈ D and r be as in
the discussion before equation (1.0.2). With the choice of Riemann mapping F , with
F (z0) = 0 we have the classical formula known to Riemann:

(1.0.6) F (z) = exp
{−G(z, z0)− iG∗(z, z0)

}
.

Here G(·, z0) is Green’s function for the domain D , with pole at z0, and G∗ is the
multivalued conjugate of G. Thus, all information about F on B(z0,

r
2
) is encoded in

G(z, z0). Recall that

(1.0.7) G(z, z0) =

∞̂

0

K(z, z0, t) dt,

where K is the (Dirichlet) heat kernel for D . Thus the behavior of F can be read off
the information on K(z, z0, t). Now write

(1.0.8) K(z, z0, t) =
∞∑

j=1

ϕj(z)ϕj(z0)e
λjt,

where {ϕj} is the collection of Dirichlet eigenfunctions (normalized to have L2 norm
= 1) and ∆ϕj = λjϕj. Notice that

(1.0.9) |F ′(z)| = |∇G(z, z0)|e−G(z,z0).
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Since |F ′(z)| ∼ 1
r
on B(z0,

r
2
), it is reasonable to guess from the above identities that

there are eigenfunctions ϕj such that

(1.0.10) |∇ϕj| & 1

r

on B(z0, κ
−1r), for some κ > 1, independent of D . (More precisely, a short calculation

with Weyl’s estimates makes this reasonable.) This simple reasoning turns out to be
correct and the main idea of this paper. The proof does not depend on any properties
of holomorphic functions, but runs with equal ease in any dimension. This is because
it only requires estimates on the heat kernel, Laplacian eigenfunctions and their
derivatives, all of which are real variable objects.

The paper is organized in a top-bottom fashion, as follows. In Section 2 we
state the main results, in Section 3 we present the main Lemmata, the proofs of the
main results, and important estimates on the heat kernel and eigenfunctions of the
Laplacian, together with their proofs, but mostly only in the Euclidean case. For the
purpose of completeness we have recorded here proofs of several known estimates,
over which the experts may wish to skip. In Section 3.5 we present the material for
generalizing most estimates to the manifold case. Finally, we discuss some examples
in Section 5.

2. Results

2.1. Euclidean domains. We first present the case of Euclidean domains.
While our results in this setting follow from the more general results for manifolds
discussed in the next section, the case of Euclidean domains is of independent interest,
and the exposition of the main result as well as the proof in this case is simpler in
the several technical respects.

We consider the heat equation in Ω, a finite volume domain in Rd, with either
Dirichlet or Neumann boundary conditions i.e., respectively,{

(∆− ∂
∂t

)u(x, t) = 0,

u|∂Ω = 0,
or

{
(∆− ∂

∂t
)u(x, t) = 0,

∂νu|∂Ω = 0.

Here ν is the outer normal on ∂Ω. Independently of the boundary conditions, ∆
denotes the Laplacian on Ω. In this paper we restrict our attention to domains
where the spectrum is discrete and the corresponding heat kernel can be written as

Kt(z, w) = KΩ
t (z, w) =

+∞∑
j=0

ϕj(z)ϕj(w)e−λjt.(2.1.1)

where the {ϕj} form an orthonormal basis of eigenfunctions of ∆, with eigenvalues
0 ≤ λ0 ≤ · · · ≤ λj ≤ . . . . We also require a (non-asymptotic) Weyl-type estimate:
there is a constant Ccount such that for any T > 0

(2.1.2) #{j : 0 < λj ≤ T} ≤ CcountT
d
2 |Ω|.

In the Dirichlet case Ccount does not depend on Ω (see remark 3.4.3). For the Dirichlet
case the only substantial problem is that the eigenfunctions may fail to vanish at the
boundary. This in turn only occurs if there are boundary points where the Wiener
series (for the boundary) converges [55, 28]. For the Neumann case the situation is
more complicated [34, 26, 33]. In particular, there are domains with arbitrary closed
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continuous Neumann spectrum [26]. We therefore restrict ourselves in this paper to
domains (and, later, manifolds) where conditions (2.1.1) and (2.1.2) are valid. More
general boundary conditions can be handled in similar fashion, since our analysis is
local and depends on the boundary conditions only through the properties above.

Finally, here and throughout the manuscript, we define
ffl
B

f := 1
|B|

´
B

f .

Theorem 2.1.1. (Embedding via eigenfunctions, for Euclidean domains) Let Ω
be a finite volume domain in Rd, rescaled so that |Ω| = 1. Let ∆ be the Laplacian
in Ω, with Dirichlet or Neumann boundary conditions, and assume that (2.1.1) and
(2.1.2) hold. Then is a constant κ > 1 that depends only on d such that the following
hold.

For any z ∈ Ω, let ρ ≤ dist (z, ∂Ω). Then there exist integers i1, . . . , id such that,
if we let

γl =




 

B(z,κ−1ρ)

ϕ2
il




− 1
2

, l = 1, . . . , d,

we have that
(a) the map

Φ: B(z, κ−1ρ) → Rd,(2.1.3)
x 7→ (γ1ϕi1(x), . . . , γdϕid(x))(2.1.4)

satisfies, for any x1, x2 ∈ B(z, κ−1ρ),

(2.1.5)
κ−1

ρ
‖x1 − x2‖ ≤ |Φ(x1)− Φ(x2)‖ ≤ κ

ρ
‖x1 − x2‖;

(b) the associated eigenvalues satisfy

κ−1ρ−2 ≤ λi1 , . . . , λid ≤ κρ−2 ;

(c) the constants γl satisfy

γ1, . . . , γd ≤ κ (Ccount)
1
2 .

Remark 2.1.2. In item (c) above, it will also be the case that κ−1ρ
d
2 ≤ γj.

Remark 2.1.3. The dependence on Ccount is only needed in the Neumann case
because, unlike the Dirichlet case, the upper bound in Weyl’s Theorem depends on
the domain. See Remark 3.4.3 for a more precise statement.

2.2. Manifolds with C α metric. The results above can be extended to certain
classes of manifolds. In order to formulate a result corresponding to Theorem 2.1.1
we must first carefully define the manifold analogue of dist(z, ∂Ω). Let M be a
smooth, d-dimensional compact manifold, possibly with boundary. Suppose we are
given a metric tensor g on M which is C α for some α ∈ (0, 1]. For any z0 ∈ M , let
(U,F ) be a coordinate chart such that z0 ∈ U and normalized so that

(i) gil(F (z0)) = δil.
Then we assume that
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(ii) for any x ∈ U , and any ξ, ν ∈ Rd,

cmin(g)‖ξ‖2
Rd ≤

d∑
i,j=1

gij(F (x))ξiξj and

d∑
i,j=1

gij(F (x))ξiνj ≤ cmax(g)‖ξ‖Rd ‖ν‖Rd .

(2.2.1)

We let

(2.2.2) rU(z0) = sup{r > 0: Br(F (z0)) ⊆ F (U)}.
Observe that, when g is at least C 2, rU can be taken to be less than the inradius,
with local coordinate chart (U,F ) given by the exponential map at z. The chart
(U,F ) may intersect the boundary with no consequence, as all of the work will be
done inside B(z0, rU). We denote by ‖g‖α the maximum over all i, j of

sup
x6=y

|gij(F (x))− gij(F (y))|
|F (x)− F (y)|α

for x, y in U . The natural volume measure dµ on the manifold is given, in any local
chart, by

√
det g ; conditions (2.2.1) guarantee in particular that detg is uniformly

bounded below from 0. Let ∆M be the Laplace Beltrami operator on M . In a local
chart, we have

(2.2.3) ∆M f(x) = − 1√
det g

∑
i,j=1

∂j

(√
det g gij(F (x))∂if

)
(F (x)),

when g is smooth enough (e.g. g ∈ C 1). In general one defines the Laplacian
through its associated quadratic form [16, 15]. Conditions (2.2.1) are the usual
uniform ellipticity conditions for the operator (2.2.3). With Dirichlet or Neumann
boundary conditions, ∆M is self-adjoint on L2(M , µ). We will assume that the
spectrum is discrete, denote by 0 ≤ λ0 ≤ · · · ≤ λj ≤ its eigenvalues and by {ϕj} the
corresponding orthonormal basis of eigenfunctions, and write equations (2.1.1) and
(2.1.2) with Ω replaced by M .

Theorem 2.2.1. (Embedding via eigenfunctions, for manifolds) Let (M , g), z ∈
M be a d dimensional manifold and (U, F ) be a chart as above. Assume |M | = 1.
There is a constant κ > 1, depending on d, cmin, cmax, ‖g‖α, α such that the following
hold.

Let ρ ≤ rU(z). Then there exist integers i1, . . . , id such that if we let

γl =




 

B(z,κ−1ρ)

ϕ2
il




− 1
2

, l = 1, . . . , d,

we have that
(a) the map

Φ: B(z, κ−1ρ) → Rd,(2.2.4)
x 7→ (γ1ϕi1(x), . . . , γdϕid(x))(2.2.5)
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satisfies for any x1, x2 ∈ B(z, κ−1ρ)

(2.2.6)
κ−1

ρ
dM (x1, x2) ≤ ‖Φ(x1)− Φ(x2)‖ ≤ κ

ρ
dM (x1, x2);

(b) the associated eigenvalues satisfy

κ−1ρ−2 ≤ λi1 , . . . , λid ≤ κρ−2;

(c) the constants γl satisfy

γ1, . . . , γd ≤ κ(Ccount)
1
2 .

Remark 2.2.2. As in the Euclidean case, in item (c) above, it will also be the
case that κ−1ρ

d
2 ≤ γj

Remark 2.2.3. Most of the proof is done on the local chart (U, F ) containing z.
An inspection of the proof shows that we use only the norm ‖g‖α of the g restricted
to this chart.

Remark 2.2.4. When rescaling Theorem 2.2.1, it is important to note that if
f is a Hölder function with ‖f‖C α = A and fr(z) = f(r−1z), then ‖fr‖C α = Arα.
Since we will have r < 1, fr satisfies a better Hölder estimate then f , i.e.

‖fr‖C α = Arα < A = ‖f‖C α .

We will repeatedly use this observation when discussing manifolds with C α metric.

Remark 2.2.5. We do not know, in both Theorem 2.1.1 and Theorem 2.2.1,
whether it is possible to choose eigenfunctions such that γ1 ∼ γ2 ∼ . . . ∼ γd. If
this were so, the map x 7→ (ϕi1(x), . . . , ϕid(x)) would be a low distortion map whose
image has diameter ≥ κ−1.

Remark 2.2.6. As was noted by Guibas, when M has a boundary, in the case
of Neumann boundary values, one may consider the “doubled” manifold, and may
apply our result for a possibly larger rU(z).

Clearly Theorem 2.1.1 is a particular case of Theorem 2.2.1, but the proof of the
former is significantly easier in that one can use standard estimates on eigenfunctions
of the Laplacian and their derivatives. For the sake of presentation we present one
proof for both Theorems, but two sets of required Lemmata for those estimates which
are significantly different in the two cases.

Remark 2.2.7. The method of the proofs also gives a result independent of the
constant Ccount: Let (M , g) and z ∈ M be as in Theorem 2.2.1. Let η > 0, and
assume that for any x ∈ M we have a chart (U, F ) such that rU(x) ≥ η > 0 (in
particular, M has no boundary). Then for ρ ≤ η the same results as in Theorem
2.2.1 hold, except the constant κ depends only on d, cmin, cmax, ‖g‖α, α and not on
Ccount. This is due to the fact that Ccount becomes universal for values of T > η−2.

Another, in some sense stronger, result is true. One may replace the d eigenfunc-
tions in Theorem 2.2.1 by d heat kernels {Kt(z, yi)}i=1,...,d. In fact such heat kernels
arise naturally in the main steps of the proofs of Theorem 2.1.1 and Theorem 2.2.1.
This leads to an embedding map with even stronger guarantees:

Theorem 2.2.8. (Heat Triangulation Theorem) Let (M , g), z ∈ M and (U,F )
be as above, with the exception we now make no assumptions on the finiteness of
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the volume of M and the existence of Ccount. Let ρ ≤ rU(z). Let p1, . . . , pd be d
linearly independent directions. There are constants c > 0 and c′, κ > 1, depending
on d, cmin, cmax, ρα‖g‖α, α, and the smallest and largest eigenvalues of the Gramian
matrix (〈pi, pj〉)i,j=1,...,d, such that the following holds. Let yi be so that yi − z is in
the direction pi, with cρ ≤ dM (yi, z) ≤ 2cρ for each i = 1, . . . , d and let t = κ−1ρ2.
The map

(2.2.7) x 7→ (ρdKt(x, y1)), . . . , ρ
dKt(x, yd))

satisfies, for any x1, x2 ∈ B(z, κ−1ρ),

(2.2.8)
κ−1

c′ρ
dM (x1, x2) ≤ ‖Φ(x1)− Φ(x2)‖ ≤ κc′

ρ
dM (x1, x2).

The reason for the factor ρα which we have in ρα‖g‖α above is to get scaling
invariance.

This theorem holds for the manifold and Euclidean case alike, and depends only
on the heat kernel estimates (and its gradient). We again note that for this particular
Theorem we require no statement about the volume of the manifold, the existence of
L2 Laplacian eigenfunctions, or their number. The constants for the Euclidean case,
depend only on dimension, and not on the domain. The content of this theorem is
that one is able to choose the directions yi − z randomly on a sphere, and with high
probability on gets a low distortion map. This gives rise to a sampling theorem.

One may replace the (global) heat kernel above with a local heat kernel, i.e.
the heat kernel for the ball B(z, ρ) with the metric induced by the manifold and
Dirichlet boundary conditions. In fact, this is a key idea in the proof of all of the
above Theorems. Thus, on the one hand our results are local, i.e. independent of the
global geometry of the manifold, yet on the other hand they are in terms of global
eigenfunctions.

As is clear from the proof, all theorems hold for more general boundary condi-
tions. This is especially true for the Heat Triangulation Theorem, which does not
even depend on the existence of a spectral expansion for the heat kernel.

Example 2.2.9. It is a simple matter to verify this Theorem for the case where
the manifold in Rd. For example if d = 2, ρ = 1, and z = 0, y1 = (−1, 0) and
y2 = (0,−1). Then if Kt(x, y) is the Euclidean heat kernel,

x → (K1(x, y1), K1(x, y2))

is a (nice) biLipschitz map on B
(
(0, 0), 1

2
). (The result for arbitrary radii then follows

from a scaling argument). This is because on can simply evaluate the heat kernel

Kt(x, y) =
1

4πt
e−

|x−y|2
4t .

So in B 1
2
((0, 0))

∇K1(x, y1) ∼ 1

2π
e−

1
4 (1, 0) and ∇K1(x, y2) ∼ 1

2π
e−

1
4 (0, 1).
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3. The proof of Theorems 2.1.1 and 2.2.1

The proofs in the Euclidean and manifold case are similar. In this section we
present the steps of the proofs of Theorems 2.1.1, 2.2.1 we will postpone the technical
estimates needed to later sections.

Because we may change base points, we will use Rz (or similarly, Rw) in place of
ρ. We will also interchange between B(x, r) and Br(x).

Remark 3.0.10. (Some remarks about the manifold case)
(a) As mentioned in Remark 2.2.3, we will often restrict to working on a single

(fixed!) chart in local coordinates. When we discuss moving in a direction p, we
mean in the local coordinates.

(b) We will use Brownian motion arguments (on the manifold). In order to have
existence and uniqueness one needs smoothness assumptions on the metric (say, C 2,
albeit less would suffice, see e.g. [37]). Therefore we will first prove the Theorem in
the manifold case in the C 2 metric category, and then use perturbation estimates to
obtain the result for g ∈ C α. To this end, we will often have dependence on ‖g‖α

even though we will be (for a specific Lemma or Proposition) assuming the g ∈ C 2.

Notation. In what follows, we will write f(x) .c1,...,cn g(x) if there exists a
constant C depending only on c1, . . . , cn, and not on f, g or x, such that f(x) ≤
Cg(x) for all x (in a specified domain). We will write f(x) ∼c1,...,cn g(x) if both
f(x) .c1,...,cn g(x) and g(x) .c1,...,cn f(x). If f, g take values in Rd the inequalities
are intended componentwise. We will write a ∼C2

C1
b if C1b ≤ a ≤ C2b (componentwise

for a, b vectors).
In what follows we will write ∂pKt(· , ·) to denote the partial derivative with

respect to the second variable of a heat kernel at time t.
3.1. The Case of g ∈ C 2. We note that even though we assume g ∈ C 2,

we only use the C α norm of g. The idea of the proof of Theorems 2.1.1 and 2.2.1
is as follows. We start by fixing a direction p1 at z. We would like to find an
eigenfunction ϕi1 such that |∂p1ϕi1| & R−1

z on Bc1Rz(z). In order to achieve this, we
start by showing that the heat kernel has large gradient in an annulus of inner and
outer radius ∼ R−1

z around y1 (y1 chosen such that z is in this annulus, in direction
p1). We then show that the heat kernel and its gradient can be approximated on
this annulus by the partial sum of (2.1.1) over eigenfunctions ϕλ which satisfy both
λ ∼ R−2

z and R
− d

2
z ‖ϕλ‖L2(Bc1Rz (z)) & 1. By the pigeon-hole principle, at least one

such eigenfunction, let it be ϕi1 has a large partial derivative in the direction p1.
We then consider ∇ϕi1 and pick p2 ⊥ ∇ϕi1 and by induction we select ϕi1 , . . . , ϕid ,
making sure that at each stage we can find ϕik , not previously chosen, satisfying
|∂pk

ϕik | ∼ R−1
z on Bc1Rz(z). We finally show that for the proper choice of constants

γ1, .., γd . 1, the map Φ := (γ1ϕi1 , . . . , γdϕid) satisfies the desired properties.
When working on a manifold, we assume in what follows that we fix a local chart

containing BRz(z), as at the beginning of section 2.2.
Step 1. Estimates on the heat kernel and its gradient. Let K be the Dirichlet or

Neumann heat kernel on Ω or M , corresponding to one of the Laplacian operators
considered above associated with g and the fixed α.
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Assumption A.1. Assume g ∈ C 2, and let α ∈ (0, 1] be given and fixed. Let
constants δ0, δ1 > 0 depend on d, cmin, cmax, ‖g‖α, α. We consider z, w ∈ Ω satisfying
δ1
2
Rz < t

1
2 < δ1Rz and |z − w| < δ0Rz.

Remark 3.1.1. Proposition 3.1.2 below makes no assumptions on the finiteness
of the volume of M and the existence of Ccount. It is also used in the proof of
Theorem 2.2.8.

Proposition 3.1.2. Assume Assumption A.1, δ0 sufficiently small, and δ1 is
sufficiently small depending on δ0. Then there are constants C1, C2, C

′
1, C

′
2, C9 > 0,

that depend on d, δ0, δ1, cmin, cmax, Rα
z ‖g‖α, α, such that the following hold:

(i) the heat kernel satisfies

Kt(z, w) ∼C2
C1

t
−d
2 ;(3.1.1)

(ii) if 1
2
δ0Rz < |z − w|, p is a unit vector in the direction of z − w, and q is

arbitrary unit vector, then

(3.1.2) |∇Kt(z, w)| ∼C′2
C′1

t
−d
2

Rz

t
and |∂pKt(z, w)| ∼C′2

C′1
t
−d
2

Rz

t
,

(3.1.3)
∣∣∣∂qKt(z, w)− ∂qK

Rd

t (z, w)
∣∣∣ ≤ C9t

−d
2

Rz

t
,

where C9 → 0 as δ1 → 0 (with δ0 fixed); here, KRd

t (z, w) is the usual Euclidean
heat kernel;

(iii) if 1
2
δ0Rz < |z − w|, and q is as above, then for s ≤ t,

(3.1.4) Ks(z, w) .C2 t
−d
2 , |∇Ks(z, w)| .C′2 t

−d
2

Rz

t
and |∂qKs(z, w)| .C′2 t

−d
2

Rz

t
;

(iv) C1, C2 both tend to a single function of d, cmin, cmax, ‖g‖α, α, as δ1 tends to
0 with δ0 fixed;

The reason for the factor of Rα
z which we have in Rα

z ‖g‖α above is to get scaling
invariance. Proposition 3.1.2 is proved in subsection 3.3.1 for the Euclidean case and
in subsection 3.5.3.

We continue with the proof of Theorem 2.1.1 and 2.2.1. From here on, unless
explicitly stated, we assume the existence Ccount. We have the spectral expansion

(3.1.5) Kt(x, y) =
+∞∑
j=0

e−λjtϕj(x)ϕj(y).

Remark 3.1.3. The assumptions of Theorems 2.1.1 and 2.2.1 say that |M | = 1
(manifold case) or |Ω| = 1 (Euclidean domain case). Thus, unless explicitly stated,
we will assume in the lemmata below that we have Rz .d,cmin,cmax,‖g‖α,α 1.

The following steps aim at replacing appropriately chosen heat kernels by a set
of eigenfunctions, by extracting the “leading terms” in their spectral expansion.

Step 2. Heat kernel and eigenfunctions. We start by restricting our attention to
eigenfunctions which do not have too high frequency. Let

(3.1.6) ΛL(A) =
{
λj : λj ≤ At−1

}
and ΛH(A′) =

{
λj : λj > A′t−1

}
= ΛL(A′)c.
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A first connection between the heat kernel and eigenfunctions is given by the
following truncation Lemma, which is proved in Subsection 3.4.2.

Lemma 3.1.4. Under Assumption A.1, for A > 1 large enough and A′ < 1
small enough, depending on δ0, δ1, C1, C2, C

′
1, C

′
2 (as in Proposition 3.1.2), there exist

constants C3, C4 (depending on A, A′ as well as d, cmin, cmax, ‖g‖α, α) such that
(i) the heat kernel is approximated by the truncated expansion

Kt(z, w) ∼C4
C3

∑

j∈ΛL(A)

ϕj(z)ϕj(w)e−λjt;(3.1.7)

(ii) if 1
2
δ0Rz < |z − w|, and p is a unit vector parallel to z − w, then

∂pKt(z, w) ∼C4
C3

∑

j∈ΛL(A)∩ΛH(A′)

ϕj(z)∂pϕj(w)e−λjt.(3.1.8)

Furthermore,∥∥∥∥∥∥
∑

j /∈ΛL(A)∩ΛH(A′)

ϕj(z)∇ϕj(w)e−λjt

∥∥∥∥∥∥
≤ C10t

−d
2

Rz

t
,(3.1.9)

where C10 → 0 as A →∞ and A′ → 0;
(iii) C3, C4 both tend to 1 as A →∞ and A′ → 0.

This Lemma implies that in the heat kernel expansion we do not need to con-
sider eigenfunctions corresponding to eigenvalues larger than At−1. However, in our
search for eigenfunctions with the desired properties, we need to restrict our atten-
tion further, by discarding eigenfunctions that have too small a gradient around z.
Let

ΛE(p, z, Rz, δ0, c0)

:=



λj ∈ σ(∆):

1

c0

Rz|∂pϕj(z)| ≥
( 

B(z, 1
2
δ0Rz)

ϕj(z
′)2 dz′

) 1
2



 .

(3.1.10)

Here and in what follows,
ffl

A
f = |A|−1

´
A

f . The truncation Lemma 3.1.4 can
be strengthened, on average, into

Lemma 3.1.5. Assume Assumption A.1, δ0 sufficiently small, and δ1 is suffi-
ciently small depending on δ0. For C3, C4 close enough to 1 (as in Lemma 3.1.4), and
c0 small enough (depending on C2, C

′
1, δ0, δ1) there exist constants C5, C6 (depending

only on C3, C4, C9, and c0) such that if 1
2
δ0Rz < |z − w|, and p is a unit vector

parallel to z − w, then

|∂pKt(w, z)| ∼C6
C5

∣∣∣∣∣∣
∑

λj∈ΛL(A)∩ΛH(A′)∩ΛE(z,Rz ,δ0,c0)

ϕj(w) ∂pϕj(z) e−λjt

∣∣∣∣∣∣
.(3.1.11)

Step 3. Choosing appropriate eigenfunctions. Define the constants γϕj
as

(3.1.12) γϕj
=



 

B 1
2 δ0Rz

(z)

ϕj(z
′)2 dz′



− 1

2

.
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Note that since ϕj is L2 normalized, we have γϕj
& R

d/2
z . A subset of these con-

stants and corresponding eigenfunctions will soon be chosen to give us the constants
{γj} and corresponding eigenfunctions {ϕij} in the statement of Theorem 2.1.1 and
Theorem 2.2.1.

The set of eigenfunctions with eigenvalues in ΛL(A)∩ΛH(A′)∩ΛE(p, z, Rz, δ0, c0)
is well-suited for our purposes, in view of the following:

Lemma 3.1.6. Under Assumption A.1, for δ0 small enough, there exists a con-
stant C7 depending on c0 and C8 depending on {δ0, cmin, cmax, ‖g‖α, α} and a constant
b > 0 which depends on c0, d, cmin, cmax, ‖g‖α, α such that the following holds. Let
p be a direction. For all j ∈ ΛE(p, z, Rz, δ0, c0) we have that for all z′ such that
‖z − z′‖ ≤ b δ0Rz

(3.1.13) |∂pϕj(z
′)| ∼C8

C7
R−1

z



 

B 1
2 δ0Rz

(z)

ϕ2
j




1
2

.

Moreover, there exists an index j ∈ ΛL(A) ∩ΛH(A′) ∩ΛE(p, z, Rz, δ0, c0), so that we
have

(3.1.14) γϕj
. (Ccount)

1
2

with constants depending on A, C1, C
′
1, C2, C

′
2, C6, {d, cmin, cmax, ‖g‖α, α}, δ0, δ1.

We can now complete the proof of Theorems 2.1.1, 2.2.1.

Proof of Theorems 2.1.1 and 2.2.1 for the case g ∈ C 2. Lemma 3.1.6 yields an
eigenfunction that serves our purpose in a given direction. To complete the proof of
the Theorems, we need to cover d linearly independent directions. Pick an arbitrary
direction p1. By Lemma 3.1.6 we can find j1 ∈ ΛL(A)∩ΛH(A′)∩ΛE(p, z, Rz, δ0, c0),
(in particular j1 ∼ t−1) such that

∣∣γϕj1
∂p1ϕj1(z)

∣∣ ≥ c0R
−1
z . Let p2 be a direction

orthogonal to ∇ϕj1(z). We apply again Lemma 3.1.6, and find j2 < At−1 so that∣∣γϕj2
∂p2ϕj2(z)

∣∣ ≥ c0R
−1
z . Note that necessarily j2 6= j1 and p2 is linearly independent

of p1. In fact, by choice of p2,
∂p2ϕj1 = 0.

We proceed in this fashion. By induction, once we have chosen j1, . . . , jk (k < d),
and the corresponding p1, . . . , pk, such that

∣∣∣γϕjl
∂pl

ϕjl
(z)

∣∣∣ ≥ c0R
−1
z , for l = 1, . . . , k,

we pick pk+1 orthogonal to 〈{∇ϕjn(z)}n=1,...,k〉 and apply Lemma 3.1.6, that yields
jk+1 such that

∣∣∣γϕjk+1
∂pk+1

ϕjk+1
(z)

∣∣∣ ≥ c0R
−1
z .

From here on we denote by γi = γϕji
for simplicity of notation. These are the

constants {γi} appearing in the statement of Theorem 2.1.1 and Theorem 2.2.1.
We claim that the matrix

Ak+1 := (γm∂pnϕjm(z))m,n=1,...,k+1

is lower triangular and {p1, . . . , pk+1} is linearly independent. Lower-triangularity of
the matrix follows by induction and the choice of pk+1. Assume

∑k+1
n=1 anpn = 0, then

〈∑k+1
n=1 anpn, γl∇ϕjl

(z)〉 = 0 for all l = 1, . . . , k + 1, i.e. a ∈ Rk+1 solves the linear
system

Ak+1a = 0.

But Ak+1 is lower triangular with all diagonal entries non-zero, hence a = 0.
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For l ≤ k we have 〈∇ϕjl
(z), pk+1〉 = 0 and, by Lemma 3.1.6,

|〈γl∇ϕjl
, pl〉| & R−1

z .

Now let Φk = (γ1ϕj1 , . . . , γkϕjk
) and Φ = Φd. We start by showing that

‖∇Φ|z(w − z)‖ &d
1

Rz

‖w − z‖.

Indeed, suppose that

‖∇Φk|z(w − z)‖ ≤ c

Rz

‖w − z‖,
for all k = 1, . . . , d. For c small enough, this will lead to a contradiction. Let
w − z =

∑
l alpl. We have (using say Lemma 3.1.6)

‖∇Φk|z(w − z)‖ = ‖
∑

l

al∂pl
Φk|z‖ = ‖

∑

l≤k

al∂pl
Φk|z‖ &

(
|ak| − c

∑

l<k

|al|
)

1

Rz

.

By induction, |ak| ≤
∑k

l=1 cl‖w − z‖. For c small enough, |ai| ≤ ‖w−z‖
d

. This is a
contradiction since ‖∑

i aipi‖ = ‖w − z‖ and ‖pi‖ = 1.
We also have, by Proposition 3.4.1,

(3.1.15) ‖∇Φ|w −∇Φ|z‖op .
(‖z − w‖

Rz

)α
1

Rz

.

Finally, by ensuring ‖z−wi‖
Rz

is smaller then a universal constant for i = 1, 2, we get
from equation (3.1.15)

‖Φ(w1)− Φ(w2)‖ =

∣∣∣∣
ˆ 1

0

∇Φ|tw1+(1−t)w2(w1 − w2) dt

∣∣∣∣

=

∣∣∣∣
ˆ 1

0

(∇Φ|w1 +
(∇Φ|tw1+(1−t)w2 −∇Φ|w1

))
(w1 − w2) dt

∣∣∣∣

&
ˆ 1

0

1

Rz

‖w1 − w2‖ dt & 1

Rz

c0‖w1 − w2‖,

which proves the lower bound (2.1.5). To prove the upper bound of (2.1.5), we
observe that from Proposition 3.4.1 we have the upper bound

|γl∂pl
ϕil(z)| . R−1

z .

This completes the proof for the Euclidean case.
We now turn to the manifold case. Let Rz be as in the Theorem. We take

c1 ≤ 1
2
δ0 chosen so that

(3.1.16) |gil(x)− δil| = |gil(x)− gil(z)| < ‖g‖α‖x− z‖α < ε0

for all x ∈ B2c1Rz(z). For this g, the above is carried on in local coordinates. It is
then left to prove that the Euclidean distance in the range of the coordinate map is
equivalent to the geodesic distance on the manifold. We have for all x, y ∈ Bc1Rz(z)

dM (x, y) ≤
ˆ 1

0

∥∥∥∥
x− y

‖x− y‖

∥∥∥∥
g

dt ≤
ˆ 1

0

∥∥∥∥
x− y

‖x− y‖

∥∥∥∥
Rd

(1+‖g‖αtα) dt .α (1+‖g‖α) ‖x−y‖.
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The converse can be proved as follows. Let ξ : [0, 1] → M be the geodesic from x to
y. ξ is contained in B2dM (x,y)(x) on the manifold, whose image in the local coordinate
chart is contained in B2(1+‖g‖α)dM (x,y)(x). We have

dM (x, y) =

ˆ

ξ

‖ξ̇(t)‖g & (1− ‖g‖α)

ˆ

ξ

‖ξ̇(t)‖Rd & (1− ‖g‖α)‖x− y‖. ¤

3.2. The case of g ∈ C α.

Proof of Theorems 2.1.1 and 2.2.1 for the case g ∈ C α. We can now give a short
proof for the g ∈ C α case, relying on the C 2 case. We need the following Lemma,
which we prove in Section 3.5.2.

Lemma 3.2.1. Let J > 0 be given. If

‖g̃il
n − gil‖L∞(BR(z)) →n 0

with ‖g̃il
n‖C α uniformly bounded and with fixed ellipticity constants (as in (2.2.1)),

then for j < J

‖ϕj − ϕ̃j,n‖L∞(BR(z)) →n 0,(3.2.1)

‖∇(ϕj − ϕ̃j,n)‖L∞(BR(z)) →n 0,(3.2.2)

and

|λj − λ̃j,n| →n 0.(3.2.3)

Now, to conclude the proof of the Theorem for the C α case, let J = c5(d, 1
2
cmin,

2cmax, ‖g‖α, α)·R−2
z . We may approximate g in C α norm arbitrarily well by a C 2(M )

metric. By the above Lemma, and the Theorem for the case of C 2 metric, we obtain
the Theorem for the C α case. ¤

3.3. Heat kernels estimates. This section makes no assumptions on the
finiteness of the volume of M and the existence of Ccount.

3.3.1. Euclidean Dirichlet heat kernel estimates. We will start by proving
the heat kernel estimates of Proposition 3.1.2 for the Dirichlet kernel KΩ. These
estimates are in fact well known, and we include their proof here for completeness,
and also to introduce in a simple setting the kind of probabilistic approach that will
be used to obtain estimates in a more general context.

Proof of Proposition 3.1.2 for the Euclidean Dirichlet heat kernel. Let Bz
ω below

be a Brownian path started at point z ∈ Ω, and τ(ω) its first hitting time of ∂Ω. We
recall that as a consequence of the Markov property we have (see e.g. [21], eqn. (9.5)
p. 590)

KΩ
t (z, w) = KRd

t (z, w)− Eω

(
KRd

t−τ(ω)(B
z
ω(τ(ω)), w)χt>τ(ω)

)
.(3.3.1)
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Then,

(3.3.2)

Eω

(
KRd

t−τ(ω)(B
z
ω(τ(ω)(ω)), w)χt>τ(ω)(ω)

)

= Eω

(
(4π)

−d
2 (t− τ(ω))

−d
2 e

−‖B(τ(ω))−w‖2
4(t−τ(ω)) χt>τ(ω)

)

≤ Eω

(
(4π)

−d
2 (t)

−d
2 e

−‖B(τ(ω))−w‖2
4t χt>τ(ω)

)

≤ Eω

(
(4π)

−d
2 (t)

−d
2 e

−(1−δ0)2R2
z

4t χt>τ(ω)

)
≤ (4π)

−d
2 (t)

−d
2 e

−(1−δ0)2R2
z

4t

≤ (4π)
−d
2 (t)

−d
2 e

−(1−δ0)2R2
z

4(δ1Rz)2 = (4π)
−d
2 (t)

−d
2 e

−(1−δ0)2

4δ21 ,

where for the first inequality we require ‖B(τ)−w‖2
t

sufficiently large, which is implied
by choosing δ0 < 1 and δ1 small enough. The last term can be made arbitrarily small
by choosing δ1 small enough, independently of δ0 (as long as, say, δ0 < 1

2
). We also

have

KRd

t (z, w) = (4π)
−d
2 (t)

−d
2 e

−‖z−w‖2
4t ≤ (4π)

−d
2 (t)

−d
2

and

KRd

t (z, w) = (4π)
−d
2 (t)

−d
2 e

−‖z−w‖2
4t ≥ (4π)

−d
2 (t)

−d
2 e

−δ20R2
z

4t

≥ (4π)
−d
2 (t)

−d
2 e

−δ20
δ21 .

(3.3.3)

If δ0 < 1
3
, then (1−δ0)2

4
≥ δ0 and so by reducing δ1 (while fixing δ0) we can make

the left-hand side of (3.3.2) arbitrarily small in comparison with (3.3.3). Now, from
equation (3.3.1) we get (3.1.1) for the Dirichlet kernel.

Note that the range we have for t and ‖Bz
ω(τ(ω))− w‖ imply that

(4π)
−d
2 (t)

−d
2 e

−‖Bz
ω(τ(ω))‖2

4t

is monotone increasing in t. Hence we also have

(3.3.4) Eω

(
χs>τ(ω)K

Rd

s−τ(ω)(B
z
ω(τ(ω)), w)

)
≤ (4π)

−d
2 (t)

−d
2 e

−(1−δ0)2

4δ21 .

If we also have δ0
δ1

is large enough, then KRd

s (z, w) is monotone increasing in s, and
therefore

KRd

s (z, w) ≤ KRd

t (z, w) ≤ (4π)
−d
2 t−

d
2 .

For and fixed δ0, we may reduce δ1 so that by (3.3.4) is small, and thus we obtain
the first part of (3.1.4) from (3.3.1).
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We now turn to estimates (3.1.2) and second and third parts of (3.1.4). We
differentiate equation (3.3.1) and then we bound as follows:

(3.3.5)

‖∇wEω[χt>τ(ω)K
Rd

t−τ(ω)(B
z
ω(τ(ω), w))]‖

=

∥∥∥∥∇wEω

[
χt>τ(ω)(4π)

−d
2 (t− τ(ω))

−d
2 e

−‖Bz
ω(τ(ω))−w‖2
4(t−τ(ω))

]∥∥∥∥

=

∥∥∥∥Eω

[
χt>τ(ω)∇w(4π)

−d
2 (t− τ(ω))

−d
2 e

−‖Bz
ω(τ(ω))−w‖2
4(t−τ(ω))

]∥∥∥∥

=

∥∥∥∥Eω

[
χt>τ(ω)

Bz
ω(τ(ω))− w

2(t− τ(ω))
(4π)

−d
2 (t− τ(ω))

−d
2 e

−‖Bz
ω(τ(ω))−w‖2
4(t−τ(ω))

]∥∥∥∥

≤
∥∥∥∥Eω

[
χt>τ(ω)

‖Bz
ω(τ)− w‖

2(t− τ(ω))
(4π)

−d
2 (t− τ(ω))

−d
2 e

−‖Bz
ω(τ(ω))−w‖2
4(t−τ)

]∥∥∥∥

≤
∥∥∥∥Eω

[
χt>τ(ω)

‖Bz
ω(τ(ω))− w‖

2t
(4π)

−d
2 t

−d
2 e

−‖Bz
ω(τ(ω))−w‖2

4t

]∥∥∥∥

= (4π)
−d
2 t

−d−1
2 Eω

[
χt>τ(ω)

‖Bz
ω(τ(ω))− w‖

2
√

t
e
−‖Bz

ω(τ(ω))−w‖2
4t

]

≤ (4π)
−d
2 t

−d−1
2 Eω

[
χt>τ(ω)

1− δ0

2δ1

e
−(1−δ0)2

4δ21

]

= (4π)
−d
2 t

−d−1
2

1− δ0

2δ1

e
−(1−δ0)2

4δ21 =: C(δ0, δ1),

where for the second equality we use the dominated convergence theorem, for the
inequalities in the fifth and in the penultimate line we choose δ0 < 1 and δ1 small
enough. Note that δ1 → 0 implies that C(δ0, δ1) → 0. Observe that these estimates
hold also with ∇w replaced by ∂

∂p
.

We also have

∇wKRd

t (z, w) = ∇w(4π)
−d
2 t

−d
2 e

−‖z−w‖2
4t = (4π)

−d
2 t

−d−1
2

(z − w)

2
√

t
e
−‖z−w‖2

4t

≥ (4π)
−d
2 t

−d−1
2

δ0Rz

t
e
−δ20
δ21 (z − w)

(with inequality understood entrywise) where as above the last inequality holds for
δ0 < 1 and δ1 small enough. If p is parallel to z − w, the same estimates hold if we
replace ∇w by ∂p. Hence, for any fixed δ0, by reducing δ1 we get

‖∇wKΩ
t (z, w)−∇wKRd

t (z, w)‖ ≤ (4π)
−d
2

Rz

2t
t
−d
2 e

−(1−δ0)2

4δ21

and therefore

‖∇wKΩ
t (z, w)‖ ∼ ‖∇wKRd

t (z, w)‖ ∼ t
−d
2

Rz

t
.

The estimate (3.1.2) involving ∂p is proven analogously. The second and third parts
of (3.1.4) follow as above. Finally, to prove (3.1.3) we use (3.3.5) to obtain

‖∂qK
Ω
t (z, w)− ∂qK

Rd

t (z, w)‖ ≤ (4π)
−d
2

Rz

2t
t
−d
2 e

−(1−δ0)2

4δ21 ≤ C9(δ0, δ1)t
−d
2

Rz

t
. ¤
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3.3.2. Local and global heat kernels. In this section, let K be the heat
kernel, Dirichlet or Neumann, for

(i) a domain Ω (possibly unbounded), and a uniformly elliptic operator ∆ as in
(2.2.3), with g ∈ C 2(Ω);

(ii) a manifold M with g ∈ C 2 satisfying the requirements in Section 2.2, and let
∆ be the associated Laplacian.

Remark 3.3.1. We emphasize that in this section we do not assume that the
volume of M is finite.

Observe that in both settings the existence of an associated Brownian motion is
guaranteed ([37] for the Rd case and the manifold case then follows from uniqueness).
The following result connects K with the Dirichlet kernel on a ball, associated with
∆, to which the estimates of the previous section apply: this will allow us to extend
estimates for the Dirichlet heat kernel on a ball to the general heat kernel K. A more
detailed account of the ideas in the following proposition appears in Stroock’s recent
book [48] (Section 5.2 Duhamel’s Formula).

Proposition 3.3.2. Let z ∈ Ω and r ≤ dist(z, ∂Ω), or z ∈ M and r ≤ rU(z).
Let x, y ∈ B(z, 1

4
r). For each path Bx

ω (starting at x), we define τ1(ω) ≤ τ2(ω) ≤ . . .

as follows. Let τ1(ω) be the first time that Bx
ω re-enters B(x, 3

8
r) after having exited

B(x, 1
2
r) (if this does not happen, let τ1(ω) = +∞). Let x1 = Bx

ω(τ1). By induction,
for n > 1 let τn(ω) be the first time after τn−1(ω) that Bω re-enters B(x, 3

8
r) after

having exited B(x, 1
2
r), or +∞ otherwise. Let xn = Bx

ω(τn). If τn(ω) = +∞, let
τn+k(ω) = +∞ for all k ≥ 0. Then

(3.3.6) Ks(x, y) = KD
s (x, y) +

∞∑
n=1

Eω

[
KD

s−τn(ω)(xn(ω), y)
∣∣∣τn < s

]
P (τn < s),

where
KD

s = K
Dir(B 1

2 r
(x))

s

is the heat kernel at time s for the ball B(x, 1
2
r) with Dirichlet boundary conditions.

Moreover, there exists an M = M(cmin, cmax) such that

(3.3.7) P (τn < s) .d,cmin,cmax exp{−n
r2

Ms
}.

Remark 3.3.3. In our applications of this proposition, we have r ∼ δ0Rz. In
that case, if s

1
2 < δ1Rz, for δ0

δ1
sufficiently large (depending only, on d, cmin, cmax), the

factor exp{−n r2

Ms
} can be made arbitrarily small. This gives us control (exponential

in n) on the right-hand side of (3.3.7). Hence, for any fixed δ0, for δ1 → 0 the
right-hand-side of equation (3.3.6) is dominated by the first summand.

Proof of Proposition 3.3.2. The proofs for the case of a domain Ω and the case
of a manifold M are identical. We have, for any fixed, small enough, ε > 0,

PΩ(Bx
ω(s) ∈ Bε(y)) = PΩ(Bx

ω(s) ∈ Bε(y), τ1 ≥ s) + PΩ(Bx
ω(s) ∈ Bε(y), τ1 < s)

=

ˆ

Bε(y)

KD
s (x, y′) dy′ + PΩ(Bx

ω(s) ∈ Bε(y), τ2 ≥ s|τ1 < s) P (τ1 < s)

+ PΩ(Bx1
ω (s) ∈ Bε(y), τ1 < s, τ2 < s)
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=

ˆ

Bε(y)

KD
s (x, y′) dy′ + PΩ(Bx1

ω (s− τ1) ∈ Bε(y), τ2 ≥ s|τ1 < s) P (τ1 < s)

+ PΩ(Bx1
ω (s) ∈ Bε(y), τ1 < s, τ2 < s)

=

ˆ

Bε(y)

KD
s (x, y′) dy′ +

ˆ

Bε(y)

Eω

[
KD

s−τ1
(x1, y

′)|τ1 < s
]
dy P (τ1 < s)

+ PΩ(Bx1
ω (s) ∈ Bε(y), τ2 < s)

= · · ·

=

ˆ

Bε(y)

KD
s (x, y′) dy′ +

+∞∑
n=1

ˆ

Bε(y)

Eω

[
KD

s−τn
(xi, y

′)|τn < s
]
dy′ P (τn < s).

By dividing by |B(y, ε)| and taking the limit as ε → 0+, we obtain (3.3.6).
In order to estimate P (τn < s), we need the following

Lemma 3.3.4. Let Ω be a domain corresponding to a uniformly elliptic operator
as in (2.2.3). Let τ be the first exit time from BR(z) ⊆ Ω for the corresponding
stochastic process started at z. Then there exists M = M(d, cmin, cmax) > 0 such
that

(3.3.8) P z({τ ≤ s}) .d,cmin,cmax exp{−R2(2Ms)−1}.
Similarly for z ∈ M and R ≤ rU(z).

Proof. First note that without loss of generality we may replace Ω by B2R(z)
with Dirichlet boundary conditions, and then replace B2R(z) by Rd by extending the
coefficients gij to g̃ij defined on all of Rd. Let K̂ be the associated heat kernel. For
any s′ > 0 and x, y ∈ BR(z)

(3.3.9) s′−
d
2 exp{−|x− y|2

A1s′
} .cmin,cmax,d K̂s′(x, y) .d,cmin,cmax s′−

d
2 exp{−|x− y|2

A2s′
}.

holds for M = M(cmin, cmax, d) and Ai = Ai(cmin, cmax, d) (see [16], Corollary 3.2.8
and Theorem 3.3.4). We now follow a short proof by Stroock [49]. By the strong
Markov property, we have

PΩ(Bz
ω(s) /∈ BR(z)) = Ez

ω

[
P (Bω(τ(ω))

ω (s− τ(ω)) /∈ BR(z))χ{τ(ω)<s}
]
.

From the lower bound in equation (3.3.9) we have that if x ∈ ∂BR(z) and s > 0
then P (Bx

ω(s) /∈ BR(x)) ≥ ε(cmin, cmax, d). Combining this with the upper bound in
equation (3.3.9) we have

P z(τ ≤ s) ≤ ε(d, cmin, cmax)
−1P (Bz

ω(s) /∈ BR(z)) .d,cmin,cmax exp{−R2(2Ms)−1}. ¤
We go back to the proof of Proposition 3.3.2. To estimate P (τn < s|τn−1 <

s, . . . , τ1 < s), we observe that between τn−1 and τn, the path ω has to cross both
∂B 3

8
r(z) and ∂B 1

2
r(z): let τ ∗n and τ ∗∗n be the first time this happens, and let y∗ =

ω(τ ∗n). Then
P (τn < s | τn−1 < s, . . . , τ1 < s) ≤ P (τ ∗∗n − τ ∗n < s)

≤ sup
y∗∈B 3

8 r
(z)

P y∗
(

sup
s′∈[0,s]

‖Bω(s′)− y∗‖ >
1

8
r

)
.cmin,cmax,d e−

( 1
8 r)

2

2Ms .
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Therefore we have

(3.3.10)

P (τn < s) = P (τ1 < s, τ2 < s, . . . , τn < s)

=

(
n∏

l=2

P (τl < s|τl−1 < s, . . . , τ1 < s)

)
P (τ1 < s)

.cmin,cmax,d exp{−n

(
1

8
r

)2

(2Ms)−1}.

Renaming 128M to M we get the lemma. ¤
Remark 3.3.5. As it is clear from the proof, the proposition holds for any

boundary condition on a manifold or domain.

3.3.3. Euclidean Neumann heat kernel estimates. We use the results of
the previous two sections to prove the Neumann case of Proposition 3.1.2:

Proof of Proposition 3.1.2 for the Euclidean Neumann heat kernel. The starting
point is Proposition 3.3.2, which allows us to localize. We use Proposition 3.1.2 for
the case of B2δ0Rz(z). For this proof, we denote by C2[B] be the C2 constant for the
Dirichlet ball case. For s ≤ t we have using equation (3.3.10),

(3.3.11)

|Ks(x, y)−K2δ0Rz
s (x, y)| = |

+∞∑
n=1

Eω

[
K2δ0Rz

s−τn
(xn(ω), y)|τn < s

]
Pω(τn < s)|

.C2[B]

∞∑
n=1

t−
d
2 exp{−n

(
δ0Rz

2

)2

(Ms)−1}
︸ ︷︷ ︸

equation (3.3.10)

.C2[B],δ0,δ1 t−
d
2 exp{−

(
δ0Rz

2

)2

(Ms)−1}.

This proves (3.1.1) and the first part of (3.1.4) (see Remark 3.3.3). For the gradient
estimates, i.e. (3.1.2), (3.1.3), and the second and third part of (3.1.4),

‖∇yKs(x, y)−∇yK
2δ0Rz
s (x, y)‖ ≤

+∞∑
n=1

∥∥∇yEω

[
K2δ0Rz

s−τn
(xn(ω), y)|τn < s

]∥∥ Pω(τn < s)

.C′2[B]

∞∑
n=1

t−
d
2
δ0Rz

t
exp{−n

(
δ0Rz

2

)2

(Ms)−1}
︸ ︷︷ ︸

equation (3.3.10)

.C′2[B],δ0,δ1 t−
d
2
δ0Rz

t
exp{

(
δ0Rz

2

)2

(Ms)−1}

giving us C9. By Remark 3.3.3 the exponential term from equation (3.3.10) can be
made small enough so that we obtain estimate (3.1.2) as well as the second and third
parts of (3.1.4). ¤

The proof for the manifold case is postponed to Section 3.5.3.

3.4. Heat kernel and eigenfunctions.

3.4.1. Bounds on eigenfunctions. We record some inequalities that will be
used in what follows.
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Proposition 3.4.1. Assume g ∈ C α. There exists b1 < 1, and CP > 0 that
depends on d, cmin, cmax, ‖g‖α, α such that for any eigenfunction ϕj of ∆M on BR(z),
corresponding to the eigenvalue λj, and R ≤ Rz, the following estimates hold. For
w ∈ Bb1R(z) and x, y ∈ Bb1R(z),

|ϕj(w)| ≤ CP P1(λjR
2)

( 

BR(z)

|ϕj|2
) 1

2

,(3.4.1)

‖∇ϕj(w)‖ ≤ CP
P2(λjR

2)

R

( 

BR(z)

|ϕj|2
) 1

2

,(3.4.2)

‖∇ϕj(x)−∇ϕj(y)‖ ≤ CP
P3(λjR

2)

R1+α

( 

BR(z)

|ϕj|2
) 1

2

‖x− y‖α,(3.4.3)

where P1(x) = (1 + x)
1
2
+β, P2(x) = (1 + x)

3
2
+β, P3(x) = (1 + x)

5
2
+β, with β the

smallest integer larger than or equal to d−2
4
.

We postpone the proof to Section 3.5.2. Related estimates can be found in
[15, 46, 45, 44, 56] and references therein.

3.4.2. Truncated heat kernel and selecting eigenfunctions. The goal
of this section is to prove Lemma 3.1.4 and 3.1.5. All the results of this section
and their proofs will be independent on whether we talk about the Dirichlet or
Neumann heat kernel, and on whether we talk about the standard Laplacian or
about a uniformly elliptic operator satisfying our usual assumptions and whether we
talk about a manifold M or a domain Ω. This is because the only tools we will
need to obtain the results in this section are the spectral expansion of the heat kernel
(3.1.5), the elliptic estimates of Proposition 3.4.1, the assumption on Ccount (2.1.2),
and the bound

(3.4.4) Kt(z, w) ≤ Kt(z, z)
1
2 Kt(w, w)

1
2 ,

which is a straightforward application of Cauchy–Schwartz inequality to (3.1.5).

Proof of Lemma 3.1.4. We upper bound the tail of the heat kernel:

(3.4.5)

∣∣∣∣∣∣
∑

λj≥At−1

ϕj(z)ϕj(w)e−λjt

∣∣∣∣∣∣
≤ e

−A
2

∣∣∣∣∣∣
∑

λj≥At−1

ϕj(z)ϕj(w)e
−λjt

2

∣∣∣∣∣∣
≤ e

−A
2 |K t

2
(z, z)| 12 |K t

2
(w,w)| 12 .C2 t

−d
2 e

−A
2

by (3.4.4) and Proposition 3.1.2. For A large enough, this implies (3.1.7).
For the gradient, we use Proposition 3.4.1, and observe that xne

−x
4 is a decreasing

function if x is large enough. We let rw = (1− δ0)Rz. Then∥∥∥∥∥∥
∑

λj≥At−1

ϕj(z)∇ϕj(w)e−λjt

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
e
−A
2

∑

λj≥At−1

ϕj(z)∇ϕj(w)e
−λjt

2

∥∥∥∥∥∥

≤ e
−A
2 |K t

2
(z, z)| 12


 ∑

λj≥At−1

‖∇ϕj(w)‖2e
−λjt

2




1
2
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.Cp e
−A
2 |K t

2
(z, z)| 12


 ∑

λj≥At−1

P2(λjr
2
w)2r−2

w

 

B(w, 1
2
rw)

|ϕj|2e
−λjt

2




1
2

.CP ,δ1 e
−A
2 |K t

2
(z, z)| 12


 ∑

λj≥At−1

 

B(w, 1
2
rw)

|ϕj|2e
−λjt

2 P2(λjt)
2 1

t
e
−λjt

2




1
2

.CP ,δ1 e
−A
2 |K t

2
(z, z)| 12


 ∑

λj≥At−1

 

B(w, 1
2
rw)

|ϕj|2e
−λjt

4
1

t




1
2

.CP ,δ1 e
−A
2 |K t

2
(z, z)| 12

( 

B(w, 1
2
rw)

K t
4
(w′, w′) dw′1

t

) 1
2

.CP ,δ1,C2 e
−A
2 t

−d
2

1√
t
.

Now we consider the contribution of the low frequency eigenfunctions to the
gradient. Proceeding as above, and recalling that in this case λjr

2
w ≤ A′

δ1
, we obtain

∥∥∥∥∥∥
∑

λj≤A′t−1

ϕj(z)∇ϕj(w)e−λjt

∥∥∥∥∥∥

.CP
|Kt(z, z)| 12


 ∑

λj≤A′t−1

P2(λjr
2
w)2r−2

w

 

B(w, 1
2
rw)

|ϕj|2e−λjt




1
2

.CP
P2

(
A′

δ1

)
|Kt(z, z)| 12 1

rw


 ∑

λj≤A′t−1

 

B(w, 1
2
rw)

|ϕj|2e−λjt




1
2

.CP
P2

(
A′

δ1

)
|Kt(z, z)| 12 1

rw


 ∑

λj≤A′t−1

 

B(w, 1
2
rw)

|ϕj|2e−
λjt

A′




1
2

.CP ,C2 P2

(
A′

δ1

)
1

rw

|Kt(z, z)| 12
(ˆ

B(w, 1
2
rw)

Kt/A′(w
′, w′)

) 1
2

.CP ,C2 P2

(
A′

δ1

)
1

rw

t−
d
2 A′ d

4 .

Thus, by reducing A′ we get the bound (3.1.8) and (3.1.9). (We note that an al-
ternative approach to the introduction of e−

λjt

A′ would have been to reduce δ1 and
note that rw

t
is as large as we want in comparison with 1

rw
, and then to reduce A′ to

compensate for the reduction in δ1.) ¤
For a domain with Dirichlet boundary conditions, we automatically have a bound

on Ccount as in (2.1.2):
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Lemma 3.4.2. (Weyl’s Lemma for Dirichlet boundary conditions) Let Ω be a
domain in Rd, ∆ a uniformly elliptic operator on Ω as in (2.2.1), with Dirichlet
boundary conditions. Let λ0 ≤ λ1 ≤ . . . be the eigenvalues of ∆. Then

#{j : λj ≤ λ} .d,cmin,cmax |Ω|λ
d
2 .(3.4.6)

Proof. Let KΩ the associated heat kernel. Extend the coefficient gij to Rd r Ω
by letting gij = δij, and let K̃ be the associated heat kernel on Rd. Then KΩ is
pointwise dominated by K̃. Then by estimate (3.3.9) we have, following [23]:

#{j : λj ≤ λ} ≤ e ·
∑

e
−λj

λ = e ·
ˆ

Ω

KΩ
1
λ
(x, x) dx

≤ e ·
ˆ

Ω

K̃ 1
λ
(x, x) dx .d,cmin,cmax |Ω|λ

d
2 . ¤

Remark 3.4.3. Notice that in the Dirichlet case Ccount is independent of Ω. In
the Neumann case, if one has good enough estimates on the trace of the corresponding
heat kernel, the same proof applies. In general these estimates will depend on Ω, and
Ccount will not be independent of Ω (see e.g. [26, 34]).

Proof of Lemma 3.1.5. In view of Lemma 3.1.4, we will show that the terms in the
eigenfunction series corresponding to j ∈ ΛL(A)∩ΛH(A′) but j /∈ ΛE(p, z, Rz, δ0, c0)
do not contribute significantly to the lefthand side of (3.1.11). Let Λ1 = ΛL(A) ∩
ΛH(A′) ∩ (ΛE(p, z, Rz, δ0, c0))

c. We thus have
∣∣∣∣∣∣
∑

λj∈Λ1

ϕj(w)∂pϕj(z)e−λjt

∣∣∣∣∣∣
≤

∑

λj∈Λ1

|ϕj(w)|
∣∣∂pϕj(z)e−λjt

∣∣

≤

 ∑

λj∈Λ1

|ϕj(w)|2e−λjt




1
2

 ∑

λj∈Λ1

|∂pϕj(z)|2e−λjt




1
2

≤ Kt(w, w)
1
2


 ∑

λj∈Λ1

|∂pϕj(z)|2e−λjt




1
2

≤ Kt(w, w)
1
2 c0

1

R z




∑

λj∈Λ1

 

B(z, 1
2
δ0Rz)

|ϕj|2e−λjt




1
2

≤ c0
1

R z
Kt(w,w)

1
2

 

z′∈B(z, 1
2
δ0Rz)

Kt(z
′, z′)

1
2 dz′.

Hence by reducing c0 and using Proposition 3.1.2 together with Lemma 3.1.4 we
conclude the proof. We note that the constant C9 comes into play since we have to
estimate the left hand side of equation (3.1.11). ¤

Remark 3.4.4. The following proof is the only place where we use the bound
on Ccount (2.1.2).
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Proof of Lemma 3.1.6. For sufficiently small b, Equations (3.4.2) and (3.4.3) from
Proposition 3.4.1, together with the definition of ΛE(p, z, Rz, δ0, c0) give equation
(3.1.13). We turn to showing equation (3.1.14), which is where Ccount will appear.

Since at this point all the constants are fixed, to ease the notation we let Λ :=
ΛL(A) ∩ ΛH(A′) ∩ ΛE(p, z, Rz, δ0, c0). Let w ∈ B(z, δ0Rz)r B(z, 1

2
δ0Rz) with w − z

in the direciton of p. Observe that Proposition 3.1.2 and Lemma 3.1.5 imply that

(3.4.7)

K t
2
(w,w)

Rz

t
∼C2

C1
t
−d
2

Rz

t
∼C′2

C′1
|∂pKt(w, z)| ∼C6

C5

∣∣∣∣∣∣
∑

λj∈Λ

ϕj(w)∂pϕj(z)e−λjt

∣∣∣∣∣∣

.{d,cmin,cmax,‖g‖α,α} R−1
z

∑

λj∈Λ

∣∣ϕj(w)e−λjt
∣∣
( 

B(z, 1
2
δ0Rz)

|ϕj|2
) 1

2

≤ R−1
z


∑

λj∈Λ

ϕj(w)2e−2λjt




1
2

∑

λj∈Λ

 

B(z, 1
2
δ0Rz)

|ϕj|2



1
2

≤ R−1
z K2t(w, w)

1
2


∑

λj∈Λ

 

B(z, 1
2
δ0Rz)

|ϕj|2



1
2

giving, with constant depending on C1, C
′
1, C2, C

′
2, C6, {d, cmin, cmax, ‖g‖α, α},

(3.4.8) t
−d
2

(
R2

z

t

)2

.
∑

λj∈Λ

 

B 1
2 δ0Rz

(z)

|ϕj|2.

Thus, by the pigeon-hole principle and Weyl’s bound (2.1.2), we have λj ∈ Λ1 with

(3.4.9)
1

Ccount

(
R2

z

t

)2

.
 

B 1
2 δ0Rz

(z)

|ϕj|2.

This gives equation (3.1.14). ¤
3.5. Supplemental lemmata for the manifold case. We will initially be

interested in localizing the manifold Laplacian ∆M to a ball B = BR(z), R ≤ rU(z),
in a coordinate chart about z, satisfying the assumptions in the Theorem. We will
rescale up so that R = 1 (and rescale the volume of M accordingly). We impose
Dirichlet boundary conditions on ∂B, and denote by ∆̃B this Laplacian, which has
the expression (2.2.3). We will compare ∆̃B with the Euclidean Laplacian ∆B on
B (also with Dirichlet boundary conditions). We will then compare ∆̃B with the
global Laplacian ∆M on the whole manifold (with Dirichlet or Neumann boundary
conditions). The first comparison is most conveniently done through the associated
Green functions. We use the following notation:

(i) ∆Bξj = µjξj is the eigen-decomposition of ∆B, with sorted eigenvalues 0 ≤
µ0 ≤ µ1 ≤ . . . , ∆̃B ξ̃j = µ̃j ξ̃j is the analogous decomposition of ∆̃B, and
∆M ϕj = λjϕj the one for ∆M . The eigenfunctions are assumed to be nor-
malized in the corresponding natural L2 spaces;

(ii) GB is the Green function on B, associated with ∆B, with Dirichlet boundary
conditions, and KB the corresponding heat kernel;
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(iii) G̃B is the Green function on B, associated with ∆̃B, with Dirichlet boundary
conditions, and K̃B the corresponding heat kernel;

(iv) the quadratic form associated with g, restricted to B, will be abbreviated as

(3.5.1) gB(u, v) =

ˆ

B

d∑
i,j=1

gij∂iu∂jv.

for suitable u, v.
We will use estimates from [24], where they are stated only for the case of d ≥ 3.

Our Theorems are true also for the case d = 2 (and trivially, d = 1). This can be
seen indirectly by considering M̃ := M × T and noting that the eigenfunctions of
M̃ and the heat kernel of M̃ both factor.

We let
(L∗)p(B) = {f : B → R measurable : ‖f‖(L∗)p < +∞}

where
‖f‖(L∗)p = sup

t>0
t|{x ∈ B : |f(x)| > t}| 1p .

We recall the following Theorem from [24].

Theorem 3.5.1. Suppose d ≥ 3, and g ∈ L∞ and uniformly elliptic with cmin

and cmax as in (2.2.1). There exists a unique nonnegative function G̃B : B → R∪{∞},
called the Green function, such that for each y ∈ B and any r > 0 such that
Br(y) ⊆ B,

G̃B(·, y) ∈ W 1,2
c (B \Br(y)) ∩W 1,1

c (B),

GB|∂B = 0, and for all φ ∈ C∞
c (B)

gB(G̃B(·, y), φ) = φ(y).

Moreover, for each y ∈ B,

(i) G̃B(·, y) ∈ (L∗)
d

d−2 , with , ‖G̃B‖
(L∗)

d
d−2

.d,cmin
1,

(ii) ∇G̃B(·, y) ∈ (L∗)
d

d−1 , with ‖∇G̃B‖
(L∗)

d
d−1

.d,cmax,cmin
1,

(iii) G̃B(x, y) &d,cmax,cmin
|x− y|2−d for |x− y| ≤ 1

2
d(y, ∂B),

(iv)

(3.5.2) G̃B(x, y) .d,cmax,cmin
|x− y|2−d.

If g ∈ C α, we also have (see page 333 in [24])
(v)

(3.5.3) ∇yG̃
B(x, y) .d,cmax,cmin,α,‖g‖α |x− y|1−d,

(vi)

|∇xG̃
B(x1, y)−∇xG̃

B(x2, y)|

.d,cmax,cmin,Rα,α,‖g‖α

|x1 − x2|α
|x1 − y|d+α−1 + |x2 − y|d+α−1

.
(3.5.4)
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Simple consequences of the bounds above are the following inequalities, which
we record for future use:ˆ

c1R≤‖z−y‖≤c2R

|G̃R(z, y)|p dy .c1,c2,d,cmin,cmax,p R(2−d)+ d
p ,(3.5.5)

ˆ

c1R≤‖z−y‖≤c2R

|∇yG̃
R(z, y)|p dy .c1,c2,d,cmin,cmax,α,‖g‖α,p R(1−d)+ d

p ,(3.5.6)
ˆ

B

|∇yG̃
R(z, y)| dy .d,cmin,cmax,α,‖g‖α R,(3.5.7)

which are an immediate consequence of (3.5.3), and are valid for c1, c2 > 0 and
0 < R′

z < Rz.
We recall that if we only assume uniform ellipticity, without any assumption on

the modulus of continuity of g, then we have no pointwise estimates on ∇G.

3.5.1. Perturbation of eigenfunctions. We start by comparing eigenfunc-
tions of the Euclidean ∆B with eigenfunctions of ∆̃B. We remind the reader that we
have rescaled up to R = 1.

Lemma 3.5.2. Let J > 0 and η > 0 be given. There is an ε0 = ε0(J) so that if
ε < ε0 and Id : (B, δij) → (B, gij) is 1 + ε bi-Lipschitz, then for j < J ,

‖ξj − ξ̃j‖L2(B) ≤ η, |µj − µ̃j| < ηµj.

Proof. This follows from Lemma 20 in [23]. ¤

Lemma 3.5.3. There is an integer βloc > 0 such that the following bounds hold:

(3.5.8) ‖ξ̃j‖L∞(B) .d,cmin,cmax (µ̃j)
βloc ,

and if gij ∈ C α, we also have

‖∇y ξ̃j‖L∞(B) .d,cmin,cmax,α,‖g‖α µ̃j(µ̃j)
βloc ,(3.5.9)

with βloc = d−1
2

for d odd and βloc = d
2
for d even.

Proof. By the definition of G̃, and by recalling that G̃|∂B = 0,

ξ̃j = G̃B∆̃B ξ̃j = µ̃jG̃
B ξ̃j = . . . = µ̃k

j G̃B . . . G̃B︸ ︷︷ ︸
k

ξ̃j.

Let pi, qi be such that ∑

1≤i≤k

p−1
i − k + 1 = q−1

k .

Then, using Young’s inequality we have

‖ G̃B ∗ · · · ∗ G̃B︸ ︷︷ ︸
k

‖Lqk .qk−1,qk,pk
‖ G̃B ∗ · · · ∗ G̃B︸ ︷︷ ︸

k−1

‖Lqk−1‖G̃B‖Lpk

.qk−2,qk−1,pk−1
. . . .q1,q2,p2 ‖G̃B‖Lp1 . . . ‖G̃B‖Lpk .

We have G̃B ∈ L
d−1
d−2 by Theorem 3.5.1; we take pi = d−1

d−2
and take k = d− 1 and get

q−1
d−1 = (d− 1)

d− 2

d− 1
− (d− 1) + 1 = 0,
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for odd d

q−1
d−1
2

=
d− 1

2

d− 2

d− 1
− d− 1

2
+ 1 =

1

2
,

and for even d

q−1
d
2

=
d

2

d− 2

d− 1
− d

2
+ 1 =

d

2
(
d− 2

d− 1
− 1) + 1 ≤ 1

2
.

Now, for odd d,

‖ξ̃j‖∞ . µ̃
d−1
2

j ‖ G̃B ∗ . . . ∗ G̃B︸ ︷︷ ︸
d−1
2

‖L2‖ξ̃j‖L2 ≤ µ̃
d−1
2

j ‖G̃B‖
L

d−1
d−2

. µ̃
d−1
2

j ,

which gives the first desired bound. If d is even, do the same with d
2
replacing d−1

2
.

For the gradient estimate, we have

|∇y ξ̃j| = |∇ygB(G̃B, ξ̃j)| = |∇y

ˆ

B

G̃B∆̃B ξ̃j| = |µ̃j∇y

ˆ
G̃B ξ̃j| ≤ µ̃j‖∇yG̃

B‖L1‖ξ̃j‖∞,

where we used the defining property of G̃B in Theorem 3.5.1 and Green’s Theorem.
We estimate the last term by (3.5.8) and equation (3.5.3) to get the desired result. ¤

We can now convert the L2-estimates in Lemma 3.5.2 into L∞-estimates. We
will need the following

Lemma 3.5.4. Assume that |gij(x)− δij| < ε for x ∈ B. Then for ψ ∈ C∞
c (B)

we have

(3.5.10)
∥∥∥∥
ˆ

B

〈∇
(
G̃B(z, w)−GB(z, w)

)
,∇ψ(z)〉 dz

∥∥∥∥
L∞(B)

≤ ε‖∇yG̃
B‖L1‖∇ψ‖L∞(B),

and if gij ∈ C α, we also have

(3.5.11)
∥∥∥∥
ˆ

B

〈∇
(
G̃B(z, w)−GB(z, w)

)
,∇ξ̃l(z)〉 dz

∥∥∥∥
L∞(B)

.d,cmin,cmax,α,‖g‖α εµ̃l(µ̃l)
βloc

as well as

(3.5.12)
∥∥∥∥
ˆ

B

〈∇
(
G̃B(z, w)−GB(z, w)

)
,∇ξl(z)〉 dz

∥∥∥∥
L∞(B)

.d,cmin,cmax,α,‖g‖α εµl(µl)
βloc

with βloc as in Lemma 3.5.3.

Proof. Now∥∥∥∥
ˆ

B

〈∇
(
GB(z, w)− G̃B(z, w)

)
,∇ψ(z)〉 dz

∥∥∥∥
L∞(B)

=

∥∥∥∥
ˆ

B

∑
i,j

δij∂i

(
GB(z, w)− G̃B(z, w)

)
∂jψ(z) dz

∥∥∥∥
L∞(B)

=

∥∥∥∥
ˆ

B

∑
i,j

(
δij∂iG

B(z, w)− gij(z)∂iG̃
B(z, w)

)
∂jψ(z) dz

+

ˆ

B

∑
i,j

(
gij(z)∂iG̃

B(z, w)− δij∂iG̃
B(z, w)

)
∂jψ(z) dz

∥∥∥∥
L∞(B)

=

∥∥∥∥
ˆ

B

∑
i,j

(
(gij(z)− δij)∂iG̃

B(z, w)
)

∂jψ(z) dz

∥∥∥∥
L∞(B)
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. ε‖∇yG̃
B‖L1‖∇ψ‖L∞(B)

which gives (3.5.10). Using Lemma 3.5.3 one also gets (3.5.11) and (3.5.12). ¤

Lemma 3.5.5. Let J, η > 0 be given. Let βloc be as in Lemma 3.5.3. There is an
ε0 which depends on J , η, d, cmax, cmin, ‖g‖α, α), so that if ε < ε0, and |gil(x)−δil| < ε
for x ∈ B, then for j < J ,

|µj − µ̃j| < ηµj,(3.5.13)

‖ξj − ξ̃j‖L∞(B) .d,cmin,cmax,‖g‖α,α ηQ1(µ̃l),(3.5.14)

where Q1 is a polynomial of degree 2βloc. If g ∈ C α, we also have

‖∇(ξj − ξ̃j)‖L∞ .d,cmin,cmax,‖g‖α,α ηQ2(µ̃l),(3.5.15)

where Q2 is a polynomial of degree 2βloc + 1.

Proof. The bound (3.5.13) follows from Lemma 3.5.2. Let qi and pi be as in the
proof of Lemma 3.5.3.

We have using the definitions of GB and G̃B

ξl(w)− ξ̃l(w) =

ˆ

B

∑
i,j

δij∂iG
B(z, w)∂jξl(z)− gij(z)∂iG̃

B(z, w)∂j ξ̃l(z) dz

=

ˆ

B

∑
i,j

δij
(
∂iG

B(z, w)∂jξl(z)− ∂iG̃
B(z, w)∂jξl(z)

)

+
(
δij∂iG̃

B(z, w)∂j ξ̃l(z)− gij(z)∂iG̃
B(z, w)∂jξl(z)

)
dz

= E1(w) +

ˆ

B

∑
i,j

(
∂iG̃

B(z, w)∂jξl(z)− gij(z)∂iG̃
B(z, w)∂j ξ̃l(z)

)
dz

= E1(w) + µl · G̃B ∗ ξl(w)− µ̃l · G̃B ∗ ξ̃l(w)

= E1(w) + (µl − µ̃l) · G̃B ∗ ξl(w) + µ̃l · G̃B ∗ (ξl − ξ̃l)(w)

= E1(w) + E2(w) + µ̃l · G̃B ∗ (ξl − ξ̃l)(w),

where we have from equation (3.5.12)

(3.5.16) ‖E1‖L∞(B) .d,cmin,cmax,α,‖g‖α εµl(µl)
βloc

and

(3.5.17) ‖E2‖L∞(B) .d,cmin,cmax,α,‖g‖α ηµl · (µl)
βloc .

Iterating, we have

|ξl(w)− ξ̃l(w)| = |E1(w) + E2(w) + µ̃l · G̃B ∗ (ξl − ξ̃l)(w)|
= |E1(w) + E2(w) + µ̃l · G̃B ∗

(
E1 + E2 + µ̃l · G̃B ∗ (ξl − ξ̃l)

)
(w)|.

= . . .

≤ ‖E1 + E2‖L∞(B)

βloc−1∑

k=0

(
µ̃l‖G̃B‖L1(B)

)k

+ µ̃βloc
l | G̃B ∗ . . . ∗ G̃B︸ ︷︷ ︸

βloc times

∗(ξl(w)− ξ̃l(w))|
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≤ ‖E1 + E2‖L∞(B)

βloc−1∑

k=0

(
µ̃l‖G̃B‖L1(B)

)k

+ µ̃βloc
l ‖G̃B‖

L
d−1
d−2
‖ξl − ξ̃l‖2

. 2ηµl(µl)
βloc

βloc−1∑

k=0

µ̃k
l + η · µ̃βloc

l = ηQ1(µ̃l),

where we require for the penultimate inequality ε < η.
To prove the gradient estimate,

∣∣∣∇(ξ̃j − ξj))(y)
∣∣∣ =

∣∣∣∣∣∇y

ˆ ∑

i,l

∂zi
G̃R(z, y)gil∂zl

ξ̃j(z)−
∑

i,l

∂zi
GB(z, y)δil∂zl

ξj(z)

∣∣∣∣∣

=

∣∣∣∣∇y

ˆ
G̃R(z, y)µ̃j ξ̃j(z)−GB(z, y)µjξj(z)

∣∣∣∣

=

∣∣∣∣
ˆ
∇yG̃

R(z, y)µ̃j ξ̃j(z)−∇yG
B(z, y)µjξj(z)

∣∣∣∣

≤
ˆ ∣∣∣∇y(G̃

R −GB)(z, y)
∣∣∣ ·

∣∣∣µ̃j ξ̃j(z)
∣∣∣

+
∣∣∇yG

B(z, y)
∣∣ ·

∣∣∣µ̃j ξ̃j(z)− µjξj(z)
∣∣∣ .

Now using equation (3.5.14), Lemma 3.5.2, and Theorem 3.5.1 we get equation
(3.5.15). ¤

3.5.2. Bounds on eigenfunctions. The main goal of this section is to prove
Proposition 3.4.1. We note that the inequalities (3.4.1), (3.4.2), and (3.4.3) are
invariant under scalings of the metric, and so, once again, we assume in the proof of
this Proposition and in all the Lemmata that R = 1. In this section all constants
subsumed in . and & will in general depend on d, cmin, cmax, ‖g‖α, α. We will need
the following result.

Lemma 3.5.6. (Lemma 3.1 from [24]) Suppose h is a bounded solution of ∆̃Bh =
0 in B. Then

(3.5.18) |∇h(x)| .d,cmin,cmax,‖g‖α,α (1− dist(x, z))−1‖h‖L∞(B).

Lemma 3.5.7. Assume that g ∈ C α and ∆̃Bh = 0 on B = B1(z). Then for any
r < 1

‖h‖L∞(Br(z)) .d,cmin,cmax Cr‖h‖L2(B2r(z))

and
‖∇h‖L∞(B r

2
(z)) .d,cmin,cmax,‖g‖α,α C ′

r‖h‖L2(B2r(z)).

Proof. Let r as above be given. Fix 0 < a1 < a2 < 1. By the coarea formula [22],
we haveˆ a2

a1

ˆ

{x∈Br(z) : G̃r(x)=t}
|h(x)| dH d−1(x) dt =

ˆ

{x∈Br(z) : a1<G̃r(x)<a2}
|h∇G̃r| dx

≤ ‖h‖L2(Br(z))‖|∇G̃r|‖L2(B
C(d, cmax

cmin
ad−2
2 )

(z)\B
c(d, cmax

cmin
ad−2
1 )

(z)) . ‖h‖L2(Br(z))
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by estimate (3.5.6). Hence there exists t∗ ∈ [a1, a2] such that
ˆ

{x∈Br(z) : G̃r=t∗}
|h(x)| dH d−1(x) . ‖h‖L2(Br(z))(a2 − a1)

−1.

Now, by ∆̃B harmonicity,

|h(z)| =
∣∣∣∣∣
ˆ

{y∈Br(z) : G̃r(y)=t∗}
h(y)

∂G̃r

∂n
(z, y) dH d−1(y)

∣∣∣∣∣

≤ ‖∇G̃r‖L∞({G̃r(y)=t∗})

ˆ

{y∈Br(z) : G̃r=t∗}
|h(y)| dH d−1(y)

. ‖h‖L2(Br(z)) .a1,a2,d,cmin,cmax ‖h‖L2(Br(z)).

Essentially the same proof holds if we replace z by w ∈ Br(z)) in the above estimates,
giving the desired bound on h.

In order to estimate the gradient, we use Lemma 3.5.6, which gives us

‖∇h‖L∞(B r
2
(z)) .d,cmin,cmax,‖g‖α,α C ′

r‖h‖L∞(Br(z)),

which implies the desired estimate. ¤

Lemma 3.5.8. Assume that g ∈ C α. Let ξ̃j and ϕk be as above. Then we have
the estimate

(3.5.19) ‖ξ̃jϕk‖
L

2d
d−2 (B)

.d,cmin,cmax,‖g‖α,α (((µ̃j + λk))
1
2 + µ̃j)(µ̃j)

βloc‖ϕk‖L2(B).

Proof. By the Sobolev embedding Theorem it is enough to prove that

‖∇(ξ̃jϕk)‖L2(B) . (((µ̃j + λk))
1
2 + µ̃j)(µ̃j)

βloc‖ϕk‖L2(B).(3.5.20)

To this end, first note that we may write

(3.5.21)

∆̃B(ξ̃jϕk) = ϕk∆̃
B ξ̃j + ξ̃j∆̃

Bϕk +
d∑

i,j=1

gij∂iϕk∂j ξ̃j

= (µ̃j + λk)ϕkξ̃j +
d∑

i,j=1

gij∂iϕk∂j ξ̃j,

and so ∆̃B(ξ̃jϕk) is defined as a function, and not just a distribution. Observe that
ϕl does not satisfy any particular boundary condition on ∂B, however since ξ̃j = 0
on ∂B, integration by parts gives

〈ξ̃jϕk, ∆̃
B(ξ̃jϕk)〉B = gB(∇(ξ̃jϕk),∇(ξ̃jϕk)).(3.5.22)

Now, since g is a positive quadratic form,

〈∇(ξ̃jϕk),∇(ξ̃jϕk)〉gB
= 〈ξ̃j∇ϕk + ϕk∇ξ̃j, ξ̃j∇ϕk + ϕk∇ξ̃j〉gB

≥ 〈ξ̃j∇ϕk, ξ̃j∇ϕk〉gB
− 2

∣∣∣〈ϕk∇ξ̃j, ξ̃j∇ϕk〉gB

∣∣∣
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and therefore
gB(ξ̃j∇ϕk, ξ̃j∇ϕk) ≤ gB(∇(ξ̃jϕk),∇(ξ̃jϕk)) + 2|gR(ϕk∇ξ̃j, ξ̃j∇ϕk)|
= 〈ξ̃jϕk, ∆̃

B(ξ̃jϕk)〉B + 2|gR(ϕk∇ξ̃j, ξ̃j∇ϕk)|
≤ 〈ξ̃jϕk, ((µ̃j + λk)ξ̃jϕk)〉B + 4|gR(ϕk∇ξ̃j, ξ̃j∇ϕk)|
. (µ̃j + λk)‖ξ̃2

j ‖∞‖ϕk‖2
L2(B) + ‖∇ξ̃j‖∞‖ϕk‖L2(B)gB(ξ̃j∇ϕk, ξ̃j∇ϕk)

1
2

. (µ̃j + λk)(µ̃j)
2βloc‖ϕk‖2

L2(B) + µ̃j(µ̃j)
βloc‖ϕk‖L2(B)gB(ξ̃j∇ϕk, ξ̃j∇ϕk)

1
2

giving

gB(ξ̃j∇ϕk, ξ̃j∇ϕk)
1
2 = ‖ξ̃j∇ϕk‖L2(Br(z)) . ((µ̃j + λk)

1
2 + µ̃j)(µ̃j)

βloc‖ϕk‖L2(B).

Finally,

∇(ξ̃jϕk) ≤ |ϕk‖∇ξ̃j|+ |ξ̃j∇ϕk|
gives equation (3.5.20). ¤

Proof of Proposition 3.4.1. We recall that we rescaled so that R = 1. Let
ψ =

∑N
1 ajξj be a (finite) sum of (Euclidean) Dirichlet eigenfunctions of B such that

1

2
≤ ψ(x) ≤ 2 and x ∈ BR/2(z) ( B

and
∑N

1 |aj| ≤ C, µj ≤ C, 1 ≤ j ≤ N . One may obtain such a sequence by taking
ψ′ ∈ C∞(B) with 0 ≤ ψ′ ≤ 1, ψ′|BR/2(z) = 1 and ψ′|∂B(z) = 0 and then take ψ to be a
truncation of the eigenfunction expansion of ψ′. Let ψ̃ =

∑N
1 aj ξ̃j be the sum of the

corresponding Dirichlet eigenfunctions for B with respect to ∆̃B. By Lemma 3.5.5
and |gik(x)− δik| < ε (with ε sufficiently small), we have, for x ∈ BR/2(z),

1

4
≤ ψ̃(x) ≤ 3.

By Lemma 3.5.8

(3.5.23)

‖ϕj‖
L

2d
d−2 (B))

≤ ‖ψ̃ϕj‖
L

2d
d−2 (B))

≤
∑

|ai|‖ξ̃iϕj‖
L

2d
d−2 (B)

.
∑

|ai|((µ̃i + λj)
1
2 + µ̃i)(µ̃i)

βloc‖ϕj‖L2(B)

.C (λj + 1)
1
2‖ϕj‖L2(B).

We are now ready to prove inequality (3.4.1). Let r0 = R = 1 > r1 > r2 > · · · ≥
R
2

= 1
2
. Write ϕj|Br0 (z) on as ϕj|Br0(z) = u + v, where

v = G̃B(∆̃Bϕj) = λjG̃
B(ϕj)(3.5.24)

since G̃B is the Green function for the Dirichlet problem on Br0(z). Hence ∆̃Bu = 0.
We use (see below) Lemma 3.5.7 in conjunction with the above decomposition, to
show that ϕj ∈ L∞(Br∞(z)). We will then (see below) get (3.4.2) from differentiating
(3.5.24) and using Lemma 3.5.7. Initially, by (3.5.23), Theorem 3.5.1, (3.5.24) and
Young’s inequality, with p0 = 2d

d−2
and 1 ≤ p1 = 2d

d−6+η1
(with 0 < η1 < 4 of our

choice, implied by the estimates on the Green function in Theorem 3.5.1), we have

‖v‖Lp1 (Br0 (z)) . λj‖ϕj‖Lp0 (Br0 (z)),
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giving, by Lemma 3.5.7 (since p1 > p0 > 2),

‖u‖L∞(Br1 (z)) . ‖u‖L2(Br0 (z)) . (1 + λj)‖ϕj‖L2(Br0(z)).

Thus, we have

‖ϕj‖Lp1(Br1 (z)) . (1 + λj)‖ϕj‖Lp0 (Br0 (z)) . (λj + 1)
3
2‖ϕj‖L2(B).

Let 1 ≤ pi = 2d
d−2−4i+

∑
k≤i ηk

(with 0 < ηi < 4 of our choice) and vi = G̃ri(∆̃riϕj).
Similarly, we have

‖vi‖Lpi (Bri−1 (z)) . λj‖ϕj‖Lpi−1 (Bri−1 (z))

and for ui = ϕj − vi

‖ui‖L∞(Bri (z)) . ‖u‖L2(Bri−1 (z)) . (1 + λj)‖ϕj‖L2(Bri−1 (z)).

Thus, we have by induction

‖ϕj‖Lpi (Bri (z)) . (1 + λj)‖ϕj‖Lpi−1 (Bri−1 (z)) . (λj + 1)i+ 1
2‖ϕj‖Lp2 (B).

Let β be the smallest integer larger or equal than d−2
4
. We may choose {ηi} so

that pβ = ∞. This gives equation (3.4.1).
In order to upper bound ‖∇ϕj‖ we note that (recalling that rβ ∼ R ∼ 1)

‖∇vβ‖L∞(Brβ
) = ‖∇G̃rβ(∆̃rβϕj)‖L∞(Brβ

) ≤ λj‖G̃rβ‖L1(Brβ
)‖ϕ‖L∞(Brβ

).

We also note that we have

‖∇uβ‖L∞(B 1
2 rβ

) . ‖ϕ‖L∞(Brβ
)

from Lemma 3.5.7. Thus combining the last two estimates, we have (3.4.2).
Finally, we prove (3.4.3). Let χ ∈ C∞(R) be a function so that 0 ≤ χ ≤ 1,

χ(s)|s≤K1 = 0 and χ(s)|s≥K2 = 1. We define η, a cutoff function, such that η|B(z, 1
4
R) =

1 and η||x|≥ 1
2
R = 0 as follows. Define η(x) = χ(G(z, x)), and choose K1, K2 above so

that η has the desired cutoff radius. We get that

∆̃B(η)(x) = ∆̃(χ(G(z, x))) =
∑
i,j

∂xi
gij∂xj

χ(G(z, x))

=
∑
i,j

∂xi
(χ′(G(z, x)))gij∂xj

G(z, x)

= χ′′(G(z, x))

(∑
i,j

∂xi
G(z, x)gij∂xj

G(z, x)) + χ′(G(z, x)

)
∆̃xG(z, x),

where the second term in the last line is 0 as ∆̃xG(z, x) is a distribution which
equals 0 on the support of χ′(G(z, x)). By choice of χ and Theorem 3.5.1, this gives
∆̃(η) . 1.

Now, let x, y ∈ B = B(z, 1
4
R). Let G̃ = G̃B be the Green’s function for B. Then

(3.5.25)

‖∇ϕ(x)−∇ϕ(y)‖ = ‖∇(ϕη)(x)−∇ϕη)(y)‖

=

∥∥∥∥
ˆ

(∇1G(x,w)−∇1G(y, w)) ∆̃B(ϕη)(w) dw

∥∥∥∥

≤ |∆̃B(ϕη)(w)|L∞(B)

ˆ
‖∇1G(x,w)−∇1G(y, w)‖ dw.
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We have (using uniform ellipticity as well as Proposition 3.4.1)

(3.5.26)

|∆̃B(ϕη)(w)| . |η∆̃Bϕ(w)|+ |ϕ(w)∆̃Bη|+ |∇η||∇ϕ|
≤

(
‖∆̃Bη‖∞ + λ‖η‖∞

)
‖ϕ‖L∞(B) + ‖∇η‖∞‖∇ϕ‖L∞(B)

. (1 + λ) ‖ϕ‖L∞(B) + ‖∇ϕ‖L∞(B)

. (1 + λ) P1(λ)‖ϕ‖L2(B) + λP2(λ)‖ϕ‖L2(B)

. ((1 + λ)P1(λ) + λP2(λ)) ‖ϕ‖L2(B)

by using (3.4.2). Combining (3.5.25) with (3.5.26) and (3.5.4) we get

¤(3.5.27) ‖∇ϕ(x)−∇ϕ(y)‖ . P3(λ)‖ϕ‖L2(B)|x− y|α.

Proof of Lemma 3.2.1. This follows from Lemma 20 in [23] together with Pro-
position 3.4.1; we have C 1+α functions which are close in L2(B) . Hence, they are
also close in L∞(B), i.e. equation (3.2.1) holds and so does (3.2.2). ¤

3.5.3. Heat kernel estimates. This subsection makes no assumptions on the
finiteness of the volume of M and the existence of Ccount for the manifold M . It will
however use these properties for a manifold ball.

We fix a ball B = BR(x) for which we estimate the heat kernel K̃B by comparing
it to KB. Suppose that {ξj} is an orthonormal basis for L2(B̃) (with manifold
measure). In this section all constants subsumed in .,& and ∼ will in general
depend on d, cmin, cmax, ‖g‖α, α.

Lemma 3.5.9. Let A1 > 1 and a sufficiently small η0 = η0(A1) > 0 be given.
Assume ε0 is sufficiently small (depending on η0, A1, as well as the usual d, cmin, cmax,
‖g‖α, α), and |gik(x)− δik| < ε0. For y ∈ BR

2
(x) ⊂ Ω, with |x− y|2 . t ∼ R2 ≤ 1 in

a similar fashion to Assumption A.1, we have
∑

µi≤A1
t

ξi(x)ξi(y)e−µit ∼η0,A1,d,cmax,cmin,‖g‖α,α

∑

µ̃i≤A1
t

ξ̃i(x)ξ̃i(y)e−µ̃it.(3.5.28)

If, in addition, we also have |x− y|2 ∼ t, then
∣∣∣∣∣∣∣

∑

µi≤A1
t

ξi(x)∇ξi(y)e−µit −
∑

µ̃i≤A1
t

ξ̃i(x)∇ξ̃i(y)e−µ̃it

∣∣∣∣∣∣∣

.A1,d,cmax,cmin,‖g‖α,α η0 · R

t
t
−d
2 .

(3.5.29)

The constants in (3.5.28) go to 1 as η0 → 0.

Proof. We apply Lemma 3.5.5 with J = #{j : µi ≤ A1/t} ≤
(

A1

t

) d
2 Rd ∼ A

d
2
1

and with η < η0. Let ε0 be as guaranteed by Lemma 3.5.5. Since ξi’s and ξ̃i’s are
L2-normalized, Lemma 3.5.3 and 3.5.5 implies for µi ≤ A1

t

|ξi(x)ξi(y)e−µit − ξ̃i(x)ξ̃i(y)e−µ̃it|
≤ |ξi(x)− ξ̃i(x)‖ξi(y)|e−µit + |ξi(y)− ξ̃i(y)‖ξi(x)|e−µit + |ξi(x)‖ξi(y)‖e−µit − e−µ̃it|
. Q1(A1t

−1R2)η
(|ξi(y)|e−µit + |ξi(x)|e−µit

)
+ |ξi(x)‖ξi(y)|tηµie

−µit . A3βloc+1
1 η.
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Using Weyl’s Lemma (Lemma 3.4.2) for the ball with Dirichlet boundary condi-
tions (see Lemma 3.4.2), we have

∥∥∥∥∥∥∥

∑

µi≤A1
t

ξi(x)ξi(y)e−µit −
∑

µ̃i≤A1
t

ξ̃i(x)ξ̃i(y)e−µ̃it

∥∥∥∥∥∥∥
. A3βloc

1 (1 + A1)ηJ

. A3βloc+1
1 η

∑

µi≤A1
t

ξi(x)ξi(y)e−µit

by the (Euclidean) estimates in the proof of Lemma 3.1.4 and since R . 1. We
obtain the desired estimate (3.5.28) by taking η0 sufficiently small. Similarly,

|ξi(x)∇ξi(y)e−µit − ξ̃i(x)∇ξ̃i(y)e−µ̃it|
≤ |ξi(x)− ξ̃i(x)‖∇ξi(y)|e−µit + |∇ξi(y)−∇ξ̃i(y)‖ξi(x)|e−µit

+ |ξi(x)‖∇ξi(y)‖e−µit − e−µ̃it|
. η

(
(A1t

−1R2)βloc|∇ξi(y)|e−µit + (A1t
−1R2)βloc+1r−1|ξi(x)|e−µit

)

+ |ξi(x)‖∇ξi(y)|tηµie
−µit

. A3βloc+2
1 ηR−1.

Thus, equation (3.5.29) also clearly follows by η0 sufficiently small. ¤

Lemma 3.5.10. Let η0 > 0 be given and assumed to be sufficiently small.
Assume ε0 is sufficiently small (depending on η0, as well as the usual d, cmin, cmax,
‖g‖α, α), and |gik(x)− δik| < ε0. For y ∈ BR

2
(x) ⊂ Ω with |x− y|2 . t ∼ R2 ≤ 1 (in

a similar fashion to Assumption A.1) and s ≤ t,

K̃B
t (x, y) ∼η0,d,cmin,cmax,‖g‖α,α KB

t (x, y),(3.5.30)

K̃B
s (x, y) .η0,d,cmin,cmax,‖g‖α,α KB

s (x, y),(3.5.31)

and

‖∇K̃B
s (x, y)‖ .η0,d,cmin,cmax,‖g‖α,α

R

s
(sR−2)−2βloc−1s

−d
2 .(3.5.32)

If, in addition, we have |x− y|2 ∼ t, then

(3.5.33)
∥∥∥∇K̃B

t (x, y)−∇KB
t (x, y)

∥∥∥ .d,cmin,cmax,‖g‖α,α η0 · R

t
t
−d
2 .

The constants in (3.5.30) go to 1 as η0 → 0.

Proof. We estimate the tail:∥∥∥∥∥∥∥

∑

µi≥A1
t

ξi(x)ξi(y)e−µit

∥∥∥∥∥∥∥
≤ e−

1
2
A1

∥∥∥∥∥∥∥

∑

µi≥A1
t

ξi(x)ξi(y)e−
1
2
µit

∥∥∥∥∥∥∥
≤ e−

1
2
A1K̃B

1
4
t
(x, x)K̃B

1
4
t
(y, y) .︸︷︷︸

using [16]

e−
1
2
A1t−

d
2 .
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This, combined with (3.5.28), for A1 large enough, gives (3.5.30). From [15] we also
get (3.5.31). We also have

∥∥∥∥∥∥∥
∇x

∑

µ̃≥A1
s

ξ̃i(x)ξ̃i(y)e−µ̃is

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥

ˆ

B

∇xG̃
B(x,w)

∑

µ̃≥A1
s

∆̃B ξ̃i(w)ξ̃i(y)e−µ̃is

∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥

ˆ

B

∇xG̃
B(x,w)

∑

µ̃≥A1
s

µ̃iξ̃i(w)ξ̃i(y)e−µ̃is

∥∥∥∥∥∥∥

= s−1

∥∥∥∥∥∥∥

ˆ

B

∇xG̃
B(x,w)

∑

µ̃≥A1
s

ξ̃i(w)ξ̃i(y)(µ̃ise
−µ̃is)

∥∥∥∥∥∥∥

. s−1

ˆ

B

‖∇xG̃
B(x,w)‖

∑

µ̃≥A1
s

|ξ̃i(w)||ξ̃i(y)|e− 1
2
µ̃is

. e−
1
4
A1s−1

ˆ

B

‖∇xG̃
B(x,w)‖K̃B

s/8(w,w)
1
2 K̃B

s/8(y, y)
1
2

. e−
1
4
A1s−

d
2
−1

ˆ

B

‖∇xG̃
B(x,w)‖ . e−

1
4
A1s−

d
2
−1R,

since by (3.5.6) we have ‖∇G̃B(x, ·)‖L1(BR) . R. If we now take s = t then, by the
Euclidean estimates and (3.5.29), for A1 large enough, we obtain both the lower and
upper bounds (3.5.33).

To prove estimate (3.5.32), we use the above estimate and notice that we also
have (from Lemma 3.5.3 and Weyl’s Lemma for the ball with Dirichlet boundary
conditions)

∥∥∥∥∥∥∥

∑

µ̃≤A1
s

∇ξ̃i(x)ξ̃i(y)e−µ̃is

∥∥∥∥∥∥∥
. R−d

∑

µ̃≤A1
s

µ̃iR(µ̃iR
2)2βloc+1e−µ̃is

= R−d(sR−2)−2βloc−2R−1
∑

µ̃≤A1
s

(µ̃is)
2βloc+2e−µ̃is

. R−d(sR−2)−2βloc−2R−1
∑

µ̃≤A1
s

1

. A
d
2
1 R−1(sR−2)−2βloc−2s

−d
2

. R

s
(sR−2)−2βloc−1s

−d
2 . ¤

Lemma 3.5.10 will be used to get Proposition 3.1.2 for the case of a manifold.
We will need to improve estimate (3.5.32), which in turn requires the following:
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Lemma 3.5.11. Let |y| < R
4
, r < R

4
and s

1
2 ≤ r. Let By(s′) be Brownian motion

started at y. Then

P ( sup
0≤s′≤s

|By(s′)| > |y|+ r) .d,cmin,cmax e
−c′(d,cmin,cmax) r√

s .

Proof. This follows from Lemma 3.3.4. ¤
Proof of Proposition 3.1.2; case of BR(z) with metric at least C 2. By rescaling

we may assume that R ≤ 1. We upper bound δ0 so that |gik(x)− δik| < ε0, where ε0

is as prescribed by Lemma 3.5.10 (this is done as in (3.1.16)).
Estimates (3.1.1) and the first part of (3.1.4) follow from the Euclidean case and

estimates (3.5.30) and (3.5.31). Estimate (3.1.2) and estimate (3.1.3) follow from
(3.5.33) and Euclidean ball estimates.

We now turn to the second and third parts in (3.1.4). Without loss of generality

we identify z = 0. Let a be such that a
∞∑

j=1

1
j2 = 1

4
. Define stopping times τ1, τ2, . . .

by

τn = inf{s′ : |Bz(s′)| = aR

n∑
j=1

1

j2
}.

For n > 1, define the set of paths

Bn = {ω ∈ Ω: τn(ω) ≤ (1− 2−n)s}.
For n > 1 define Gn ⊂ Bn as

Gn = Bn rBn−1

and
G1 = B1.

We estimate using Lemma 3.5.11:

P (G1) ≤ exp
(
−c′

a

12
Rs−

1
2

)

and for n > 1

P (Gn) ≤ exp

(
−c′

a2
n−1

2

n2
Rs−

1
2

)
.

We need another lemma:

Lemma 3.5.12. The set {ω ∈ Ω: τn ≤ s ∀(n ≥ 1), ω /∈ ∪Gn} has probability
0.

Proof. Now

{ω ∈ Ω: τn ≤ s ∀(n ≥ 1), ω /∈ ∪Gn} = {ω ∈ Ω: τn ≤ s ∀(n ≥ 1), ω /∈ ∪Bn}
= {ω ∈ Ω: s ≥ τn ≥ (1− 2−n)s ∀(n > 1)}
⊂ {ω ∈ Ω: τn − τn−1 ≤ 2−ns ∀(n > 1)}.

However, the set {ω ∈ Ω: τn − τn−1 ≤ 2−ns} has probability decaying super-
exponentially in n by Lemma 3.5.11. ¤

We now continue with the proof of Proposition 3.1.2; case of BR(z) with metric
at least C 2. Define Hn = Gn \ (∪n−1

1 Gi). We now have a disjoint partition of
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{ω ∈ Ω: τn ≤ s ∀(n ≥ 1)} (up to measure 0) by the collection {Hi}. Set K̃D
s (·, ·) :=

K̃
BR(z)
s (·, ·). For |y| > R

4
we have

K̃D
s (z, y0) =

∞∑
n=1

Eω(χHnK̃D
s−τn

(Bz(τn), y)).

Taking gradient and using equation (3.5.32) we get

|∇xK̃
D
s (z, y)| = |

∞∑
n=1

Eω(χHn∇xK̃
D
s−τn

(Bz(τn), y))|

.d,cmin,cmax,‖g‖α,α

∞∑
n=1

R

s
(2−nsR−2)−2βloc−1s

−d
2 P (Hn)

.d,cmin,cmax,‖g‖α,α

∞∑
n=1

R

s
(2−n/2s

1
2 R−1)−4βloc−2s

−d
2 exp

(
−c′

a2−1/2

n2
2n/2s−

1
2 R

)

.d,cmin,cmax,‖g‖α,α

∞∑
n=1

R

t
(2−n/2t

1
2 R−1)−4βloc−2t

−d
2 exp

(
−c′

a2−1/2

n2
2n/2t−

1
2 R

)

≤ R

t
t
−d
2

∞∑
n=1

(2−n/2t
1
2 R−1)−4βloc−2 exp

(
−c′

a2−1/2

n2
2n/2t−

1
2 R

)

.d,cmin,cmax,‖g‖α,α
R

t
t
−d
2 ,

where we may replace s with t above, since s ≤ t, and each of the summands is
increasing in s as long as it is sufficiently small with respect to R2 (independently
of n when n > 1). This proves the second and third parts of (3.1.4) for BR(z) with
metric at least C 2. ¤

Remark 3.5.13. The proof below makes no assumption on the volume of M ,
and works for the case of M having infinite volume as well.

Proof of Proposition 3.1.2 for the heat kernel of M , with metric at least C 2. As
for the Neumann heat kernel, the starting point is Proposition 3.3.2, which allows us
to localize. We use Proposition 3.1.2 for the ball B2δ0Rz(z) with metric at least C 2.
For this proof, we denote by C2[B] be the C2 constant for the Dirichlet ball case, and
set KD

s (·, ·) := K2δ0Rz
s (·, ·), the heat kernel for the ball B(z, 2δ0Rz) with Dirichlet

boundary conditions. For s ≤ t,

|Ks(x, y)− K̃D
s (x, y)| =

∣∣∣∣∣
+∞∑
n=1

Eω

[
K̃D

s−τn
(xn(ω), y)|τn < s

]
Pω(τn(ω) < s)

∣∣∣∣∣

.C2[B]

∞∑
n=1

t−
d
2 e−n

( δ0Rz
2 )

2

Ms︸ ︷︷ ︸
eqn. (3.3.10)

.C2[B],δ0,δ1 t−
d
2 e−

( δ0Rz
2 )

2

Ms .

This proves (3.1.1) and the first part of (3.1.4) (see Remark 3.3.3). For the gradient
estimates, i.e. (3.1.2), (3.1.3), and the second and third part of (3.1.4),
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‖∇yKs(x, y)−∇yK̃
D
s (x, y)‖ ≤

+∞∑
n=1

∥∥∥∇yEω

[
K̃D

s−τn
(xn(ω), y)|τn < s

]∥∥∥ Pω(τn(ω) < s)

.C′2[B]

∞∑
n=1

t−
d
2
δ0Rz

t
e−n

( δ0Rz
2 )

2

Ms︸ ︷︷ ︸
eqn. (3.3.10)

.C′2[B],δ0,δ1 t−
d
2
δ0Rz

t
e−

( δ0Rz
2 )

2

Ms

giving us C9. By Remark 3.3.3 the exponential term from equation (3.3.10) can be
made small enough so that we obtain estimate (3.1.2) as well as the second and third
parts of (3.1.4). ¤

4. The proof of Theorem 2.2.8

We remind the reader of Remark 3.1.1 which notes that the proof of Proposi-
tion 3.1.2 for the heat kernel of M , with metric at least C 2 (appearing at the end
of section 3.5.3), made no assumptions on the finiteness of the volume of M and the
existence of Ccount.

4.1. The case g ∈ C 2. We appropriately choose heat kernels {Kt(z, yi)}i=1,...,d,
with t ∼ R2

z, that provide a local coordinate chart with the properties claimed in the
Theorem 2.2.8:

Proof of Theorem 2.2.8 for g ∈ C 2. Without loss of generality we may assume
ρ = Rz = 1, and thus, by Remark 3.1.1, we may apply Proposition 3.1.2. Let us
consider the Jacobian J̃(x), for x ∈ Bc1Rz(z), of the map

Φ̃ := R−d
z td/2(t/R2

z)Φ.

By (3.1.3) we have |J̃ij(x) − C ′
2〈pi,

x−yj

‖x−yj‖〉R−1
z | ≤ C9R

−1
z . As dictated by Propo-

sition 3.1.2, by choosing δ0, δ1 appropriately (and, correspondingly, c1 and c6), we
can make the constant C9 smaller than any chosen ε, for all entries, and for all x at
distance no greater than c1Rz from z, where we use t = tz = c6R

2
z for Φ̃. Therefore

for c1 small enough compared to c4 we can write RzJ̃(x) = Gd + E(x) where Gd is
the Gramian matrix 〈pi, pj〉 (indepedent of x!), and |Eij(x)| < ε, for x ∈ Bc1Rz(z).
This implies that R−1

z (σmin−Cdε)‖v‖ ≤ ‖J̃(x)v‖ ≤ R−1
z (σmax +Cdε)‖v‖, with Cd de-

pending linearly on d, where σmax and σmin are the largest and, respectively, smallest
eigenvalues of Gd. At this point we choose ε small enough, so that the above bounds
imply that the Jacobian is essentially constant in Bc1Rz(z), and by integrating along
a path from x1 to x2 in Bc1Rz(z), we obtain the Theorem (Φ and Φ̃ differ only by
scalar multiplication). We note that ε ∼ 1

d
suffices. ¤

We discuss the proof for g ∈ C α, and M has possibly infinite volume in Sec-
tion 4.2. Such proof is based on approximation arguments via heat kernels corre-
sponding to smooth metrics on finite volume submanifolds.

4.2. The case g ∈ C α. In this section we discuss heat kernel estimates and the
heat kernel triangulation Theorem in the case when C α. The key ingredient for the
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proof of Theorem 2.2.8 for the case of g ∈ C α, are the heat kernel estimates similar
to those of Proposition 3.1.2.

Before we turn to the proof of Theorem 2.2.8 for the case g ∈ C α, we need one
more statement about the case g ∈ C 2. Consider the following variant of Proposi-
tion 3.3.2.

Proposition 4.2.1. (Variant of Proposition 3.3.2) Assume g ∈ C 2. Let w ∈ Ω
and Rw ≤ dist(w, ∂Ω), or w ∈ M and Rw ≤ rU(w). Let z and Rz be similarly
defined. Assume z /∈ BRw(w), and w /∈ BRz(z). For each path Bz

ω (starting at
z), we define τ1(ω) ≤ τ2(ω) ≤ . . . as follows. Let τ1(ω) be the first time that Bz

ω

enters B(w, 3
4
Rw) (if this does not happen, let τ1(ω) = +∞). Let z1 = Bz

ω(τ1).
By induction, for n > 1 let τn(ω) be the first time after τn−1(ω) that Bz

ω re-enters
B(w, 3

4
Rw) after having exited B(w, 1

2
Rw), or +∞ otherwise. Let zn(ω) = Bz

ω(τn). If
τn(ω) = +∞, let τn+k(ω) = +∞ for all k ≥ 0. Then

(4.2.1) Ks(z, w) =
+∞∑
n=1

Eω

[
KD

s−τn(ω)(zn(ω), w)

∣∣∣∣∣τn < s

]
Pω(τn < s),

where

KD
s = K

Dir(B 1
2 Rw

(w))

s .

Moreover, there exists an M = M(cmin, cmax) such that

(4.2.2) P (τn < s) .d,M,cmin,cmax exp{−(n− 1)

(
Rw

8

)2

(2Ms)−1 −
(

Rz

8

)2

(2Ms)−1}.

The proof of this Proposition is along the same lines as that of Proposition 3.3.2.

Proof of Theorem 2.2.8 for g ∈ C α(M ) with |M | ≤ ∞. Consider a sequence
of metrics {gk} ⊆ C 2(M ), with increasing compact supports {Mk}, converging to
g in C α (and therefore bounded in C α), and such that gk is uniformly elliptic with
constants 1

2
cmin, 2cmax (which is possible since cmin and cmax are continuous functions

of the components of the metric tensor). Let Kk be the heat kernel associated with
gk. Note that for this heat kernel and its gradient we have bounds, from above with
constants uniform in k for any fixed compact E away from ∂M . We proceed as
in the proof of Theorem II.3.1 in [49]. The key ingredients are uniform (in k, for a
fixed compact) upper bounds on Kk (which follow from Propositions 3.3.2 and 4.2.1),
and that {Kk} is equicontinuous, which follows from the uniform upper bounds on
the gradient of Kk (for a fixed compact we have uniform lower bounds on Rz and
Rw and estimate (4.2.2)). It could also made follow from Stroock’s paper (Nash–
Moser estimates that say the Kk is Hölder of order and with constants depending
only the ellipticity constants)). The proof of Theorem II.3.1 in [49] then implies
that Kk → KM as k → +∞, uniformly on compacts. Therefore the uniform (in k)
bi-Lipschitz bounds on the map

x → (Kk,t(x, y1), . . . , Kk,t(x, yd))

on BR(z), imply the same bounds for

x → (KM ,t(x, y1), . . . , KM ,t(x, yd)). ¤
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5. Examples

5.1. Localized eigenfunctions. The following example shows that the factors
γ1, . . . , γd in Theorems 2.1.1 and 2.2.1 may in fact be required to be as small as R

d
2
z .

1

τ
N

δτ
N

Figure 1. Example of localization.

Let τ below be the golden ratio. Consider the domain Ωδ as in Figure 1, with
Dirichlet boundary conditions. We will let z to be the center of the small square.
Let λδ

j and ϕδ
j be the eigenvalues and eigenfunctions on Ωδ. Fix A > CN . Let

Λδ
A = {j : λδ

j ≤ A2}. The cardinality of Λδ
A is uniformly bounded above by Weyl

Lemma. It is also bounded below, since in this case we can easily obtain a reverse
Weyl Lemma. To see this, let (∂Ωδ)A = {x ∈ Ω: d(x, ∂Ω) ≤ a/A}, so that the heat
kernel estimates in Lemma 3.1.4 hold for t = bA−2, and observe that

#{j : λδ
j ≤ A2} ≥ e+b

ˆ

Ωδ\(∂Ωδ)A

∑

λδ
j≤A

|ϕδ
j(x)|2e−λδ

j t

≥ e+b

(ˆ

Ωδ\(∂Ωδ)A

Kδ
t (x, x)−

ˆ

Ωδ\(∂Ωδ)A

Kδ
t/2(x, x)e−

A2t
2

)

& e+b

(
1

2
− a

A

)2 (
C1t

−1 − C2e
− b

2 t−1
)

& e+bb−1A2,

where we choose b so that the last inequality holds, and thus determine a and A,
which are chosen so that Lemma 3.1.4 and Proposition 3.1.2 hold.

Fix j = 1. The sequence {λδ
j}δ>0 is bounded and hence the families {ϕδ

j}δ>0

and {∇ϕδ
j}δ≥0 are equicontinuous (by Proposition 3.4.1), therefore there exists a

sequence δk → 0 such that ϕδk
j → ϕj, ∇ϕδk

j → ∇ϕj and λδk
j → λj. We can repeat

this argument for any j ≤ lim infk #{j : λδk
j ≤ A2} := jmax(A), which is strictly

positive and tending to +∞ as A → +∞, by the above. By a diagonal argument,
we can find a subsequence δl such that for any j ≤ jmax(A), ϕδl

j → ϕj, ∇ϕδl
j → ∇ϕj.

Let us look at some properties of ϕj. Clearly, ϕj is an eigenfunction for ∆ with
Dirichlet boundary conditions on Ω0. Since ( τ

N
n1)

2 + ( τ
N

n2)
2 is irrational for any

n1, n2 ∈ Z, every ϕj is supported in either the small square, or the big square. Recall
that z is the center of the small square. For any j ≤ jmax(A) if ϕj has support in S0

then ‖∇ϕj‖ & (τ/N)−2. Let δl be small enough so that ‖∇ϕδl
j ‖ & (τ/N)−2, for all



Universal local parametrizations via heat kernels and eigenfunctions of the Laplacian 171

j ≤ jmax(A). By choosing A larger than c5(τ/2N), where c5 is as in Theorem 2.1.1,
all possible eigenfunctions that may get chosen in the Theorem will correspond to
j ≤ jmax(A), and therefore the lower bound for the γi is sharp.

See http://pmc.polytechnique.fr/pagesperso/dg/recherche/localization−e.htm for
nice demonstrations of the above example.

5.2. Non-simply connected domain.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4
Domain D, point z, closest point to ∂ D, neighborhood to be mapped.
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0.2 0.4 0.6 0.8 1 1.2
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Figure 2. Top left: a non-simply connected domain in R2, and the point z with its neigh-
borhood to be mapped. Top right: the image of the neighborhood under the map. Bottom: Two
eigenfunctions for mapping.
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