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Abstract. We define a set of projections on the Bergman space A2, which is parameterized
by an affine subset of a Banach space of holomorphic functions in the disk and which includes the
classical Forelli-Rudin projections.

1. Introduction

Recall that the Bergman projection of L*(D) onto the holomorphic Bergman
space A2 = L?(D)N# (D), where 5 (D) denotes the space of holomorphic functions
in the unit disk, is given by

Po(z) :/]3(80(—w)2d14(w),

1 — zw)
where dA is the normalized Lebesgue measure in the disk. Recall also the family of
Forelli-Rudin projections parameterized by a > —1

e o (1) 22

These are the orthogonal projections of the weighted L?*(D,(1— |w|)® dA(w)) onto
A (D) N L*(D,(1— |w|)*dA(w)). Tt is well known (see |6, Th. 7.1.4]) that P, is a
continuous projection of L?*(D) onto A2, for each o > —1/2.

Since
1—|w]?
—— zweD}cD
1—zw

where Dy = {z : |z — 1| < 1}, we may replace the function ¢,(¢) = (a + 1)¢* in
the definition of P, by any holomorphic function g on D, to obtain an operator T
mapping the space C.(D) of compactly supported continuous functions defined on
D into A% An equivalent formulation of the operators defined this way was given
by Bonet, Englis and Taskinen in [1] to construct continuous projections in weighted
L spaces of D into (D). The purpose of this paper is to study the space & of
all holomorphic functions g € Dy, for which the corresponding operator 7, can be
extended continuously to L?(D). In particular we study the set 22, of those functions
g € P that define continuous projections on A2. For notational convenience we will
translate the functions in & to the unit disk D.
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We will prove that & is a Banach space when we define the norm of g € &2 as
the operator norm of the operator 7, and that ®(g) = fol g(r) dr defines a bounded
linear functional in &7*. We give an analytic description of the elements of &2 and
show that if g € & then either T, is identically zero on A? or it is a multiple of
a continuous projection onto A?, implying that &, = ®~1({1}) is a closed affine
subspace of Z.

As usual, for each z € D, ¢, will denote by ¢, the M&bius transform ¢, (w) = 2=~

1—zw
which satisfies (¢,)™! = ¢, and ¢ (w) = —&:Z‘;Q. Throughout this paper we will
write
1— |w|?
Pa(w) = 1—z2w
and

H={z¢ec C:Re(z) >1/2}.

Clearly the mapping z — ﬁ is a bijection of D onto H, and

(1) Pz(w) =1 — whu(2).

2. A space of projections on A2

Let us start by presenting our new definitions and spaces of projections.

Definition 1. Let g be holomorphic in D. We define

e() = [ gtiouete) A

for any ¢ € C.(D). We denote by & (resp. &) the space of holomorphic func-
tions g € (D) such that T, extends continuously to L*(D) (resp. T, is a projec-
tion on the Bergman space A?). We provide the space & with the norm ||g||, =

1751l 120y~ 120 -
Remark 2. In [1] it was introduced, for each F' holomorphic in H the operator

Srp(z) = /DF (11__|Z}w|2> @(w)%-

We have T, = Sp, with F() = n%g(l - %) We will say that such F' € & (resp. &)
if g € & (resp. ).

Example 3. Let g,(2) = (o + 1)(1 — 2)* for every a > —1. Then g, € &, for
a > —1/2. In fact by (1) we have T, = P,, which is a bounded projection from
L*(D) into A% if and only if a > —1/2.

Example 4. If P(z) = Effzo a,z* is a polynomial then P € £2. Moreover,

P e Py if and only if 3\ g%5 = [) P(r)dr = 1.

Proof. Write P(z) = N:0 br(1 — 2)* where b, = (—1)’“%. Hence

T:i b__p
e
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This shows that Tp € &2 and || P||» < Efj 0 b1 P,||. On the other hand Tp € 2,

(k+1)
if and only if 311 07 I<:+1) — 1. Notice now that >n_ 07 b — fl P(r)dr to conclude
the proof. 0

+1) — Jo

Example 5. If ¢ € (D) is such that (1 — 2)"%g(2) is bounded for some
a > —1/2then g € & and [|g||» < Csup|,; [(1—2)"%g(2)|. In particular the space
of bounded holomorphic functions H*(D) is contained in & and || f||2 < C|f]|c-

Proof. Use the fact that Pro(z) = [, |(1 [wl) (w) dA(w) also defines a bounded

1 wz|2+“

operator on L?(D) (see [5, Theorem 1.9]). O

Proposition 6. Let g: {z : |z — 1| < 2} — C be holomorphic such that g(z) =
Sontyan(l—2)" for |2 — 1] < 2. If Y302 ) Zhs < oo, then g € & and

n=1 +1)5/4
— 2" ‘an‘
lolo <03l
Moreover, g € & if and only if Y77 | - = 1.

Proof. Indeed, the norm || P,|| = ¥ Gn) (see [2, 3]). Then for ¢ € C.(D)

n!
o0

Typ(z) =Y (LPW),

— (n+1)

and

Z \anI\/W_

lgll

(277,) on

Finally observe that, from Stirling’s formula, (

result note that » - |aﬂ < oo and

8

n=1
for ¢ € A2 O
Example 7. Let hg(z) = Ag(1 + 2)7° for 8 > 0 where Ag = W if g #1
and A; = (log2)™!. Then hg € P, for 0 < 3 < 5/4.

Proof. Since m = >, Bpw" for B> 0, |w| < 1, where 3, ~ (n+ 1)1, we
have

hs(z) = 25(1—(?—2/2 ZAMM (1—2)"

Now Proposition 6 implies hg € Z.

Note that
2 1 A2 n+1ﬁ
1= [ Agsd :/h dZE:—n‘
/1 o7 i 0 plr) dr e n—+1

Apply again Proposition 6 to finish the proof. U
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Let us now give some necessary conditions that functions ¢g in &2 should satisfy.
Theorem 8. If g € &2, then

@) ggg{ [ 1o (@t dA(w)}1/2§2||gHy,

3) ( / 1 \g<r>12dr) " ol
) 9 1/2

(4) (/O ( D%Wl(u))(l—ﬁ)%dr) <2gll,-

Proof. If g € & and ¢ € C.(D) one has T, € A% Hence for each z € D

1Tyl _ lgll liels

[Top(2)] <

=T = (=)
Therefore
i dA@w) | _ lgll ligll
[ at@on(e) et = < M

Then by duality,

oo (o2 _4Aw) 7 gl loll.»
B [ eer ) < e <o lla

Let us show the following formula:

Indeed, since
(1— =)@ — |ul*)
11— Zul? ’

L= |¢-(u)]* =

then

A X e O

Now (6) follows from (1) and (7)

Changing the variable u = ¢,(w) in (5) and using (6) we obtain

{j;thﬁﬁCﬁ)rdA@O}UQ§2any.

Now replacing v and z by w and z respectively the inequality (2) is achieved.
Part (3) follows selecting z = 0 in (2).
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Part (4) follows from (2) replacing the supremum by an integral over D and
changing the variable u = ¢,,(z),

[ [ lstwsuo)F aawyaae - [ ( Lo @O 40 1 — fu)? aw)

p |1 — wul*

:/D< D%M(u))u—mﬁ)mw)
:/01( Mdfl( ))( — %) dr. O

11 —Tu|4

Remark 9. (£, - ||») is a normed space and ®(g fo r)dr € &*. Indeed,
the only condition which needs a proof is the fact that lgllz = O implies g = 0. It
follows from (3) that if ||g|]|2 = 0, then g(r) = 0 for 0 < r < 1. Hence by analytic
continuation, g(z) = 0 for z € D. Notice also that (3) implies ||®|| < 2.

Remark 10. The space & is not invariant under under rotations. Given 6 €
[0,27) denote Ry(f)(2) = f(e2) for f € 5 (D). Observe that RyT,(p) = T,(Rep).
However, “T, is bounded in L?(D) does not imply Tk,, is bounded in L?*(D)”. For
instance, the function g(z) = (1 + 2)7'/2 belongs to &, but by (3), its reflection

9(x) =(1—-2)"2 ¢ 2.

Let us now also give some necessary conditions to belong to the class .
Theorem 11. If g € &, then

(9) /D 9(a(2))b (1) dA(u) = (0)

for all i) € Ay and z € D. In particular,

(i) If g € P then [, g(r)dr =1.
(i) Let Sy = {z(1 — |z|? ) (2) : o€ A%} Ifg € Py and ¢ € P then Sy C
Ker(Ty).

Proof. Assume

/ g<w¢w<z>>("”#dz4< )= ol2)

1 —wz)?
for all p € A%. Given ¢ € A? and z € D, consider p(w) = (¢, (w ))% Clearly
¢ € Ay and ||¢|l2 = (1 — |2]?)||2)||2- From the assumption,

/ g(00u(2) () . 440wy = 4(0).

|1 —wz|*

for all ¢» € A? and z € D.
Now changing the variable u = ¢,(w), and using (6), one gets

/D 9(ubo(2))(u) dA() = (0)

for all » € Ay and z € D. Finally changing u by w one obtains

(10 | stwou@)it@) datw) = v o)
for all ¢ € Ay and z € D. (i) follows selecting ) = 1 and z = 0 in (10).
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Differentiating in (10) with respect to z one obtains

- 2
[ dtwone) = vw) datw) = 1y ) =0
where ¢ (u) = —u(1 — |ul?)¢(@). Hence (ii) is finished. O
Let us now show that (2, || - || ) is complete. For such a purpose, let us define
h,: D — H by a
e (w) = I 1-zw

va(w) 1 —|w*
and let us mention that

1—|w]?
D, ={ 1—|z@| cz,w € DY = {1y, (w) : z,w € D}.
Lemma 12. For every ¢ € H, there exist 0 < a < 1 and w € D such that
¢ = ho(w) and h, is an diffeomorfism of a neighborhood U of w onto an open

neighborhood of €.
Proof. For 0 <r,a < 1 fixed,

(1) ha(re®) = —— — %=

1= 1—12
describes the circle C, , centered at the complex number 1ET2 with radius ;%°5. Let

¢ € H. To prove that £ € h,(D) it is enough to see that £ € C,., for some 0 < r, a0 <
1. Let

(12) ﬁ:%[(1—r2)2|§|2+1—2(1—r2)Re§] = (
It is clear that 8 > 0 and
B<le (1-r)Ef+1<2Rek.

Also, since ¢ € H, we have for some € > 0 that 2Re& > 1 + €. Hence if |£|2 < (1_€—T2)
then # < 1. We conclude that there exists ro for which 0 < § < 1 provided ry < r < 1.
Then if 1o <7 <1 and a = /3 we have 0 < a < 1 and

1 ro
- L—r2| 1—7%

that is ¢ € C,.,. Hence there exists 6, and 0 < . < 1 such that h,, (re®) = €.
To find 6, explicitly, we let ¢, = 7 — 0,. From (11) we can write

1-— 7“2)5 — 1]2
r2 ’

‘= 1 n roy
S l=r2 1 =2

Hence ¢, is the argument of ¢ in polar coordinates centered at the complex number
L. Then if -5 > Re(¢),

1—r2- 1-r2 =

eter

sinf, = sin p, = %(1 —r?)
(13) '
cos O = —cos p = <17’_ozr2) (1 _1Tz - Re(€>> == ;(:2) )

Now we will prove that possibly except for a finite number of values of r > rg,
the jacobian matrix Dh,, (rer) is not singular, where o, and 6, are chosen so that
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ha, (re?") = £ as before. To this end, it is enough to see that the set of values of r
for which the vectors

Oha. 10h,

(14) S (0" amd e )
are linearly dependent is finite.
We have
Oha , i 2p a(l+ p?) a(l+p?) .
) = — 0, ———=sinf
i (v el )

e?) = (Lsine,Lcosﬁ),
o0 ") T \T= ™ =

and the jacobian of h,

. Ohy 10h,, .
0\ 0
Tha(pe®) = det | G pe )2 T )|
20 a(l+p?) 0 a(l4+p?) 0
1—p2)2 1_p?)2 COs 0—p2)2 sin
(15) = det
= p)sm@ ﬁcos@
o
= TP (2pcosf — a1+ p?)).

If 2r cos 6, — a,(1 + 7?) = 0, then multiplying this equation by «,r? we obtain
(16) 2r?a,r cos 0, — a2r?(1+1r%) = 0.

However, from (12) and (13) we see that 2r?a,r cos 0, — a?r*(1+r?) is a polyno-
mial of degree 6 in the variable . We conclude that the vectors in (14) are linearly
dependent for six values of r at the most and the proof of the lemma is complete. [J

Theorem 13. & is a Banach space.
Proof. Let g € &2. We have by Theorem 8 that

(17) sup { /| |g(w¢w<z))|2d,4<w)}”2 <

zeD

Fix £ € D. Since ¢, = 1/h,, the local invertibility statement of Lemma 12 holds for
the family of functions 1 — ¢, taking £ € D, namely, there exist a € (0,1), we € D
and open neighborhoods U and V' of £ and wg respectively, such that 1 — 1, is a
diffeomorphism of V' into U.

Hence

(o)

{ [ lo0= vt 17wl dat >}l/2

<c©{ [ lotwou(@)Paat >}1/2

<C) gl -
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{/ |g<u>|2dA<u>}l/2 < Cxllg

for every compact set K C D. This implies that

It follows that

P

(18) sup |g (u)] < [|g|l 5 Cl-
weK

If {g,} is a Cauchy sequence in &, we have by (18) that {g,} converges uniformly
on compact sets of D to a holomorphic function g.

Let us show that g € & and ||g, — g||# — 0. Note first that for each ¢ € C.(D)
we have

T,,0(2) — Tye(z), z€D.

Using the fact sup,en [|gnll » = M < 0o and Fatou’s lemma one gets

ITyelly < liminf | T, 5 < Mliels.
Hence g € &2. On the other hand, given € > 0 there exists ng such that

for m,n > ng and ||¢||2 = 1. Applying Fatou’s lemma again we conclude that
1 To. 0 = Tyl < €

for n > ng. Therefore g, — ¢ in Z. O

3. Main results

Let us now describe the norm in & in a more explicit way. We shall use the
formulation of the space given in [1].

Theorem 14. Let g € (D) and put F(§) = 5%g(l — %) Then g € & if and
only if
1 00 ' ' 5 1/2
SuUp ——— (/ [(z —1)x) ‘xF(J)(x)‘ d.:z:) < 00.
i JIWVI+1T
Proof. We use the expression

Tyeo) = [ ¥ (f_‘T@') w(w)%.

Consider the space M of functions of the form

¥ = Z 903‘(7“)6”07

finite

with ¢; € L*((0,1),7dr). Then M is a dense subspace of L*(D).
For z € D and 0 < r < 1 fixed, let f(¢) = F (l_jrzf), which is holomorphic on

D. We have 1
B 1—rzC B 1 —rz \’ ) 1 y
10=r(T5) =25 (15) P kst

1|
>0 7
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Then for g € M,

ety g = S S () PO

1—172 1—1r2

Hence
(19) ZVJ ©;) ] + 12]

7=>0

where v; is the functional in L?((0,1),r dr) defined by

(—1) /1 r N gy, 1 r

() = —== — ) FW dr.

7](()0) \/m]l 0 (p(?”) 1— 7‘2 (1 _ 7"2)(]_ _ 7"2)2 r

Using the normalized Lebesgue measure dA, the set {\/7 + 127} is an orthonormal
basis for A%, so we conclude that T, is bounded in L?*(D) if and only if

1/2
< Oz = © (Z / rmr)\%dr) .
J

Using duality, this will hold if and only if
5 1/2
rdr
)

1 1 r 25
20 sup —— R —— F
(20) jz%) VJj + 1! </0 (1—7‘2)

ﬁ, the integrals above equal

| i)z

1
1—1r2

(j)(

)

Making the change of variables x =
%/100[(:1;—1 !xF(J )|2dx
and the proof is complete. O
We can now give an alternative proof of a well know result.
Corollary 15. P, is bounded on L?(D) if and only if a > —1/2.

Proof. Consider g,(z) = (1 — 2)*. Assume first that g, € &. Then (3) in
Theorem 8 implies that fol(l —1)?*dr < oo and therefore o > —1/2.

Assume now that o > —1/2. Since F,(§) = £ with m = 24+« and 2m—3 > 0,
one has for 7 > 0 that

FO(z) = (=1Ym(m+1)---(m+j — 1)a= ") = (-1)]’%3;—(%”.

Therefore

[ wreotar= [*(1-2) essior
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I'(»rig
I'(p+q)

m/l [z — ) [¢FO () > di =
Finally since for p fixed, B(p,j) ~ j~? one obtains
B(2m —3,j+1)
B(m, 22 +1)

Using B(p,q) = one concludes that
B2m—3,j+1)

B(m, j)?j*( +1)

O

Example 16. In Example 7 it was shown that, for 0 < 8 < 5/4, g(z) = (1 +
z)7P € & (which corresponds to F(£) = (25;%12)2) Let us show, for instance, that

g(z) =(1+2)"2 ¢ 2. In this case F(§) = ﬁ and
, —1)7(j + 1)127
Fo© = o

Since%ﬁaz—lﬁxfoerQwehave

(/200(x(x - 1))j|xF(j)(:c)|2d:U)1/2~ 2(j + 1)!(/200# dx>1/2~ 2(j+1).

Hence the condition in Theorem 14 does not hold.

The conditions
1 o . .
(21) sup — |(z — 1)]F(1)(ac)’ dx < oo,
i>0 J' i

(22) lim 27" F@(z) =0

r—00

were introduced in [1|. These conditions imply that on the space of all the holomor-
phic functions ¢ such that Spe is well defined, the operator Sr is a constant multiple
of the identity. Now we will see that (21) and (22) hold for every g € & which allows
to show the following result.

Theorem 17. Let g € & and ¢y = fol g(r)dr. Then
Ty(p) = cop, ¢ € A%,

Proof. Let us notice first that (x —1)7FY(z) € L*([1,00),dx) for j > 0. Indeed,

/1 |I—1’j|F(J)($)’d$:/1 |z(x — 1) |:EF(J)(JZ)|1_].+1

< (/100 (x(z — 1))j |$F(j)(l‘)|2dqj)1/2</loo @:(szrQl))de;)l/z

- (/loo (e — 1))’ ]xF(j)(:v)]2dx>1/2(/01 (1-ryar)”

1 [e9) ) ) 2 1/2 ]
_ ﬁ(/ 2@ = DY [oFO(@)[*dz) " < Ctllgll
1

Applying (19) in Theorem 14 to p(z) = Z;V:O a;z? one obtains

N
(23) Ty =) a7,
=0



A space of projections on the Bergman space 219

and A
<_j—1,)/1 (x — 1Y F9(2) da,

where ¢; is well defined. As in [1, Th. 1] we have by integration by parts

Cj:

(1Y o
G — G+ = Gl xlgglo(l — 2T ) (x).

Let us now show that lim,_..(1 — z)/*'FU)(z) = 0. Note first that (z —
17 FU(z) € L2([1,00),dx) for j > 0. Indeed

@) [Tl NP de < [ jale - DPJFO ) de < CG+ DY

In particular (z — 1)7FY(z) € L?*([1,00),dz) for j > 1. From Cauchy-Schwarz
and the previous estimates one has that if f;(z) = [(z — 1)/TLFU)(2)]?, then (f;)’ €
L'([1,00)) for every j > 0. Therefore writing

(@=L = [ () dy

we see that the lim, ... ((z — 1)7*1FU)(2))? exists and by (24) it vanishes for all j.
Hence (23) becomes T,(¢) = cop where

coz/looF(x)dx:/loog(l—%)%:/Dlg(r)dr. 0

Corollary 18. Let g € &. Then A* C KerT, if and only if fol g(r)dr = 0.

Corollary 19. Let ®(g) = [, g(r)dr for g € . Then Py = &~({1}).

Corollary 20. Let g € . If T, is not identically zero in A? then there exists
A # 0 and gy € Py such that g = A\gy.
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