ON REGULAR HOMEOMORPHISMS IN THE PLANE

Ruslan Salimov

National Academy of Sciences of Ukraine, Institute of Applied Mathematics and Mechanics 74 Roze Luxemburg str., 83114 Donetsk, Ukraine; salimov@iamm.ac.donetsk.ua

Abstract. A regular homeomorphism of the Sobolev class $W_{\text{loc}}^{1,1}$ in the plane domain D is a ring Q-homeomorphism with $Q(z) = K_{\mu}^{T}(z, z_{0})$ where $K_{\mu}^{T}(z, z_{0})$ is the tangential dilatation of f at $z_{0} \in D$.

1. Introduction

It has been established in [Sal] that a Q-homeomorphism in \mathbb{R}^n , $n \geq 2$, is in $W_{\text{loc}}^{1,1}$ and differentiable with its Jacobian $J_f(z) \neq 0$ a.e. whenever $Q \in L_{\text{loc}}^1$. These results were extended to ring Q-homeomorphisms in [SS₁] and [SS₂]. In the present paper it is conversely stated that every homeomorphism in the plane of the class $W_{\text{loc}}^{1,1}$ with $J_f(z) > 0$ a.e. is a ring Q-homeomorphism with $Q(z) = K_f(z)$. Moreover, we give a pointwise characterization of this property.

Let D be a domain in the complex plane \mathbf{C} , i.e., a connected and open subset of \mathbf{C} . In what follows, we call a homeomorphism $f: D \to \mathbf{C}$ of the class $W_{\text{loc}}^{1,1}$ regular if $J_f(z) > 0$ a.e. Note that every regular homeomorphism satisfies a Beltrami equation.

The Beltrami equation is the equation of the form

(1.1)
$$f_{\overline{z}} = \mu(z) \cdot f_z$$

where $f_{\overline{z}} = \overline{\partial} f = (f_x + if_y)/2$, $f_z = \partial f = (f_x - if_y)/2$, z = x + iy, and f_x and f_y are partial derivatives of f in x and y, correspondingly, and $\mu: D \to \mathbf{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. The function μ is called the *complex coefficient* and

(1.2)
$$K_{\mu}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|}$$

the dilatation of the equation (1.1). The Beltrami equation (1.1) is said to be degenerate if ess sup $K_{\mu}(z) = \infty$.

Given a point z_0 in \overline{D} , the *tangential dilatation* of (1.1) with respect to z_0 is the function

(1.3)
$$K_{\mu}^{T}(z, z_{0}) = \frac{\left|1 - \frac{\overline{z-z_{0}}}{z-z_{0}}\mu(z)\right|^{2}}{1 - |\mu(z)|^{2}}$$

see [RSY₁]–[RSY₂], cf. the corresponding terms and notations in [An₁]–[An₃], [Ch], [GMSV], [Le] and [RW]. If f is a regular homeomorphism, then for a.e. $z \in D$

(1.4)
$$K_{\mu}^{T}(z, z_{0}) = \frac{|f_{\theta}(z)|^{2}}{r^{2}J_{f}(z)}$$

doi:10.5186/aasfm.2010.3517

²⁰⁰⁰ Mathematics Subject Classification: Primary 30C65; Secondary 30C75.

Key words: Ring Q-homeomorphisms, regular homeomorphisms, modulus, absolute continuity on lines, differentiability, Sobolev's classes.

where $z = z_0 + re^{i\theta}$, see, e.g., [RSY₁, (2.4)].

Recall that a function $f: D \to \mathbb{C}$ is absolutely continuous on lines, abbr. $f \in ACL$, if, for every closed rectangle R in D whose sides are parallel to the coordinate axes, f|R is absolutely continuous on almost all line segments in R which are parallel to the sides of R. In particular, f is ACL (possibly modified on a set of Lebesgue measure zero) if it belongs to the Sobolev class $W_{\text{loc}}^{1,1}$ of locally integrable functions with locally integrable first generalized derivatives and, conversely, if $f \in ACL$ has locally integrable first partial derivatives, then $f \in W_{\text{loc}}^{1,1}$, see, e.g., [MP, 1.2.4]. Note that, if $f \in ACL$, then f has partial derivatives f_x and f_y a.e. and, for a sense-preserving ACL homeomorphism $f: D \to \mathbb{C}$, the Jacobian $J_f(z) = |f_z|^2 - |f_{\overline{z}}|^2$ is nonnegative a.e. In this case, the complex dilatation μ_f of f is the ratio $\mu(z) = f_{\overline{z}}/f_z$, if $f_z \neq 0$ and $\mu(z) = 0$ otherwise, and the dilatation K_f of f is $K_{\mu}(z)$, see (1.2).

2. On ring *Q*-homeomorphisms

Recall that, given a family of paths Γ in $\overline{\mathbf{C}}$, a Borel function $\rho \colon \overline{\mathbf{C}} \to [0, \infty]$ is called *admissible* for Γ , abbr. $\rho \in \operatorname{adm} \Gamma$, if

(2.1)
$$\int_{\gamma} \rho(z) |dz| \ge 1$$

for each $\gamma \in \Gamma$. The *modulus* of Γ is defined by

(2.2)
$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbf{C}} \rho^2(z) \, dx \, dy.$$

Given a domain D and two sets E and F in $\overline{\mathbb{C}}$, $\Delta(E, F, D)$ denotes the family of all paths $\gamma: [a, b] \to \overline{\mathbb{C}}$ which join E and F in D, i.e., $\gamma(a) \in E$, $\gamma(b) \in F$ and $\gamma(t) \in D$ for a < t < b. We set $\Delta(E, F) = \Delta(E, F, \overline{\mathbb{C}})$ if $D = \overline{\mathbb{C}}$. Recall that a ring domain, or shortly a ring in $\overline{\mathbb{C}}$, is a domain R whose complement $\overline{\mathbb{C}} \setminus R$ consists of two components.

Motivated by the ring definition of quasiconformality in [Ge], the following notion was introduced in [RSY₁]–[RSY₂]. Let D be a domain in $\mathbf{C}, z_0 \in D$, and $Q: D \rightarrow$ $[0, \infty]$ a measurable function. A homeomorphism $f: D \rightarrow \mathbf{C}$ is called a *ring Qhomeomorphism* at the point z_0 if

(2.3)
$$M(\Delta(fC_1, fC_2, fD)) \le \int_A Q(z) \cdot \eta^2(|z - z_0|) \, dx \, dy$$

for every ring

$$A = A(z_0, r_1, r_2) = \{ z \in \mathbf{C} : r_1 < |z - z_0| < r_2 \}, \ 0 < r_1 < r_2 < \text{dist}(z_0, \partial D),$$
and every measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that

(2.4)
$$\int_{r_1}^{r_2} \eta(r) \, dr = 1$$

and where $C_1 = \{z \in \mathbf{C} : |z - z_0| = r_1\}$ and $C_2 = \{z \in \mathbf{C} : |z - z_0| = r_2\}.$

Recall a criterion of ring Q-homeomorphisms obtained in [RS, Theorem 2.1], see also [MRSY, Theorem 7.2]. Below we use the standard conventions $a/\infty = 0$ for $a \neq \infty$ and $a/0 = \infty$ if a > 0 and $0 \cdot \infty = 0$, see, e.g., [Sa, p. 6].

286

Lemma 2.1. Let *D* be a domain in **C** and $Q: D \to [0, \infty]$ a measurable function. A homeomorphism $f: D \to \mathbf{C}$ is a ring *Q*-homeomorphism at a point $z_0 \in D$ if and only if for every $0 < r_1 < r_2 < d_0 = \text{dist}(z_0, \partial D)$,

(2.5)
$$M(\Delta(fC_1, fC_2, fD)) \le \frac{2\pi}{I}$$

where $C_1 = \{z \in \mathbf{C} : |z - z_0| = r_1\}, C_2 = \{z \in \mathbf{C} : |z - z_0| = r_2\}$ and

(2.6)
$$I = I(r_1, r_2) = \int_{r_1}^{r_2} \frac{dr}{rq_{z_0}(r)},$$

where $q_{z_0}(r)$ is the mean value of Q(z) over the circle $|z - z_0| = r$.

Note that the infimum from the right hand side in (2.3) holds for the function

(2.7)
$$\eta_0(r) = \frac{1}{Irq_{z_0}(r)}.$$

3. The main results

Theorem 3.1. Let $f: D \to \mathbf{C}$ be a regular homeomorphism. Then f is a ring Q-homeomorphisms at a point $z_0 \in D$ with $Q(z) = K_{\mu}^T(z, z_0), \ \mu = \mu_f$.

Proof. Without loss of generality, we may assume that $z_0 = 0 \in D$. Consider the ring $R = \{z \in \mathbf{C} : r_1 < |z| < r_2\}$. Then there is a conformal map h mapping the ring fR onto a ring $R^* = \{w : 1 < |w| < L\}$.

Let Γ^* be the family of paths joining boundary components |w| = 1 and |w| = Lof the ring R^* . Then, in view of conformal invariantnce of modulus, $M(\Gamma^*) = M(\Gamma)$, where Γ is the family of all path joining the boundary components of the ring fR. Thus,

$$M(\Gamma) = \frac{4\pi^2}{\int\limits_{R^*} \frac{du\,dv}{|w|^2}}.$$

Denote by C_r , $r_1 < r < r_2$, circles $\{z : |z| = r\}$. For $g = h \circ f$, we have that $g \in W_{\text{loc}}^{1,1}(R)$, and hence g is a.e. differentiable and absolutely continuous on C_r for a.e. $r \in (r_1, r_2)$. The latter follows from the invariance of the class $W_{\text{loc}}^{1,1}$ under locally quasi-isometric transformations of coordinates, see, e.g., [Ma, 1.1.7]. Note that

(3.1)
$$\int_{r_1}^{r_2} \int_{0}^{2\pi} \frac{J_g(re^{i\theta})}{|g(re^{i\theta})|^2} r \, dr \, d\theta \le \int_{R^*} \frac{du \, dv}{|w|^2} = \frac{(2\pi)^2}{M(\Gamma)}$$

where w = u + iv, J_g is the Jacobian of g, see, e.g., [LV, Lemma III.3.3]. Now, we have

$$2\pi \leq \int_{C_r} |d\arg g| \leq \int_{C_r} \frac{|dg(z)|}{|g(z)|} = \int_{0}^{2\pi} \frac{|g_{\theta}(re^{i\theta})|}{|g(re^{i\theta})|} d\theta$$

Ruslan Salimov

for a.e. $r \in (r_1, r_2)$ and applying the Schwarz inequality, see, e.g., [BB, Theorem I.4], we obtain that

$$(2\pi)^2 \le \left(\int_0^{2\pi} \frac{|g_\theta(re^{i\theta})|}{|g(re^{i\theta})|} \, d\theta\right)^2 \le \int_0^{2\pi} \frac{|g_\theta(re^{i\theta})|^2}{J(re^{i\theta})} \, d\theta \int_0^{2\pi} \frac{J(re^{i\theta})}{|g(re^{i\theta})|^2} \, d\theta$$

i.e.,

(3.2)
$$\frac{2\pi}{r\frac{1}{2\pi}\int_{0}^{2\pi}\frac{|g_{\theta}(re^{i\theta})|^{2}}{r^{2}J(re^{i\theta})}d\theta} \leq r\int_{0}^{2\pi}\frac{J(re^{i\theta})}{|g(re^{i\theta})|^{2}}d\theta.$$

Setting, see (1.4),

$$k(r) = \frac{1}{2\pi} \int_0^{2\pi} \frac{|g_{\theta}(re^{i\theta})|^2}{r^2 J(re^{i\theta})} d\theta = \frac{1}{2\pi r} \int_{C_r} K^T_{\mu}(z, z_0) \left| dz \right|$$

and, integrating the both sides of the inequality (3.2) over $r \in (r_1, r_2)$, we see that

$$2\pi \int_{r_1}^{r_2} \frac{dr}{r \, k(r)} \le \int_{r_1}^{r_2} r \, dr \int_{0}^{2\pi} \frac{J(re^{i\theta})}{|g(re^{i\theta})|^2} \, d\theta.$$

Combining the last inequality and (3.1), we have by the Fubini theorem that

$$\int_{r_1}^{r_2} \frac{dr}{r \, k(r)} \le \frac{2\pi}{M(\Gamma)}.$$

Thus,

$$M(\Gamma) \le \frac{2\pi}{\int\limits_{r_1}^{r_2} \frac{dr}{r \, k_(r)}}$$

Finally, applying Lemma 2.1, we obtain the conclusion of the theorem.

Corollory 3.1. Every regular homeomorphism $f: D \to \mathbf{C}$ is a ring Q-homeomorphism with $Q(z) = K_{\mu}(z), \ \mu = \mu_f$, at each point $z_0 \in D$.

Thus, the theory of ring Q-homeomorphisms can be applied to regular homeomorphisms of the Sobolev class $W_{\text{loc}}^{1,1}$ in the plane, see, e.g., [MRSY, Chapter 7].

References

- [An1] ANDREIAN CAZACU, C.: Sur les transformations pseudo-analytiques. Rev. Math. Pures Appl. 2, 1957, 383–397.
- [An₂] ANDREIAN CAZACU, C.: Sur les ralations entre les functions caracteristiques de la pseudoanalyticite. - In: Lucrarile celui de al IV-lea Congres al Matematicienilor Romani, Bucuresti, 1956.
- [An₃] ANDREIAN CAZACU, C.: On the length-area dilatation. Complex Var. Theory Appl. 50:7-11, 2005, 765–776.
- [BB] BECKENBACH, E. F., and R. BELLMAN: Inequalities. Springer, New York, 1965.
- [Ch] CHEN, Z. G.: $\mu(z)$ -homeomorphisms of the plane. Michigan Math. J. 51:3, 2003, 547–556.

288

- [GMSV] GUTLYANSKIĬ, V., O. MARTIO, T. SUGAVA, and M. VUORINEN: On the degenerate Beltrami equation. Trans. Amer. Math. Soc. 357:3, 2005, 875–900.
- [Ge] GEHRING, F.W.: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103, 1962, 353–393.
- [Le] LEHTO, O.: Homeomorphisms with a prescribed dilatation. Lecture Notes in Math. 118, 1968, 58–73.
- [LV] LEHTO, O., and K. I. VIRTANEN: Quasiconformal mappings in the plane. Springer-Verlag, New York-Heidelberg, 1973.
- [MRSY] MARTIO, O., V. RYAZANOV, U. SREBRO, and E. YAKUBOV: Moduli in modern mapping theory. Springer Monogr. Math., Springer, New York, 2009.
- [Ma] MAZ'YA, V.: Sobolev classes. Springer, Berlin-New York, 1985.
- [MP] MAZ'YA, V. G., and S. V. POBORCHI: Differentiable functions on bad domains. Singapure-New Jersey-London-Hong Kong, World Scientific, 1997.
- [RS] RYAZANOV, V. I., and E. A. SEVOSTYANOV: Equicontinuous classes of ring Q-homeomorphisms. - Sibirsk. Mat. Zh. 48:6, 2007, 1361–1376 (in Russian); English transl. in Siberian Math. J. 48:6, 2007, 1093–1105.
- [RSY₁] RYAZANOV, V., U. SREBRO, and E. YAKUBOV: On ring solutions of Beltrami equations. - J. Anal. Math. 96, 2005, 117–150.
- [RSY₂] RYAZANOV, V., U. SREBRO, and E. YAKUBOV: Degenerate Beltrami equation and radial *Q*-homeomorphisms. Reports in Math. 369, Univ. of Helsinki, 2003, 1–34.
- [RW] REICH, E., and H. WALCZAK: On the behavior of quasiconformal mappings at a point. -Trans. Amer. Math. Soc. 117, 1965, 338–351.
- [Sa] SAKS, S.: Theory of the integral. Dover Publ. Inc., New York, 1964.
- [Sal] SALIMOV, R.: ACL and differentiability of Q-homeomorphisms. Ann. Acad. Sci. Fenn. Math. 33, 2008, 295–301.
- [SS₁] SALIMOV, R., and E. SEVOSTYANOV: ACL and differentiability of ring *Q*-homeomorphisms. Proceeding of IAMM, NAS of Ukraine 16, 2008, 171–178.
- [SS₂] SALIMOV, R., and E. SEVOSTYANOV: ACL and differentiability of the open discrete ring mappings. - Complex Var. Elliptic Equ. 55:1-3, 2010, 49–59.

Received 6 May 2009