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ON REGULAR HOMEOMORPHISMS IN THE PLANE
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Abstract. A regular homeomorphism of the Sobolev class W 1,1
loc in the plane domain D is a

ring Q-homeomorphism with Q(z) = KT
µ (z, z0) where KT

µ (z, z0) is the tangential dilatation of f at
z0 ∈ D.

1. Introduction

It has been established in [Sal] that a Q-homeomorphism in Rn, n ≥ 2, is in W 1,1
loc

and differentiable with its Jacobian Jf (z) 6= 0 a.e. whenever Q ∈ L1
loc. These results

were extended to ring Q-homeomorphisms in [SS1] and [SS2]. In the present paper it
is conversely stated that every homeomorphism in the plane of the class W 1,1

loc with
Jf (z) > 0 a.e. is a ring Q-homeomorphism with Q(z) = Kf (z). Moreover, we give a
pointwise characterization of this property.

Let D be a domain in the complex plane C, i.e., a connected and open subset of
C. In what follows, we call a homeomorphism f : D → C of the class W 1,1

loc regular if
Jf (z) > 0 a.e. Note that every regular homeomorphism satisfies a Beltrami equation.

The Beltrami equation is the equation of the form

(1.1) fz = µ(z) · fz

where fz = ∂f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x + iy, and fx and fy are
partial derivatives of f in x and y, correspondingly, and µ : D → C be a measurable
function with |µ(z)| < 1 a.e. The function µ is called the complex coefficient and

(1.2) Kµ(z) =
1 + |µ(z)|
1− |µ(z)|

the dilatation of the equation (1.1). The Beltrami equation (1.1) is said to be degen-
erate if ess sup Kµ(z) = ∞.

Given a point z0 in D, the tangential dilatation of (1.1) with respect to z0 is the
function

(1.3) KT
µ (z, z0) =

∣∣∣1− z−z0

z−z0
µ(z)

∣∣∣
2

1− |µ(z)|2 ,

see [RSY1]–[RSY2], cf. the corresponding terms and notations in [An1]–[An3], [Ch],
[GMSV], [Le] and [RW]. If f is a regular homeomorphism, then for a.e. z ∈ D

(1.4) KT
µ (z, z0) =

|fθ(z)|2
r2Jf (z)
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where z = z0 + reiθ, see, e.g., [RSY1, (2.4)].
Recall that a function f : D → C is absolutely continuous on lines, abbr. f ∈

ACL, if, for every closed rectangle R in D whose sides are parallel to the coordinate
axes, f |R is absolutely continuous on almost all line segments in R which are parallel
to the sides of R. In particular, f is ACL (possibly modified on a set of Lebesgue
measure zero) if it belongs to the Sobolev class W 1,1

loc of locally integrable functions
with locally integrable first generalized derivatives and, conversely, if f ∈ ACL has
locally integrable first partial derivatives, then f ∈ W 1,1

loc , see, e.g., [MP, 1.2.4]. Note
that, if f ∈ ACL, then f has partial derivatives fx and fy a.e. and, for a sense-
preserving ACL homeomorphism f : D → C, the Jacobian Jf (z) = |fz|2 − |fz|2 is
nonnegative a.e. In this case, the complex dilatation µf of f is the ratio µ(z) = fz/fz,
if fz 6= 0 and µ(z) = 0 otherwise, and the dilatation Kf of f is Kµ(z), see (1.2).

2. On ring Q-homeomorphisms

Recall that, given a family of paths Γ in C, a Borel function ρ : C → [0,∞] is
called admissible for Γ, abbr. ρ ∈ adm Γ, if

(2.1)
∫

γ

ρ(z) |dz| ≥ 1

for each γ ∈ Γ. The modulus of Γ is defined by

(2.2) M(Γ) = inf
ρ∈admΓ

∫

C

ρ2(z) dx dy.

Given a domain D and two sets E and F in C, ∆(E, F,D) denotes the family
of all paths γ : [a, b] → C which join E and F in D, i.e., γ(a) ∈ E, γ(b) ∈ F and
γ(t) ∈ D for a < t < b. We set ∆(E,F ) = ∆(E, F,C) if D = C. Recall that a ring
domain, or shortly a ring in C, is a domain R whose complement C \ R consists of
two components.

Motivated by the ring definition of quasiconformality in [Ge], the following notion
was introduced in [RSY1]–[RSY2]. Let D be a domain in C, z0 ∈ D, and Q : D →
[0,∞] a measurable function. A homeomorphism f : D → C is called a ring Q-
homeomorphism at the point z0 if

(2.3) M(∆(fC1, fC2, fD)) ≤
∫

A

Q(z) · η2(|z − z0|) dx dy

for every ring

A = A(z0, r1, r2) = {z ∈ C : r1 < |z − z0| < r2}, 0 < r1 < r2 < dist(z0, ∂D),

and every measurable function η : (r1, r2) → [0,∞] such that

(2.4)
r2∫

r1

η(r) dr = 1

and where C1 = {z ∈ C : |z − z0| = r1} and C2 = {z ∈ C : |z − z0| = r2}.
Recall a criterion of ring Q-homeomorphisms obtained in [RS, Theorem 2.1], see

also [MRSY, Theorem 7.2]. Below we use the standard conventions a/∞ = 0 for
a 6= ∞ and a/0 = ∞ if a > 0 and 0 · ∞ = 0, see, e.g., [Sa, p. 6].
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Lemma 2.1. Let D be a domain in C and Q : D → [0,∞] a measurable function.
A homeomorphism f : D → C is a ring Q-homeomorphism at a point z0 ∈ D if and
only if for every 0 < r1 < r2 < d0 = dist(z0, ∂D),

(2.5) M(∆(fC1, fC2, fD)) ≤ 2π

I
,

where C1 = {z ∈ C : |z − z0| = r1}, C2 = {z ∈ C : |z − z0| = r2} and

(2.6) I = I(r1, r2) =

r2∫

r1

dr

rqz0(r)
,

where qz0(r) is the mean value of Q(z) over the circle |z − z0| = r.

Note that the infimum from the right hand side in (2.3) holds for the function

(2.7) η0(r) =
1

Irqz0(r)
.

3. The main results

Theorem 3.1. Let f : D → C be a regular homeomorphism. Then f is a ring
Q-homeomorphisms at a point z0 ∈ D with Q(z) = KT

µ (z, z0), µ = µf .

Proof. Without loss of generality, we may assume that z0 = 0 ∈ D. Consider
the ring R = {z ∈ C : r1 < |z| < r2}. Then there is a conformal map h mapping the
ring fR onto a ring R∗ = {w : 1 < |w| < L}.

Let Γ∗ be the family of paths joining boundary components |w| = 1 and |w| = L
of the ring R∗. Then, in view of conformal invariantnce of modulus, M(Γ∗) = M(Γ),
where Γ is the family of all path joining the boundary components of the ring fR .
Thus,

M(Γ) =
4π2

∫
R∗

du dv
|w|2

.

Denote by Cr, r1 < r < r2, circles {z : |z| = r}. For g = h ◦ f , we have that
g ∈ W 1,1

loc (R), and hence g is a.e. differentiable and absolutely continuous on Cr for
a.e. r ∈ (r1, r2). The latter follows from the invariance of the class W 1,1

loc under locally
quasi-isometric transformations of coordinates, see, e.g., [Ma, 1.1.7]. Note that

(3.1)
r2∫

r1

2π∫

0

Jg(re
iθ)

|g(reiθ)|2 r dr dθ ≤
∫

R∗

du dv

|w|2 =
(2π)2

M(Γ)
,

where w = u + iv, Jg is the Jacobian of g, see, e.g., [LV, Lemma III.3.3].
Now, we have

2π ≤
∫

Cr

|d arg g| ≤
∫

Cr

|dg(z)|
|g(z)| =

2π∫

0

|gθ(re
iθ)|

|g(reiθ)| dθ
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for a.e. r ∈ (r1, r2) and applying the Schwarz inequality, see, e.g., [BB, Theorem I.4],
we obtain that

(2π)2 ≤



2π∫

0

|gθ(re
iθ)|

|g(reiθ)| dθ




2

≤
2π∫

0

|gθ(re
iθ)|2

J(reiθ)
dθ

2π∫

0

J(reiθ)

|g(reiθ)|2 dθ,

i.e.,

(3.2)
2π

r 1
2π

∫ 2π

0
|gθ(reiθ)|2
r2J(reiθ)

dθ
≤ r

2π∫

0

J(reiθ)

|g(reiθ)|2 dθ.

Setting, see (1.4),

k(r) =
1

2π

∫ 2π

0

|gθ(re
iθ)|2

r2J(reiθ)
dθ =

1

2πr

∫

Cr

KT
µ (z, z0) |dz|

and, integrating the both sides of the inequality (3.2) over r ∈ (r1, r2), we see that

2π

r2∫

r1

dr

r k(r)
≤

r2∫

r1

r dr

2π∫

0

J(reiθ)

|g(reiθ)|2 dθ.

Combining the last inequality and (3.1), we have by the Fubini theorem that
r2∫

r1

dr

r k(r)
≤ 2π

M(Γ)
.

Thus,

M(Γ) ≤ 2π
r2∫
r1

dr
r k(r)

.

Finally, applying Lemma 2.1, we obtain the conclusion of the theorem. ¤
Corollory 3.1. Every regular homeomorphism f : D → C is a ring Q-homeo-

morphism with Q(z) = Kµ(z), µ = µf , at each point z0 ∈ D.

Thus, the theory of ring Q-homeomorphisms can be applied to regular homeo-
morphisms of the Sobolev class W 1,1

loc in the plane, see, e.g., [MRSY, Chapter 7].
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