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Abstract. Let 1 < q < 2. In this paper, we construct a Jordan domain Gq ⊂ R2 such that
Gq ∈ Extp if and only if 1 ≤ p < q, and R2 \Gq ∈ Exts if and only if q/(q − 1) < s ≤ ∞.

1. Introduction

Let D be a domain in R2, namely, D is a connected open subset of R2. For 1 ≤
p ≤ ∞, denote by W 1,p(D) the set of all functions in Lp(D) whose first distributional
derivatives lie in Lp(D). For any u ∈ W 1,p(D), the norm of u is given by ‖u‖W 1,p(D) ≡
‖u‖Lp(D) + ‖∇u‖Lp(D), where ∇u is the distributional gradient of u.

Definition 1.1. Let 1 ≤ p ≤ ∞. A domain D ⊂ R2 is called a domain of
class Extp if there exists a bounded extension operator Ext: W 1,p(D) → W 1,p(R2),
namely, for each u ∈ W 1,p(D), there exists a function Ext(u) ∈ W 1,p(R2) such that
Ext(u)(x) = u(x) for all x ∈ D and ‖Ext(u)‖W 1,p(R2) ≤ C‖u‖W 1,p(D), where C is a
positive constant independent of u.

For p > 1, one could in fact require above that Ext is linear; see [3, Theorem 5].
In [7], Maz’ya constructed a planar Jordan domain D such that D ∈ Extp for

all 1 ≤ p < 2 but D /∈ Extp for any 2 ≤ p ≤ ∞. Furthermore the complementary
domain R2 \D of D satisfies R2 \D ∈ Exts exactly when 2 < s ≤ ∞. This shows
that the possibility of W 1,p(D)-extensions depends not only on the structure of the
domain D but also on the exponent p. Motivated by this, for each 1 < q < 2,
Romanov [10] further constructed a planar domain Gq such that Gq ∈ Extp if and
only if 1 ≤ p < q. In this paper, we establish the following results by generalizing
the above two constructions in [7, 10].

Theorem 1.1. For each 1 < q < 2, there exists a Jordan domain Gq ⊂ R2

such that Gq ∈ Extp if and only if 1 ≤ p < q, and R2 \ Gq ∈ Exts if and only if
q/(q − 1) < s ≤ ∞.

doi:10.5186/aasfm.2010.3519
2000 Mathematics Subject Classification: Primary 46E35.
Key words: Sobolev space, Sobolev extension, planar Lipschitz extension domain.
∗Corresponding author.
Dachun Yang was supported by the National Natural Science Foundation (Grant No. 10871025)

of China. Pekka Koskela and Yuan Zhou were supported by the Academy of Finland grant 120972.



310 Pekka Koskela, Dachun Yang and Yuan Zhou

Our construction is an improvement on the one by Romanov [10] and it partially
relies on his approach. We should point out that the boundary of Gq of Romanov
[10] contains a curve generated by a certain Cantor set. In order to deal with the
complementary domain, we actually simplify the construction from [10] and apply a
certain sufficient condition for extendability from [5].

Finally, we state some conventions. Throughout the whole paper, we denote by
C a positive constant which is independent of the main parameters, but which may
vary from line to line. The symbol A . B or B & A means that A ≤ CB. If A . B
and B . A, we then write A ∼ B. For any measurable set of positive measure
E ⊂ R2 and locally integrable function f , we set

ffl
E

f(x) dx ≡ 1
|E|

´
E

f(x) dx.

2. Proof of Theorem 1.1

Theorem 1.1 follows from Lemmas 2.5, 2.7, 2.10 and 2.11 below. We begin with
the construction of the domain Gq, which is inspired by [10] and [7].

Construction of the domain Gq. Assume 1 < q < 2. Throughout the whole
paper, let a ≡ 21/(q−2) and b ≡ 1− 2a. Then 0 < a < 1/2 and 0 < b < 1. Denote by
I the interval [0, 1]× {0}.

First we generate a sequence of subintervals,

(2.1) Ĩ ≡ {Ĩk,i
m : m ∈ N ∪ {0}; k = 0, · · · ,m + 1; i = 0, · · · , 2k − 1},

following the idea of the construction of a Cantor set. When m = 0, let Ĩ0,0
0 be the

closed middle interval of I with length b and Ĩ1,i
0 with i = 0, 1 be the closure of the

two intervals obtained by removing Ĩ0,0
0 from I and ordered from left to right. When

m = 1, let Ĩ0,0
1 be Ĩ0,0

0 , Ĩ1,i
1 be the closed middle interval of Ĩ1,i

0 with length ba for
i = 1, 2, and Ĩ2,i

1 with i = 0, 1, 2, 3 be the closure of the four intervals obtained by
removing Ĩ0,0

1 , Ĩ1,0
1 and Ĩ1,1

1 from I and ordered from left to right. When m ≥ 2, for
k ≤ m− 1 and i = 0, · · · , 2k − 1, let Ĩk,i

m be Ĩk,i
m−1; for k = m and i = 0, · · · , 2m − 1,

let Ĩm,i
m be the closed middle interval of Ĩm,i

m−1 with length bam; for k = m + 1 and
i = 0, · · · , 2m+1−1, let Ĩm,i

m be the closure of the 2m+1 intervals obtained by removing
{Ĩk,i

m : k = 0, · · · ,m; i = 0, · · · , 2k − 1} from I and ordered from left to right.
Obviously, Ĩ has the following properties:

(i) for each m ∈ N ∪ {0}, I =
⋃m+1

k=0

⋃2k−1
i=0 Ĩk,i

m ;
(ii) |Ĩk,i

m | = bak when k ≤ m and i = 0, · · · , 2k − 1, and |Ĩm+1,i
m | = am+1 when

i = 0, · · · , 2m+1 − 1.
Then we translate and dilate these intervals in Ĩ by setting

Ik,i
m = (1− a)amĨk,i

m + (am+1, 0)

for each Ĩk,i
m ∈ Ĩ. Then we write

(2.2) I ≡ {Ik,i
m : m ∈ N ∪ {0}; k = 0, · · · ,m + 1; i = 0, · · · , 2k − 1}.

Obviously from (i) and (ii), it is easy to see that

(iii) for each m ∈ N ∪ {0}, [am+1, am]× {0} =
⋃m+1

k=0

⋃2k−1
i=0 Ik,i

m ;
(iv) |Ik,i

m | = b(1 − a)am+k when k ≤ m and i = 0, · · · , 2k − 1, and |Im+1,i
m | =

(1− a)a2m+1 when i = 0, · · · , 2m+1 − 1.
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For each Ik,i
m ∈ I, denote its upper hat by Γk,i

m , namely,

Γk,i
m ≡ {x = (x1, x2) : dist((x1, 0), ∂Ik,i

m ) = x2},
where and in what follows, for any set E ⊂ R2 and x ∈ R2, dist(x,E) = inf{|x −
y| : y ∈ E}.

We also denote by T k,i
m the closed triangle generated by Γk,i

m and Ik,i
m . For m ∈

N ∪ {0}, set

Γm ≡
m+1⋃

k=0

2k−1⋃
i=0

Γk,i
m , Tm ≡

m+1⋃

k=0

2k−1⋃
i=0

T k,i
m

and

Γ ≡ {(0, 0)}
⋃ ( ∞⋃

m=0

Γm

)
, T ≡ {(0, 0)}

⋃ ( ∞⋃
m=0

Tm

)
.

Then we obtain a Lipschitz curve Γ joining (0, 0) and (1, 0). By abuse of notation,
we always write Γ ≡ {(x1, Γ(x1)) : x1 ∈ [0, 1]}.

The following figure shows the curve Γ0 ∪ Γ1, when a = 1/4.

0 1

0.3

aa2

Let R be the rectangle (−1, 1) × (0, 1) and ϕ : R → R2 such that ϕ(x1, x2) ≡
(x1, x2) if x1 ≤ 0 and ϕ(x1, x2) ≡ (x1, x2 + x2

1) if x1 > 0. Set (Gq)+ ≡ ϕ(R) \ ϕ(T )
and let (Gq)− be the reflection of (Gq)+ across the x1-axis. Then define

Gq ≡ (Gq)+

⋃
(Gq)−

⋃
(−1, 0)× {0},

which completes the construction of the domain Gq. ¤
Now we recall the following result, which was established when p > 1 in [11,

Theorem 1] and when p = 1 by Lemma 4.9.1 of [12].

Lemma 2.1. Let 1 ≤ p < ∞ and w be a non-negative function on R2. If there
exist constants s > 1 and C(w, s) > 0 such that for all r > 0 and x ∈ R2,

(2.3) r

( 

B(x,r)

[w(y)]ps dy

)1/(ps)

≤ C(w, s),

then there exists positive constant C such that for all f ∈ W 1,p(R2), fw ∈ Lp(R2)
and ‖fw‖Lp(R2) ≤ C‖f‖W 1,p(R2).
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For any c > 0, set 4c ≡ {(x1, x2) : 0 < x1 < c, 0 < x2 < x1}. For any real-
valued function u on R2, define uc(x1, x2) ≡ u(x1, x2)(x2/x1)χ4c . Then we have the
following result; see [10, Lemma 2] and also [8, p. 75]

Lemma 2.2. Let 1 ≤ p < 2. Then there exists constant C such that for all
u ∈ W 1,p(R2) and 0 < c ≤ 1,

‖uc‖W 1,p(4c) ≤ Cc−1‖u‖Lp(4c) + C‖u‖W 1,p(4c).

Similarly to Lemma 3 of [10], we have the following conclusion.

Lemma 2.3. There exists a positive constant C and a sequence of functions,
{vm}∞m=0 ⊂ W 1,p(R2), such that vm(x) = 1 if x ∈ Γm, and vm(x) = 0 if x1 ≤ 0;
moreover,

‖vm‖W 1,p(R2) ≤ Ca(2/p−1)m.

Proof. Let v0 ∈ W 1,p(R2) such that v0(x) = 0 if x1 ≤ 0, and v0(x) = 1 if
0 ≤ x2 ≤ x1 and a ≤ |x| ≤ 1. Set vm(x) ≡ v0(a

−mx) for m ∈ N. Then vm(x) = 1 if
x ∈ Γm, and vm(x) = 0 if x1 = 0 for m ∈ N ∪ {0}. Moreover,

‖vm‖p
W 1,p(R2) . a2m‖v0‖p

Lp(R2) + a2m−mp‖∇v0‖p
Lp(R2) . a2m−mp,

which completes the proof of Lemma 2.3. ¤
Let Rh,d ≡ (0, h) × [0, d] for 0 < d, h ≤ 1. Let E, F ⊂ Rh,d be disjoint continua

connecting the vertical sides of Rh,d. The following result has been proved in [10,
Lemma 4].

Lemma 2.4. Let 1 < p ≤ ∞. Then for all u ∈ W 1,p(R2) with u(x) = 1 if x ∈ E,
and u(x) = 0 if x ∈ F , ‖u‖W 1,p(R2) ≥ h1/pd1/p−1.

Lemma 2.5. If ∞ ≥ p ≥ q ≡ 2 + loga 2, then Gq /∈ Extp.

Proof. Assume that Gq ∈ Extp. Notice that quasi-isometry keeps the space
W 1,p(R2) invariant under the change of the variable. By this and Lemma 2.3, there
exists a sequence of functions, {vm}m∈N∪{0} ⊂ W 1,p(R2), such that vm(x) = 1 if
x ∈ ϕ(Γm), and vm(x) = 0 if x ∈ (Gq)− or x1 ≤ 0; moreover, ‖vm‖p

W 1,p(Gq) . a(2−p)m,
where ϕ is as in the construction of the domain Gq. Let um be an extension of vm.
Then ‖um‖p

W 1,p(R2) . a(2−p)m.
On the other hand, since um(x) = 1 if x ∈ ϕ(Γk,i

m ), and um(x) = 0 if x1 = 0, by
Lemma 2.4 and 2a2−p ≥ 1,

‖um‖p
W 1,p(R2) &

m+1∑

k=0

2k−1∑
i=0

|Ik,i
m ||Ik,i

m |1−p &
m+1∑

k=0

2ka(2−p)(m+k)

& a(2−p)m

m+1∑

k=0

2ka(2−p)k & ma(2−p)m.

This is a contradiction, which completes the proof of Lemma 2.5. ¤

Lemma 2.6. Let 1 ≤ p < q ≡ 2 + loga 2. Set

w ≡
∞∑

m=0

m+1∑

k=0

2k−1∑
i=0

a−(k+m)χT k,i
m

.
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If 1 < s < 2/p is such that 2a2−sp < 1, then w satisfies (2.3).

Proof. If r ≥ a/2, then for all x ∈ R2, then by 2a2−sp < 1, we have
ˆ

B(x,r)

[w(y)]sp dy ≤
∞∑

m=0

m+1∑

k=0

2k−1∑
i=0

a−(k+m)sp|T k,i
m | ≤

∞∑
m=0

m+1∑

k=0

2ka(k+m)(2−sp)

.
∞∑

m=0

am(2−sp) . 1 . r2−sp.

Similarly, it is easy to see that
ˆ

B(0,an)

[w(y)]sp dy ≤
∞∑

m=n

m+1∑

k=0

2k−1∑
i=0

a−(k+m)sp|T k,i
m | . an(2−sp).

If r < a/2 and w(y) 6= 0 for all y ∈ B(x, r), then |y| ≤ 1 and |x| < 1 + r. For
1 ≤ |x| < 1 + r, observing that w(y) . 1 for all y ∈ B(x, r), we then have (2.3).
Assume now that an+1 ≤ |x| < an for certain n ∈ N ∪ {0}. If r ≥ (1 − a)an+1/2,
similarly to above computations, then we haveˆ

B(x,r)

[w(y)]sp dy ≤
ˆ

B(0,r+2r/a(1−a))

[w(y)]sp dy . an(2−sp) . r2−sp.

If r < (1− a)a2(n+1)/2, then for all y ∈ B(x, r), w(y) . a−2n, and henceˆ

B(x,r)

[w(y)]sp dy . a−2nspr2 . r2−sp.

If (1− a)a2(n+1)/2 ≤ r < (1− a)an+1/2, then (1− a)an+k0+1/2 ≤ r < (1− a)an+k0/2
for some 1 ≤ k0 ≤ n + 1, and thus B(x, r) contains at most 2k−k0 many of the T k,i

m

for each m = n− 1, n, n + 1 and k ≥ k0, which implies that
ˆ

B(x,r)

[w(y)]sp dy ≤
n+2∑

k=k0−1

2k−k0a−(n+k)spa2(n+k) . a(2−sp)(n+k0) . r2−sp.

This finishes the proof of Lemma 2.6. ¤

Lemma 2.7. If 1 ≤ p < q ≡ 2 + loga 2, then Gq ∈ Extp.

Proof. Notice that quasi-isometries keep the space W 1,p(R2) invariant under the
change of the variable. By this and the symmetry of Gq with respect to x1-axis, we
only need to prove that for any u ∈ W 1,p(R \T ), there exists a function u ∈ W 1,p(R)
such that u(x) = 0 for almost all x ∈ (0, 1) × {0} and u(x) = u(x) for almost all
x ∈ R\T . Since the boundary of R\T is Lipschitz, there exists a bounded extension
operator Ext: W 1,p(R \ T ) → W 1,p(R2); see [10, p. 725]. Let v ≡ Ext(u) and T̊ k,i

m

be the interior of T k,i
m . Now we will obtain u by redefining v on T . In fact, applying

Lemma 2.2 to v on each T k,i
m , we obtain a function uk,i

m such that uk,i
m (x) = v(x) for

all x ∈ Γk,i
m , and uk,i

m (x) = 0 for all x ∈ Ik,i
m , and moreover,

‖uk,i
m ‖p

W 1,p(T̊ k,i
m )

. a−(k+m)p‖v‖p

Lp(T̊ k,i
m )

+ ‖v‖p

W 1,p(T̊ k,i
m )

.

Set

u ≡ uχR\T +
∞∑

m=0

m+1∑

k=0

2k−1∑
i=0

uk,i
m χT k,i

m
.
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Then

‖u‖p
W 1,p(R) . ‖u‖p

W 1,p(R\T ) +
∞∑

m=0

m+1∑

k=0

2k−1∑
i=0

‖uk,i
m ‖p

W 1,p(T̊ k,i
m )

. ‖u‖p
W 1,p(R\T ) +

∞∑
m=0

m+1∑

k=0

2k−1∑
i=0

a−(k+m)p‖v‖p

Lp(T̊ k,i
m )

+ ‖v‖p
W 1,p(R2)

. ‖vw‖p
Lp(R2) + ‖u‖p

W 1,p(R\T ),

where

w ≡
∞∑

m=0

m+1∑

k=0

2k−1∑
i=0

a−(k+m)χT k,i
m

.

Since 2a2−p < 1, we can find 1 < s < 2/p such that 2a2−sp < 1. By Lemma 2.6, we
know that w satisfies (2.3). Then, by Lemma 2.1, we have that

‖vw‖p
Lp(R2) . ‖v‖p

W 1,p(R2) . ‖u‖p
W 1,p(R\T ),

which further implies that ‖u‖W 1,p(R) . ‖u‖W 1,p(R\T ). This finishes the proof of
Lemma 2.7. ¤

So far, for 1 < q < 2, we have already proved that Gq ∈ Extp if and only if
1 ≤ p < q. To prove the extendability properties for the domain R2 \ Gq, we need
the following two auxiliary conclusions.

Lemma 2.8. The mapping ϕ from {x ∈ R2 : 0 ≤ x1 ≤ a} to itself given by
ϕ(x1, x2) ≡ (x1, x2 + x2

1) is bi-Lipschitz.

Proof. In fact, since 0 ≤ |x2
1 − y2

1| ≤ 2a|x1 − y1| for all 0 ≤ x1, y1 ≤ a, we have

(1− 2a)|x− y| ≤ |x− y| − |x2
1 − y2

1| ≤ |ϕ(x)− ϕ(y)|
≤ |x− y|+ |x2

1 − y2
1| ≤ (1 + 2a)|x− y|,

which completes the proof of Lemma 2.8. ¤
We always write γ(x, y) ⊂ D for a rectifiable curve joining x and y in a domain

D ⊂ R2. By abuse of notation, we also sometimes use γ to denote γ(x, y). Denote
by `(γ) the arc length of γ, γ(s) the arc length representation of γ, γ(0) = x and
γ(`(γ)) = y. If g is a real-valued function in D, we let

ˆ

γ(x,y)

g(z) |dz| ≡
ˆ `(γ)

0

g(γ(s)) ds

be the line integral of g along γ whenever the integral exists.
A domain D is called a Lipα-extension domain if for any pair of points x, y ∈ D,

there exists a curve γ(x, y) ⊂ D such that

(2.4)
ˆ

γ(x,y)

[dist(z, ∂D)]α−1 |dz| ≤ C|x− y|α,

where C is a positive constant independent of x and y; see [2].
Then by [5, Theorem A and Corollary 4.1] and [1, Theorem 5.2], we have the

following conclusion.
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Lemma 2.9. Let p > 2.

(i) If D is a simply connected planar domain and D ∈ Extp, then D is
Lip(p−2)/(p−1)-extension domain.

(ii) If D is Lip(p−2)/(p−1)-extension domain, then D ∈ Exts for all s > p.

Lemma 2.10. If 1 < q < 2 and 1 ≤ p ≤ q/(q − 1), then R2 \Gq /∈ Extp.

Proof. By Theorem 6.4 of [4] for 1 < p ≤ 2, if D is a W 1,p extension domain, then
D has the property LLC(2), namely, there exists a constant c ≥ 1 such that for all
z ∈ R2 and r > 0, any pair of points x, y ∈ D \B(z, r) can be joined in D \B(z, r/c).
For p = 1, we claim that R2 \ Gq ∈ Ext1 implies that Gq is a quasiconvex domain.
Assume this for the moment. Then by [9], Gq is a bounded turning domain, which
together with [9, Theorem 4.5] further implies that R2 \Gq has the LLC(2) property.

So for 1 ≤ p ≤ 2, the proof of Lemma 2.10 is reduced to proving that R2\Gq does
not have the property LLC(2). To see this, obviously, for any fixed positive constant
c, we always find m large enough such that a2m ≤ (1−a)am/(cN), where N is a fixed
positive constant such that ϕ(Tm+1,0

m ) ⊂ B((am, 0), Na2m). Thus the pair of points
(am+1, 0) and (am−1, 0), which lie in R2\Gq but not in B((am, 0), (1−a)am+1), cannot
be joined in (R2 \Gq) \B((am, 0), Na2m) and thus not in (R2 \Gq) \B((am, 0), (1−
a)am+1/c). This implies that R2 \ Gq does not have the property LLC(2) and thus
R2 \Gq /∈ Extp for any 1 ≤ p ≤ 2.

Now we turn to prove the above claim that R2 \Gq ∈ Ext1 implies that Gq is a
quasiconvex domain. To this end, we first observe that for any 1 ≤ p < ∞, R2 \Gq ∈
Extp implies that E−1 ≡ ({(x1, x2) : x1 > −1}\Gq) ∈ Extp. In fact, let η be a smooth
function such that 0 ≤ η(x) ≤ 1 and |∇η(x)| ≤ 4 for all x ∈ R2, and η(x) = 0 for
x1 ≤ −1 and η(x) = 1 for x1 ≥ 0. Let S ≡ {(x1, x2) : x1 > −1} \ ([−1, 0]× [−1, 1])}.
If u ∈ W 1,p(E−1), then uη ∈ W 1,p(R2 \Gq), u(1− η) ∈ W 1,p(S) and

‖uη‖W 1,p(R2\Gq) + ‖u(1− η)‖W 1,p(S) . ‖u‖W 1,p(E−1).

By the assumption R2 \Gq ∈ Extp, we have that Ext(uη) ∈ W 1,p(R2) and

‖Ext(uη)‖W 1,p(R2) . ‖uη‖W 1,p(R2\Gq) . ‖u‖W 1,p(E−1).

Since S is a uniform domain, u(1−η) can be extended to the entire R2 (see [4, p. 9]).
The extension, Ext(u(1− η)), satisfies ‖Ext(u(1− η))‖W 1,p(R2) . ‖u(1− η)‖W 1,p(S) .
‖u‖W 1,p(E−1). Obviously Ext(u(1 − η)) + Ext(uη) coincides with u on E−1, which
implies E−1 ∈ Extp. Then an argument similar to but easier than the above shows
that E−1 ∩ B(0, 10) ∈ Extp. Observe that E−1 ∩ B(0, 10) is a bounded, simply
connected W 1,1-extension domain. Applying [6, Corollary 1.2], we know that the
complement domain of E−1 ∩ B(0, 10) is quasiconvex, which further implies that
(E−1)

{, and thus Gq, is a quasiconvex domain. This proves the above claim.
For 2 < p ≤ q/(q − 1), since R2 \ Gq ∈ Extp implies E−1 ∈ Extp as above, to

prove Lemma 2.10, by Lemma 2.9, it suffices to prove that E−1 is not a Lipα-extension
domain for any 0 < α ≤ 2− q.

To see this, choose N ∈ N, and x = (am, 0) and y = (am−1, 0). Then for any
γ(x, y) ⊂ E−1, take γ̃ to be the component of γ ∩ {(z1, z2) : 0 ≤ z1 ≤ a} containing
x. Obviously, [am, am−1] ⊂ {z1 : (z1, z2) ∈ γ̃}, and without loss of generality, we may
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assume that z2 ≥ 0 for all (z1, z2) ∈ γ̃. Moreover, for all z ∈ γ̃, by Lemma 2.8,

dist(z, ∂Gq) = dist(z, ϕ(Γ \ Γ0)) ∼ dist(ϕ−1(z), Γ \ Γ0).

Assume that (z1, 0) ∈ T k,i
m . Then

dist(ϕ−1(z), Γ \ Γ0) = dist(ϕ−1(z), Γk,i
m ) ≤ dist((z1,−z2

1), Γ
k,i
m ) ≤ a2(m−1) + Γ(z1),

where (z1, Γ(z1)) ∈ Γ. Since 2aα ≥ 2a2−q = 1, we have
ˆ

γ(x,y)

[dist(z, ∂Gq)]
α−1 |dz| &

ˆ am−1

am

[a2(m−1) + Γ(z1)]
α−1 dz1

&
m+1∑

k=0

2k−1∑
i=0

ˆ |Ik,i
m |/2

0

[a2m + t]α−1 dt

&
m+1∑

k=0

2k([a2m + ak+m]α − a2mα)

&
m∑

k=0

2kamαakα & mamα & m|x− y|α,

which implies that E−1 is not a Lipα-extension domain. This finishes the proof of
Lemma 2.10. ¤

Lemma 2.11. If q/(q − 1) < s ≤ ∞, then R2 \Gq ∈ Exts.

Proof. By Lemma 2.9, it suffices to prove that R2 \Gq is Lipα-extension domain
for all α > 2−q. Let ϕ−(T \T0) be the reflection of ϕ(T \T0) with respect to x1-axis,
namely, ϕ−(T \ T0) ≡ {(x1,−x2) : (x1, x2) ∈ ϕ(T \ T0)} and for m ∈ N ∪ {0}

Em ≡ ϕ(T̊ \ ∪m
n=0Tn) ∪ ϕ−(T̊ \ ∪m

n=0Tn) ∪ {(x1, x2) : |x2| ≤ x2
1, 0 ≤ x1 < am}.

Then Gq ∪ Em is a Jordan domain with Lipschitz boundary since Γ(z1) is Lipschitz
function. Obviously, R2 \Gq = E1 ∪ (R2 \Gq ∪ E2). Then the proof of Lemma 2.11
is reduced to proving that for any x, y ∈ E1, there exists a curve γ(x, y) ⊂ E1 such
that

(2.5)
ˆ

γ(x,y)

[dist(z, ϕ(Γ) ∪ ϕ−(Γ))]α−1 |dz| . |x− y|α.

Assuming that (2.5) holds for the moment, we now establish Lemma 2.11. Since
dist(z, ϕ(Γ) ∪ ϕ−(Γ)) = dist(z, ∂Gq) for all z ∈ E1, then for any x, y ∈ E1, there
exists a curve γ(x, y) ⊂ E1 such that

(2.6)
ˆ

γ(x,y)

[dist(z, ∂Gq)]
α−1 |dz| . |x− y|α.

Obviously, R2 \ Gq ∪ E2 is a uniform domain and thus Lipα-extension domain for
all 0 < α ≤ 1; see [2]. Thus for any x, y ∈ R2 \ Gq ∪ E2, there exists a curve
γ(x, y) ⊂ R2 \ Gq ∪ E2 satisfying (2.6) with dist(x, ∂Gq) replaced by dist(x, ∂(Gq ∪
E2)). Observe that for all x ∈ R2\(Gq∪E2), dist(x, ∂(Gq∪E2)) ≤ dist(x, ∂Gq), which
implies that γ(x, y) ⊂ R2 \Gq satisfies (2.6). For any x ∈ E1 and y ∈ R2 \ (Gq ∪E1),
assume that there exists a point w ∈ J ≡ {(a, y2) : (a, y2) ∈ ∂E1} such that

(2.7) |x− y| ∼ |x− w|+ |w − y|.
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Then there exist curves γ1(x,w) ⊂ E0 and γ2(w, y) ⊂ R2 \ Gq ∪ E1 satisfying (2.6).
Let γ ≡ γ1 ∪ γ2. Therefore, γ(x, y) ⊂ R2 \Gq satisfies (2.6). To see (2.7), if y1 ≥ 1,
since |x2| ≤ a2 + ba, then |x1 − y1| > 1− a and

|y − (a, 0)|+ |(a, 0)− x| ≤ |y − x|+ 2|(a, 0)− x| ≤ |x− y|+ 4a . |x− y|,
which implies (2.7) with w ≡ (a, 0). Set

f(x, y) ≡ |x− y|−1 inf
w∈J

{|x− w|+ |w − y|}.
Obviously, f(x, y) ≥ 1 whenever defined. Moreover, f is continuous on the bounded
closed set

{(x, y) ∈ R4 : x ∈ E1, y ∈ E0 \ E1, |x− y| ≥ a4/4},
which implies f is bounded on this set and thus (2.7) holds for (x, y) in this set.
Finally, if x ∈ E1, y ∈ E0 \ E1 and |x − y| < a4/4, then it is easy to see that (2.7)
holds. Thus, so far, we proved that the claim (2.7) is true, and therefore, except
(2.5), we have finished this proof of Lemma 2.11.

Now we turn to proving the above claim (2.5). Set D ≡ (T \ T0)∪ {(x1, x2) : 0 ≤
x1 ≤ a, −x2

1 ≤ x2 ≤ 0}. Observe that the union of ϕ(D) and ϕ−(D), the reflection
of ϕ(D) with respect to x1-axis, is just the set E1. Then the claim (2.5) is reduced
to proving that for any x, y ∈ D \ Γ, there exists a curve γ(x, y) ⊂ D such that

(2.8)
ˆ

γ(x,y)

[dist(z, Γ)]α−1 |dz| . |x− y|α.

In fact, assume that (2.8) holds for the moment. Then for any x, y ∈ ϕ(D \ Γ),
there exists a curve γ(ϕ−1(x), ϕ−1(y)) ⊂ D satisfying (2.8). Since ϕ is bi-Lipschitz,
the curve ϕ(γ)(x, y) ⊂ ϕ(D \ Γ) also satisfies (2.5). A similar argument applies to
any x, y ∈ ϕ−(D \ Γ). For any x ∈ ϕ(D \ Γ) and y ∈ ϕ−(D \ Γ), letting w be the
intersection of the x1-axis and the line joining x and y, we have that w ∈ E1 and
|x− y| ∼ |x−w|+ |w− y|. Applying similar arguments to x, w and w, y, we obtain
the curves γ1(x,w) ⊂ E0 and γ2(w, y) ⊂ E0 satisfying (2.5). Taking γ ≡ γ1∪γ2 gives
the desired result.

To prove (2.8), we consider three cases.

Case 1. x, y ∈ Dk,i
m ≡ T k,i

m ∪ {(x1, x2) : (x1, 0) ∈ T k,i
m , −x2

1 ≤ x2 ≤ 0} for m ∈ N.
It suffices to verify that if x1 = y1 or x2 = y2, then there exists γ(x, y) ⊂ D

satisfying (2.8). In fact, assume this for the moment. In general, we assume that
xi 6= yi for i = 1, 2, and we may further assume that x1 < y1 without loss of generality.
If x2 < y2, then let z ≡ (y1, x2), and if x2 > y2 ≥ −x2

1, then let z ≡ (x1, y2).
Obviously, z ∈ Dk,i

m and |x− y| ∼ |x− z|+ |z− y|. Moreover, by the choices of z and
the assumptions, there exist curves γ1 and γ2 such that γ1(x, z) ⊂ D and γ2(z, y) ⊂ D
satisfy (2.8), respectively. Taking γ ≡ γ1 ∪ γ2, we know that γ(x, y) ⊂ D satisfies
(2.8). If y2 < −x2

1, then let z ≡ (x1,−x2
1) and u ≡ (y1,−x2

1). Obviously, z, u ∈ Dk,i
m

and |x− y| ∼ |x− z|+ |z− u|+ |u− y|. Moreover, by the choices of z and u and the
assumptions, there exist curves γ1, γ2 and γ3 such that γ1(x, z) ⊂ D, γ2(z, u) ⊂ D
and γ3(u, y) ⊂ D satisfy (2.8), respectively. Taking γ ≡ γ1 ∪ γ2 ∪ γ3, we have that
γ(x, y) ⊂ D satisfies (2.8).

Now assume that x1 = y1 or x2 = y2. If x1 = y1, taking γ to be the line segment
joining x and y, we have that γ(x, y) ⊂ Dk,i

m . Since

(2.9) dist(z, Γ) = dist(z, Γk,i
m ) ∼ Γ(z1)− z2
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for all z with (z1, 0) ∈ T k,i
m and z2 < Γ(z1) = Γ(x1), we have

ˆ

γ

[dist(z, Γ)]α−1 |dz| ∼
ˆ

γ

[Γ(x1)− z2]
α−1 |dz|

.
ˆ |x2−y2|

0

tα−1 dt . |x2 − y2|α ∼ |x− y|α.

If x2 = y2, taking γ to be the line segment joining x and y, we have that γ(x, y) ⊂
Dk,i

m . Moreover, we have
ˆ

γ

[dist(z, Γ)]α−1 |dz| ∼
ˆ

γ

[Γ(z1)− x2]
α−1 |dz|

.
ˆ |x1−y1|

0

tα−1 dt . |x1 − y1|α ∼ |x− y|α.

Case 2. x ∈ Dk,i
m and y ∈ D`,j

n , where T `,j
n is adjacent to T k,i

m . Let {(w1, 0)} =
T k,i

m ∩ T `,j
n and assume that x1 < y1.

If x2 < 0, letting u ≡ (y1, x2) and w ≡ (w1, x2), then |x− y| ∼ |x−w|+ |w−u|+
|u− y|. By Case 1, there exists curve γ1(x,w) ⊂ D, γ2(w, u) ⊂ D and γ3(u, y) ⊂ D
satisfying (2.8), respectively. Taking γ ≡ γ1 ∪ γ2 ∪ γ3, we know that γ(x, y) ⊂ D
satisfies (2.8).

If x2 ≥ 0 and y2 ≥ 0, noticing that x2 ≤ w1 − x1 and y2 ≤ y1 − w1, and letting
u ≡ (x1,−c), w = (w1,−c) and z ≡ (y1,−c), where 0 < c ≤ min{x2, y2, x

2
1}, we

conclude that

|x2 + c|+ |y2 + c| ≤ 2|y1 − w1|+ 2|x1 − w1| ∼ |x1 − y1|,
which implies that

|x− y| ∼ |x− u|+ |u− w|+ |w − z|+ |z − y| ∼ |x1 − y1|.
Thus, there exist curves γ1(x, u) ⊂ D, γ2(u,w) ⊂ D, γ3(w, z) ⊂ D and γ4(z, y) ⊂ D
satisfying (2.8), respectively. Taking γ ≡ γ1 ∪ γ2 ∪ γ3 ∪ γ4, we know that γ(x, y) ⊂ D
satisfies (2.8).

If x2 ≥ 0 and −x2
1 ≤ y2 < 0, then similarly to the proof for the case x1 < 0, we

obtain a curve γ(x, y) ⊂ D that satisfies (2.8).
If x2 ≥ 0 and −x2

1 > y2 ≥ −y2
1, letting u ≡ (y1,−x2

1), and z ≡ (x1,−x−2
1 ), we

have that |x− y| = |x− z|+ |z − u|+ |u− y|. Since there exist curves γ1(x, z) ⊂ D,
γ1(z, u) ⊂ D and γ3(u, y) ⊂ D satisfying (2.8), respectively, taking γ ≡ γ1 ∪ γ2 ∪ γ3

gives the desired curve.

Case 3. x ∈ Dk,i
m and y ∈ D`,j

n , where T `,j
n is not the one adjacent to T k,i

m . We
may assume that x1 < y1 without loss of generality.

Let (u1, 0) be the right endpoint of Ik,i
m and (z1, 0) be the left endpoint of I`,j

n .
Then −x2

1 ≤ x2 ≤ u1−x1 and −y2
1 ≤ y2 ≤ y1− z1. Since x2

1 + y2
1 . a2m +a2n . |u1−

z1| . |x1−y1|, we know that |x2−y2| . |x1−y1|, which implies that |x−y| ∼ |x1−y1|
and |x− (u1, 0)|+ |(u1, 0)− (z1, 0)|+ |(z1, 0)− y| . |x− y|.

Let γ2 be the line segment joining the pair of points u = (u1,−x2
1) and z =

(z1,−x2
1). Then we claim that

(2.10)
ˆ

γ2

[dist(v, Γ)]α−1 dv . |u1 − z1|α.
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Assume that (2.10) holds for the moment. Then by Case 1, there exist curves
γ1(x, u) ⊂ D and γ3(z, y) ⊂ D satisfying (2.8), respectively. Thus the curve γ ≡
γ1 ∪ γ2 ∪ γ3 is as desired.

Now we show (2.10). If m = n, let |Ik0,i0
m | be the largest for the subintervals

from our construction contained in γ̃2 ≡ γ2 + (0, x2
1). Then |u1 − z1| ∼ am+k0 and

γ̃2 ⊂ ∪m+1
k=k0

∪2k−k0

j=1 I
k,ij
m . Since dist(v, Γ) ∼ Γ(v1) for all v ∈ Ik,i

m , by Case 1, we have
ˆ

Ik,i
m

[dist(v, Γ)]α−1 dv . aα(m+k).

Thus, by 2aα < 1, i.e. α > − loga 2 = 2− q, we have
ˆ

γ2

[dist(v, Γ)]α−1 dv ≤
ˆ

γ2

[dist(v, Γ)]α−1 dv .
m+1∑

k=k0

2k−k0aα(m+k)

. aα(m+k0)

m−k0+1∑

k=0

2kaαk . aα(m+k0) . |u1 − z1|α.

If m = n + 1, then |u1 − z1| = |am − u1| + |am − z1|, and thus, by the above
estimate in the case m = n,ˆ

γ2

[dist(v, Γ)]α−1 dv ≤
ˆ

γ̃2

[dist(v, Γ)]α−1 dv

.
(ˆ

γ̃2∩(an,an]

+

ˆ

γ̃2∩[an,an−1]

)
[dist(v, Γ)]α−1 dv

. |am − u1|α + |z1 − am|α . |u1 − z1|α.

Similarly, if m ≥ n + 2, then |u1 − z1| ∼ an, and thus
ˆ

γ2

[dist(v, Γ)]α−1 dv .
m∑

m′=n

ˆ

γ̃2∩[am′ ,am′−1]

[dist(v, Γ)]α−1 dv

.
m∑

m′=n

am′α . anα . |u1 − z1|α.

This shows (2.10) and finishes the proof of Lemma 2.11. ¤
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