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Abstract. By looking at the relationship between the recurrence properties of a countable
group action with a quasi-invariant measure and the structure of the space of ergodic components,
we establish a simple general description of the Hopf decomposition of the action into its conservative
and dissipative parts in terms of the Radon–Nikodym derivatives. As an application we describe the
conservative part of the boundary action of a discrete group of isometries of a Gromov hyperbolic
space with respect to an invariant quasi-conformal stream.

Conservativity and dissipativity are, along with ergodicity, the most basic notions
of ergodic theory which go back to its mechanical and thermodynamical origins. The
famous Poincaré recurrence theorem states that any measure preserving transforma-
tion T of a probability space (X,m) is conservative in the sense that any positive
measure subset A ⊂ X is recurrent, i.e., for a.e. starting point x ∈ A the trajectory
{T nx} eventually returns to A. These definitions clearly make sense for any measure
class preserving action G ª (X,m) of a general countable group G on a probability
space. The opposite notions are those of dissipativity and of a wandering set, i.e.,
such a set A that all its translates gA, g ∈ G, are pairwise disjoint. An action is
called dissipative if it admits a wandering set of positive measure, and it is called
completely dissipative if, moreover, there is a wandering set such that the union of
its translates is (mod 0) the whole action space.

Our approach to these properties is based on the observation that the notions of
conservativity and dissipativity admit a very natural interpretation in terms of the
ergodic decomposition of the action (under the assumption that such a decomposition
exists, i.e., that the action space is a Lebesgue measure space). Let C ⊂ X denote
the union of all the purely non-atomic ergodic components, and let D = X \C be the
union of all the purely atomic ergodic components. We call C and D the continual
and discontinual parts of the action, respectively. Further, let D1 (resp., D>1) be
the subset of D consisting of the points with trivial (resp., non-trivial) stabilizers,
i.e., the union of free (resp., non-free) orbits in D . The restriction of the action to
the set Cons = C ∪D>1 is conservative, whereas the restriction to the set Diss = D1

is completely dissipative, thus providing the so-called Hopf decomposition of the
action space into the conservative and completely dissipative parts (Theorem 14).
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[Historically, such a decomposition was first established in the pioneering paper of
Eberhard Hopf [Hop30] for one-parameter groups of measure preserving transforma-
tions.] Moreover, the restriction of the action to the set Cons∞ = C ∪ D∞ (where
D∞ is the set of points from D with infinite stabilizers) is infinitely conservative in
the sense that a.e. orbit passing thorugh this set returns to it infinitely often. These
descriptions are also valid if one defines conservativity and infinite conservativity in
terms of translates of positive measure sets. Namely, for any positive measure subset
of Cons (resp., of Cons∞) there exists g ∈ G\{e} (resp., infinitely many such g) with
m(A ∩ gA) > 0.

Although these facts are definitely known to the specialists (the important par-
ticular cases of Z-actions and of free actions are considered in [Kre85] and [Aar97],
respectively), they rather belong to the “folklore” (e.g., see the discussion in [Tuk97]),
and the treatment of this issue in the literature is sometimes confused, so that we
felt it necessary to give a clear and concise proof.

The continual part C can be described as the set of points for which the orbitwise
sum of the Radon–Nikodym derivatives of the action is infinite (Theorem 23(iii) and
Corollary 24). Actually, this description is also valid in the full generality of discrete
equivalence relations (Remark 28). Once again, the specialists in the latter theory
will hardly be surprised by this result. However, to the best of our knowledge, in
spite of its simplicity it has never been formulated explicitly.

In the case of (mod 0) free actions Cons = Cons∞ = C , so that in this situation
the above condition completely characterizes the conservative and the infinitely con-
servative parts of the action. A simple consequence of this fact is the description of
the infinitely conservative part Cons∞ of an arbitrary action G ª (X,m) as the set
of points x ∈ X with the property that

(∗) there exists t = t(x) such that {g ∈ G : dgm/dm(x) ≥ t} is infinite

(Theorem 29).
The latter result completely trivializes the problem of a geometric description of

the Hopf decomposition of the boundary action of a discrete group of isometries G
of a Gromov hyperbolic space X with respect to a certain natural measure class,
which is our main application.

More precisely, for any boundary point ω ∈ ∂X and any x, y ∈ X let βω(x, y) =
lim supz[d(y, z) − d(x, z)], where z ∈ X converges to ω in the hyperbolic compact-
ification. For CAT(−1) spaces βω are the usual Busemann cocycles, whereas in the
general case the cocycle identity is satisfied up to a uniformly bounded additive error
only, so that we have to call them Busemann quasi-cocycles. Then one can look for
a family λ = {λx} of finite pairwise equivalent boundary measures parameterized by
points x ∈ X (following [KL05] we use the term stream for such families) whose
mutual Radon–Nikodym derivatives are prescribed by βω in the sense that

(∗∗)
∣∣∣∣log

dλx

dλy

(ω)−Dβω(x, y)

∣∣∣∣ ≤ C ∀x, y ∈ X , ω ∈ ∂X

for certain constants C ≥ 0, D > 0. We call such a stream quasi-conformal of
dimension D. It is invariant if gλx = λgx for any g ∈ G, x ∈ X .

In the CAT(−1) case any invariant quasi-conformal stream is equivalent (with
uniformly bounded Radon–Nikodym derivatives) to an invariant conformal stream of
the same dimension, i.e., such that the logarithms of the Radon–Nikodym derivatives
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are precisely proportional to the Busemann cocycles. Given a reference point o ∈
X , an invariant (quasi-)conformal stream is uniquely determined just by a (quasi-)
conformal measure λo with the property that log dgλo/dλo(ω) is proportional to
βω(go, o) (up to a uniformly bounded additive error).

Coornaert [Coo93] proved (applying the construction used by Patterson [Pat76] in
the case of Fuchsian groups) that for any discrete group of isometries G of a Gromov
hyperbolic space X with a finite critical exponent D there exists an invariant quasi-
conformal stream of dimension D supported by the limit set of G.

It is with respect to the measure class of an invariant quasi-conformal stream λ =
{λx} that we study the Hopf decomposition of the boundary action. The geometric
description (∗∗) of the Radon–Nikodym derivatives in combination with criterion
(∗) immediately implies that the infinitely conservative part Cons∞ of the boundary
action coincides (mod 0) with the big horospheric limit set ΛhorB

G of the group G, i.e.,
with the set of points ω ∈ ∂X for which there exists t = t(ω) such that {g ∈ G :
βω(go, o) ≥ t} is infinite for a certain fixed reference point o ∈ X, or, in other words,
with the set of points ω ∈ ∂X such that a certain horoball centered at ω contains
infinitely many points from the orbit Go (Theorem 40). The conservative part Cons
of the action is then the union of ΛhorB

G
∼= Cons∞ and the set of ∂X>1 of all boundary

points with non-trivial G-stabilizers (note that the set ∂X∞ of boundary points with
infinite stabilizers is automatically contained in ΛhorB

G ).
This characterization of the conservative part of the boundary action was first

established by Pommerenke [Pom76] for Fuchsian groups with respect to the visual
stream on the boundary circle (although in a somewhat different terminology). Pom-
merenke’s argument uses analytic properties of the Blaschke products and does not
immediately carry over to the higher dimensional situation. Sullivan [Sul81] used
a more direct geometrical approach and proved this characterization for Kleinian
groups, again with respect to the visual stream. Actually he considered the small
horospheric limit set ΛhorS

G (also called just horospheric limit set ; it is defined by
requiring that the intersection of any horoball centered at ω ∈ ΛhorS

G with the or-
bit Go be infinite) essentially showing that ΛhorB \ ΛhorS is a null set. By extending
Sullivan’s approach (with some technical complications) Tukia [Tuk97] proved Theo-
rem 40 for Kleinian groups with respect to an arbitrary invariant conformal stream.
Our completely elementary approach subsumes all these particular cases; note that
in all of them the set of boundary points with non-trivial stabilizers is negligible, so
that Cons = Cons∞ (which is not necessarily the case in general).

By the way, concerning stabilizers of boundary points it would be interesting
to know whether the set of boundary points with infinite G-stabilizers ∂X∞ (or,
equivalently, the set of boundary points whose stabilizer is an infinite torsion group)
may be at all uncountable (let alone be non-negligible with respect to an invariant
quasi-conformal stream). This option seems to be quite unlikely, see Remark 43.

It is clear from looking at criterion (∗) that the right object in the context of
studying conservativity of boundary actions is the big horospheric limit set ΛhorB

rather than the small one ΛhorS. Nonetheless it is plausible that ΛhorB \ΛhorS is a null
set with respect to any invariant quasi-conformal stream on an arbitrary Gromov
hyperbolic space. This was proved by Sullivan [Sul81] for Kleinian groups with
respect to the visual stream, and for subgroups of a free group (again with respect
to the uniform stream) it was done in [GKN09], see Remark 45.
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We refer the reader to [GKN09] for a recent detailed study of the interrelations
between various kinds of limit sets in the simplest model case of the action of a free
subgroup on the boundary of an ambient finitely generated free group. Actually,
it was this collaboration that brought me to the issues discussed in the present
article, and I would like to thank my collaborators Rostislav Grigorchuk and Tatiana
Nagnibeda for the gentle insistence with which they encouraged my work. I am also
grateful to an anonymous referee for pointing out an oversight related to elliptic
elements in the first version of the paper. The ensuing revision led to a much better
understanding of the Hopf decomposition for non-free actions.

1. Structure of the ergodic components and recurrence properties

1.A. Lebesgue spaces. We begin by recalling the basic properties of the
Lebesgue measure spaces introduced by Rokhlin, see [Roh52, CFS82]. Measure-
theoretically these are the probability spaces such that their non-atomic part is
isomorphic to an interval with the Lebesgue measure on it. Thus, any Lebesgue
space is uniquely characterized by its signature σ = (σ0; σ1, σ2, . . . ), where σ0 is the
total mass of the non-atomic part, and σ1 ≥ σ2 ≥ . . . is the ordered sequence of
the values of its atoms (extended by zeroes if the set of atoms is finite or empty).
There is also an intrinsic definition of the Lebesgue spaces based on their separa-
bility properties. However, for applications it is usually enough to know that any
Polish topological space (i.e., separable and completely metrizable) endowed with a
Borel probability measure is a Lebesgue measure space. We shall follow the standard
measure theoretical convention:

Unless otherwise specified, all the identities, properties etc. related to measure
spaces will be understoodmod 0 (i.e., up to null sets). In particular, all the σ-algebras
are assumed to be complete, i.e., to contain all the measure 0 sets.

An important feature of the Lebesgue measure spaces is

Theorem E. (Existence of conditional probabilities) Let p : (X,m) → (X, m)
be a homomorphism (projection, factorization, quotient map) of Lebesgue spaces, i.e.,
for any measurable set A ⊂ X its preimage A = p−1(A) ⊂ X is also measurable, and
m(A) = m(A). Then the preimages Xx = p−1(x), x ∈ X, can be uniquely endowed
with conditional probability measures mx in such a way that (Xx, mx) are Lebesgue
spaces and the measure m decomposes into an integral of the measures mx, x ∈
X, with respect to the quotient measure m on X. Namely, for any function f ∈
L1(X,m) its restrictions fx to Xx are measurable and belong to the respective spaces
L1(Xx, mx), the integrals f(x) = 〈fx,mx〉 depend on x measurably, and 〈f, m〉 =
〈f, m〉 (cf. the classical Fubini theorem).

In fact, the above property follows from the classical Fubini theorem in view of
Rokhlin’s

Theorem C. (Classification of homomorphisms of Lebesgue spaces) Any ho-
momorphism p : (X,m) → (X, m) of Lebesgue spaces is uniquely (up to an isomor-
phism) determined by the signatures of the quotient measure m and of the condi-
tional measures mx. Namely, let us denote by I the unit interval endowed with the
Lebesgue measure λ, and partition I into a union of consecutive intervals I0, I1, . . .
with λ(Ii) = σi for a certain signature σ. Further, let us consider a coordinate-wise
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measurable assignment of signatures σx to points x ∈ I which is constant on the
intervals I1, I2, . . . , and, as before, let Ix

0 , Ix
1 , . . . be the consecutive subintervals of

I with λ(Ix
i ) = σx

i . Denote by (X,m) the Lebesgue space obtained from the square
(I×I, λ⊗λ) by collapsing the sets {x}×Ix

i , i ≥ 1, x ∈ I0, and Ij×Ix
i , i, j ≥ 1, x ∈ Ij,

onto single points. In the same way, let (X, m) be the quotient space of the interval
(I, λ) obtained by collapsing the intervals I1, I2, . . . onto single points, so that the
signature of (X, m) is σ. Then the projection of the square I × I onto the first
coordinate gives rise to a homomorphism from (X,m) to (X, m), and the signatures
of the associated conditional measures are precisely σx. The claim is that any homo-
morphism of Lebesgue spaces can be obtained in this way. In particular, if both the
quotient measure m and all the conditional measures mx are purely non-atomic (i.e.,
have the signature (1; 0, 0, . . . )), then the corresponding quotient map is isomorphic
just to the projection of the unit square onto the first coordinate.

Obviously, any homomorphism of Lebesgue spaces gives rise to the preimage
sub-σ-algebra in X which consists of the preimages of all the measurable sets in X.
Another important feature of the Lebesgue spaces is that, in fact, an arbitrary sub-
σ-algebra in X can be obtained in this way for a certain uniquely defined quotient
map.

Below we shall use the following elementary fact which follows at once from the
uniqueness of the system of conditional measures.

Lemma 1. Let T be an invertible measure class preserving transformation of a
Lebesgue space (X,m), and let p : (X,m) → (X, m) be its T -invariant projection,
i.e., p(Tx) = p(x) for a.e. x ∈ X. Then the conditional measures mx, x ∈ X, of the
projection p are quasi-invariant with respect to T and have the same Radon–Nikodym
derivatives as the measure m:

d Tm

dm
(x) =

d Tmx

dmx

(x), where x = p(x),

for a.e. x ∈ X.

1.B. Ergodic components, continuality and discontinuality. Let now
G ª (X, m) be an action of an infinite countable group G by measure class preserving
transformations on a Lebesgue space (X, m)—which will be our standing assumption
through the rest of this Section.

The quotient space (X, m) of (X, m) determined by the σ-algebra of G-invariant
sets is called the space of ergodic components of the action of G on the space (X, m),
and the preimages Xx endowed with the conditional measures mx are called ergodic
components. The ergodic components Xx are G-invariant, the conditional measures
mx are G-quasi-invariant, and the action of G on the spaces (Xx,mx) is ergodic (e.g.,
see [Sch77]). Lemma 1 implies that the conditional measures mx on the ergodic
components have the same Radon–Nikodym derivatives with respect to the action of
G as the original measure m.

Since the ergodic components are ergodic, each of them is either purely atomic
(in which case it consists of a single G-orbit), or purely non-atomic.

Definition 2. The continual C (resp., discontinual D) part of the action G ª
(X, m) is the union of all the purely non-atomic (resp., purely atomic) components
of the action. Denote by C and D the corresponding subsets of the space of ergodic
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components X (their measurability follows from Theorem C). An orbit Gx is contin-
ual (resp., discontinual) if it belongs to C (resp., to D). The action is discontinual
if m(D) > 0 and continual otherwise. If m(C ) = 0 the action is called completely
discontinual.

Remark 3. The quotient measure class on the space of ergodic components and
the measure classes of the conditional measures on the ergodic components do not
change when the measure m is replaced with an equivalent one, so that Definition 2
(as well as various definitions below related to conservativity and dissipativity) de-
pends only on the measure class of m.

Lemma 4. Let A ⊂ X be a measurable G-invariant subset. It is contained in the
discontinual part D if and only if one can select, in a measurable way, a representative
from each G-orbit contained in A, i.e., if and only if there exists a measurable map
π : A → A which is constant along the orbits of the action.

Proof. If π is such a map, then it identifies the space of ergodic components of
A with π(A), so that in particular A ⊂ D . Conversely, Theorem C readily provides
a map π : D → D with the required properties. ¤

Remark 5. Below we shall also encounter the situation when instead of a map
with the properties from the above Lemma one has an orbit constant measurable
map x 7→ Mx, where Mx is a non-empty finite subset of the orbit Gx. This situation
can be easily reduced to Lemma 4 by choosing (in a measurable way!) just a single
point from each of the sets Mx. This can be done, for instance, by identifying the
space (X,m) with the unit interval (with possible collapsing corresponding to the
atoms of the measure m) and taking then the minimal of the points of Mx.

1.C. Wandering and recurrent sets. The definitions below are well-known
(e.g., see [Kre85, Aar97]). However, we had to slightly modify them (and, in partic-
ular, to distinguish recurrence from infinite recurrence) in order to take into account
certain effects which do not arise for the usually considered free and Z-actions.

We shall begin with the following measure-theoretical analogue of the topological
notion of a fundamental domain.

Definition 6. Ameasurable subset A ⊂ X is called wandering if all its translates
{gA}g∈G are pairwise disjoint.

Given a measurable G-invariant subset A ⊂ X, denote by Ak, k = 1, 2, . . . ,∞ ,
the set of all points x ∈ X whose stabilizer Gx has size k (obviously, all the sets Ak are
G-invariant and measurable along with the set A). Also denote by A>1 =

⋃
k>1 Ak

the set of all points from A with non-trivial (possibly infinite) stabilizers and by
A<∞ =

⋃
k<∞ Ak the set of all points from A with finite (including trivial) stabilizers.

Proposition 7. Any wandering set is contained in D1, and there is a maximal
wandering set, i.e., a wandering set A such that D1 =

⋃
g∈G gA.

Proof. If A is a wandering set, then the map π from the G-invariant union
Ã =

⋃
g∈G gA to A defined as π(x) = Gx ∩ A is measurable and G-invariant, so

that A ⊂ D by Lemma 4. Moreover, all the orbits intersecting A are obviously free,
whence A ⊂ D1.

As for the maximality, one can take for such a wandering set any measurable
section of the projection D1 → D1 (here D1 is the subset of the space of ergodic
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components X corresponding to the G-invariant measurable set D1; the existence of
such a section follows from Lemma 4). ¤

Remark 8. A proof of existence of a maximal wandering set valid without as-
suming that (X,m) is a Lebesgue space is given in [Aar97, Proposition 1.6.1].

The notion of a recurrent set is opposite to that of a wandering set.

Definition 9. A measurable set A ⊂ X is called recurrent (resp., infinitely
recurrent) if for a.e. point x ∈ A the trajectory Gx eventually returns to A, i.e.,
gx ∈ A for a certain element g ∈ G other than the group identity e (resp., returns to
A infinitely often, i.e., gx ∈ A for infinitely many elements g ∈ G).

Proposition 10. Any non-trivial measurable subset of the continual part C is
infinitely recurrent.

Proof. For a measurable subset A ⊂ C put

A0 = {x ∈ A : gx ∈ A for finitely many g ∈ G}.

Then obviously A0 ⊂ F , where

F = {x ∈ X : Gx ∩ A is non-empty and finite}.

The set F is G-invariant and measurable, and by Lemma 4 and Remark 5 F ⊂ D .
Therefore A0 must be a null set, whence the claim. ¤

The definition of the sets D>1 and D∞ also immediately implies

Proposition 11. Any non-trivial measurable subset of D>1 (resp., of D∞) is
recurrent (resp., infinitely recurrent).

There is another definition of recurrence based on considering translates of posi-
tive measure subsets rather than orbits of individual points (it is used, for instance,
in [Sul81, Tuk97]). However, the recurrence properties of subsets of X established in
Proposition 10 and Proposition 11 hold for this definition as well:

Proposition 12. For any non-trivial measurable subset A of C ∪D>1 (resp., of
C ∪ D∞) there exists g ∈ G \ {e} with m(A ∩ gA) > 0 (resp., there exist infinitely
many such g).

Proof. (i). If all the translates of a set A ⊂ C ∪D>1 are pairwise disjoint, then A
is a wandering set, and therefore A ⊂ D1 by Proposition 7, whence a contradiction.

(ii). Given a set A ⊂ C ∪D∞, let Rx = {g ∈ G : gx ∈ A} for x ∈ A. Obviously,
m(A ∩ gA) > 0 if an only if m{x ∈ A : g ∈ Rx} > 0. Thus, if m(A ∩ gA) > 0 only
for finitely many g ∈ G, then the sets Rx must be finite for a.e. x ∈ A, which is
impossible in view of Proposition 10 and Proposition 11. ¤

1.D. Hopf decomposition.

Definition 13. An action G ª (X, m) is called conservative (resp., infinitely
conservative) if any measurable subset A ⊂ X is recurrent (resp., infinitely recurrent).
It is called dissipative if there is a non-trivial wandering set, and completely dissipative
if the whole action space X is the union of translates of a certain wandering set.

Taking stock of the Propositions from Section 1.C we obtain
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Theorem 14. (Hopf decomposition for general actions) Let G ª (X, m) be an
action of an infinite countable group G by measure class preserving transformations
on a Lebesgue space (X,m). Then

(i) The action space decomposes into the disjoint union of G-invariant measur-
able sets Cons = C ∪ D>1 and Diss = D1 (called its conservative and dissi-
pative parts, respectively) such that the restriction of the action to Cons is
conservative and the restriction to Diss is completely dissipative.

(ii) The restriction of the action to the G-invariant measurable set Cons∞ =
C ∪ D∞ (called the infinitely conservative part of the action) is infinitely
conservative.

(iii) The restriction of the action to the set Cons∞ \Cons =
⋃

1<k<∞ Dk is conser-
vative, but neither infinitely conservative nor dissipative.

Corollary 15. Cons = Cons∞ ∪X>1.

Corollary 16. If the action G ª (X, m) is free, i.e., D = D1, then Cons =
Cons∞ = C , and Diss = D .

Corollary 17. (Poincaré recurrence theorem) If the measure m is invariant, then
D1 is a null set, and therefore the action is conservative.

Remark 18. The decomposition described in Theorem 14(i) is unique. Indeed,
let X = C tD = C ′ tD′ be two such decompositions. If they are different, then one
of the sets C ∩D′, C ′ ∩D must be non-empty. Let it be, for instance, A = C ∩D′.
Then the restriction of the action to the G-invariant set A has to be simultaneously
conservative (because A ⊂ C) and completely dissipative (because A ⊂ D′), which
is impossible.

Remark 19. Proposition 12 implies that Theorem 14 is also valid for the def-
initions of conservativity and infinite conservativity based on considering translates
of positive measure sets.

Remark 20. If one defines strict recurrence and strict conservativity by requir-
ing that the orbit Gx returns to the set A at an orbit point different from the starting
point x, then the strictly conservative and the strictly infinitely conservative parts of
the action both coincide just with the continual part C (see Remark 28 below).

Remark 21. The group Z does not contain non-trivial finite subgroups, so that
for its actions D<∞ = D1, and therefore in this case Cons = Cons∞ = C ∪D∞.

Remark 22. When dealing with the actions of the group Z one sometimes
defines the notion of recurrence by looking only at the “positive semi-orbits” Z+x.
All measurable subsets of C are infinitely recurrent in this sense as well. Indeed, for
a subset A ⊂ C let A0 = {x ∈ A : Z+x ∩ A is finite}. Then x 7→ zx, where z is the
maximal element of Z with zx ∈ A, is a measurable “selection map” in the sense of
Lemma 4, so that A0 ⊂ D , whence A0 is a null set.

1.E. Continuality, conservativity and Radon–Nikodym derivatives. We
shall now discuss a link between continuality, conservativity and the Radon–Nikodym
derivatives of the action. Let us first consider the case of free actions.

Theorem 23. Let G ª (X,m) be a free measure class preserving action of a
countable group G on a Lebesgue space. Denote by µx, x ∈ X, the measure on the
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orbit Gx defined as
µx(gx) =

dg−1m

dm
(x) =

dm(gx)

dm(x)

(obviously, the measures µx corresponding to different points x from the same G-orbit
are proportional). Then for a.e. point x ∈ X the following conditions are equivalent:

(i) The orbit Gx is dissipative;
(ii) The orbit Gx is discontinual;
(iii) The measure µx is finite;
(iv) For any t > 0 the set {y ∈ Gx : µx(y) ≥ t} is finite;
(v) The set Mx of maximal weight atoms of the measure µx is non-empty and

finite.

Proof. (i)⇐⇒ (ii). This is Corollary 16.
(ii) =⇒ (iii). By Definition 2, the orbit Gx is discontinual if and only if it is an

ergodic component of the G-action on X. By Lemma 1 in this case the measure µx

is proportional to the conditional measure on this ergodic component, and therefore
it is finite.

(iii) =⇒ (iv) =⇒ (v). Obvious.
(v) =⇒ (ii). Follows from Lemma 4 and Remark 5 (because the map x 7→ Mx is

measurable in view of Theorem C). ¤

Corollary 24. Under conditions of Theorem 23

(25) C = Cons =
{

x ∈ X :
∑
g∈G

dgm(x)

dm(x)
= ∞

}

and

(26) D = Diss =
{

x ∈ X :
∑
g∈G

dgm(x)

dm(x)
< ∞

}
.

Remark 27. Condition (iv) from Theorem 23 is not, generally speaking, equiv-
alent just to existence of t > 0 such that the set {y ∈ Gx : µx(y) ≥ t} is finite (i.e.,
to boundedness of the values of the weights of the measure µx). The most manifest
example of this is an action with a finite invariant measure, see Corollary 17.

Remark 28. Theorem 23 and Corollary 24 can be extended to the orbit equiva-
lence relation of any (not necessarily free) action, and, more generally, to an arbitrary
countable non-singular equivalence relation R on a Lebesgue space (X, m). The ar-
guments are precisely the same; however, in order to spare the reader the trouble of
going through the definitions from the ergodic theory of equivalence relations (see
[FM77]) we confined ourselves just to the case of free actions. This generality is
sufficient, on one hand, to expose our (very simple) line of argument, and, on the
other hand, to deal with our main application to boundary actions (Theorem 40).
Here is a brief outline of the necessary modifications:

(i) The definitions of the continual and the discontinual parts of an equivalence
relation R remain the same as for actions (Definition 2) and are formulated
in terms of the conditional measures on the ergodic components with respect
to R;

(ii) Instead of the orbits Gx one has to talk about the equivalence classes R(x).
In particular, the definitions of conservativity and infinite conservativity of
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R (based on the corresponding definitions of recurrence and infinite recur-
rence from Definition 9) have to be formulated in terms of the equivalence
classes (for the orbit equivalence relation of an action this is the same as the
strict conservativity discussed in Remark 20). Then the same argument as in
Proposition 10 implies that C = Cons = Cons∞.

(iii) The measures µx on the equivalence classes have to be defined in terms of the
Radon–Nikodym cocycle of the equivalence relation rather than in terms of
Radon–Nikodym derivatives;

(iv) The summation in formulas (25) and (26) has to be done over the equivalence
class of x.

There is also another way of extending Theorem 23 and Corollary 24 to general
(not necessarily free) actions which provides the following characterization of the
infinitely conservative part:

Theorem 29. Let G ª (X, m) be a measure class preserving action of a count-
able group G on a Lebesgue space. Then

Cons∞ =
{
x ∈ X : ∃ t > 0 with card{g ∈ G : dgm/dm(x) > t} = ∞}

(30)

=
{

x ∈ X :
∑
g∈G

dgm(x)

dm(x)
= ∞

}
.(31)

Proof. The set X splits into two G-invariant measurable subsets X<∞ =
⋃

k<∞ Xk

and X∞ determined by the size of the point stabilizers.
Let us first look at the set X<∞. On each of the sets Xk with 1 < k < ∞ the

description (30) of Cons∞ ∩Xk (which coincides with C ∩Xk by Theorem 14) can
be proved in the same way as it was done in Theorem 23 for X1. Further, on each
of these sets Xk the sum from (31) is equal to k times the sum of the values of the
Radon–Nikodym cocycle along the orbit of x, so that these sums are finite or infinite
simultaneously. Thus, in the same way as in Theorem 23, on each set Xk condition
(31) provides a description of Cons∞ ∩Xk = C ∩Xk.

As for the set X∞, its definition directly implies that X∞ ⊂ Cons∞ and that
both conditions (30) and (31) are satisfied on the whole of X∞. ¤

2. Application to boundary actions

2.A. Hyperbolic spaces and limit sets. Recall that a non-compact complete
proper metric space X is Gromov δ-hyperbolic (with δ ≥ 0) if its metric d satisfies
the δ-ultrametric inequality

(x|z)o ≥ min{(x|y)o, (y|z)o} − δ ∀x, y, z, o ∈ X ,

where

(x|y)o =
1

2
[d(o, x) + d(o, y)− d(x, y)]

is the Gromov product. In addition we require that the space X be separable. On
the other hand, we do not require the space X to be geodesic. This class of spaces
contains Cartan–Hadamard manifolds with pinched sectional curvatures (in particu-
lar, the classical hyperbolic spaces of constant negative curvature) and metric trees,
see [Gro87, GdlH90] for more details.
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A Gromov hyperbolic space X admits a natural hyperbolic compactification X =
X ∪ ∂X , and the action of the isometry group Iso(X ) extends by continuity to a
continuous boundary action on ∂X . The boundary ∂X is a Polish space.

The limit set Λ = ΛG ⊂ ∂X of a discrete subgroup G ⊂ Iso(X ) (any such
subgroup is at most countable) is the set of all the limit points of any given orbit
Go, o ∈ X , with respect to the hyperbolic compactification, so that the closure of
the orbit Go in the hyperbolic compactification is Go ∪ ΛG (this definition does not
depend on the choice of the basepoint o). The limit set is closed and G-invariant.
Moreover, if the group G is non-elementary (its limit set is infinite ≡ contains at
least 3 points), then its action on ΛG is minimal (there are no proper G-invariant
closed subsets), whereas the action of G on the complement ∂X \ ΛG is properly
discontinuous (no orbit has accumulation points) [Gro87, Bou95].

The latter result provides a topological decomposition of the boundary action.
On the other hand, the situation is more complicated from the measure-theoretical
point of view. Let m be a purely non-atomic G-quasi-invariant measure on ∂X .
The complement ∂X \ ΛG is obviously contained in the discontinual part of the
action. However, this is as much as can a priori be said about the ergodic properties
of the boundary action. In particular, the action on ΛG need not be ergodic or
conservative. There are numerous examples witnessing to this; see [GKN09] for a
detailed discussion of the simplest model case of the action of a subgroup of a free
group on the boundary of the ambient group and for further references.

One can specialize the type of convergence in the definition of the limit set. For
instance, the radial limit set Λrad is the set of all the accumulation points of any fixed
orbit Go, o ∈ X , which stay inside a tubular neighbourhood of a certain geodesic ray
in X . Yet another type of the boundary convergence, which we are going to describe
below, is provided by horospheric neighborhoods.

Denote by

βz(x, y) = d(y, z)− d(x, z), x, y ∈ X ,

the distance cocycle associated with a point z ∈ X , and, following [Kai04] (cf.
[Gro87, GdlH90]), put

(32) βω(x, y) = lim sup
z→ω

βz(x, y) ∀x, y ∈ X , ω ∈ ∂X .

If the space X is CAT(−1) (e.g., a Cartan–Hadamard manifold with pinched sec-
tional curvatures or a tree), then lim sup in the above formula can be replaced just
with the ordinary limit, and βω are the boundary Busemann cocycles. Although for
a general Gromov hyperbolic space βω are not, generally speaking, cocycles, they
still satisfy the cocycle identity with a uniformly bounded error (i.e., they are quasi-
cocycles). Namely,

Proposition 33. [Kai04] There exists a constant C ≥ 0 depending on the hy-
perbolicity constant δ of the space X only such that for any ω ∈ ∂X the function
βω (32) has the following properties:

(i) βω is “jointly Lipschitz”, i.e., |βω(x, y)| ≤ d(x, y) for all x, y ∈ X , in particular,
βω(x, x) ≡ 0;

(ii) 0 ≤ βω(x, y) + βω(y, z) + βω(z, x) ≤ C for all x, y, z ∈ X .
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The quasi-cocycles βω are obviously invariant with respect to the isometries of
X , i.e.,

βgω(gx, gy) = βω(x, y) ∀x, y ∈ X , ω ∈ ∂X , g ∈ Iso(X ).

We shall define the horoball in X centered at a boundary point ω ∈ ∂X and
passing through a point o ∈ X as

HBallω(o) = {x ∈ X : βω(o, x) ≤ 0}.
Definition 34. The big (resp., small) horospheric limit set ΛhorB = ΛhorB

G (resp.,
ΛhorS = ΛhorS

G ) of a discrete group G of isometries of a Gromov hyperbolic space X
is the set of all the points ω ∈ ∂X such that a certain (resp., any) horoball centered
at ω contains infinitely many points from a fixed orbit Go, o ∈ X (the resulting set
does not depend on the choice of the orbit Go, see Remark 35 below).

Remark 35. As it follows from Proposition 33, for any fixed reference point
o ∈ X the big (resp., small) horospheric limit sets can also be defined as the set of
all the points ω ∈ ∂X for which the set

{x ∈ Go : βω(o, x) ≤ t}
is infinite for a certain (resp., for any) t ∈ R.

Remark 36. Usually our small horospheric limit set is called just the horo-
spheric limit set, and in the context of Fuchsian groups its definition, along with the
definition of the radial limit set, goes back to Hedlund [Hed36]. Following [Mat02] (in
the Kleinian case) we call it small in order to better distinguish it from the big one,
which, although apparently first explicitly introduced by Tukia [Tuk97] (again just in
the Kleinian case), essentially appears (for Fuchsian groups) already in Pommerenke’s
paper [Pom76].

The horospheric limit sets ΛhorS, ΛhorB are obviously G-invariant, Borel, and con-
tained in the full limit set Λ (because the only boundary accumulation point of any
horoball is just its center).

2.B. Boundary conformal streams.

Definition 37. A family of pairwise equivalent finite measures λ = {λx} on the
boundary ∂X of a Gromov hyperbolic space X parameterized by points x ∈ X is
called a quasi-conformal stream of dimension D > 0 if there exists a constant C > 0
such that ∣∣∣∣log

dλx

dλy

(ω)−Dβω(x, y)

∣∣∣∣ ≤ C ∀x, y ∈ X , ω ∈ ∂X .

A stream λ is invariant with respect to a group G ⊂ Iso(X ) if

λgx = gλx ∀ g ∈ G, x ∈ X .

Remark 38. We follow here the terminology developed in [KL05]. More tradi-
tionally, any invariant quasi-conformal stream is determined just by a single finite
boundary quasi-conformal measure λ = λo with the property that

(39)
∣∣∣∣
dgλ

dλ
(ω)−Dβω(go, o)

∣∣∣∣ ≤ C ∀ g ∈ G, ω ∈ ∂X .

for a certain reference point o ∈ X . If βω are cocycles (which is the case for CAT(−1)
spaces), then any measure λ satisfying (39) is equivalent to a unique finite measure
λ′ (called conformal) which satisfies formula (39) with C = 0 (it follows from the



Hopf decomposition and horospheric limit sets 347

fact that any uniformly bounded cocycle is cohomologically trivial). This definition
is motivated by the fact that the visual measure on the boundary sphere ∂Hd+1

of the classical (d + 1)-dimensional hyperbolic space with sectional curvature −1 is
conformal of dimension d (in our terminology it means that the visual stream which
consists in assigning to any point from the hyperbolic space the associated visual
measure is conformal). However, the limit set of the group can be “much smaller”
than the boundary sphere and be a null set with respect to the visual measure. Ex-
istence of conformal measures which are concentrated on the limit set (and for which
the dimension coincides with the critical exponent of the group) was first established
by Patterson [Pat76] in the case of Fuchsian groups. His construction was further
generalized (see [Sul79], [Kai90]), ultimately providing existence of a conformal mea-
sure for any closed subgroup of isometries of a general CAT(−1) space [BM96]. For
discrete isometry groups of general Gromov hyperbolic spaces existence of measures
satisfying (39) (i.e., existence of invariant quasi-conformal streams in our terminol-
ogy) was established by Coornaert [Coo93] (also by a generalization of Patterson’s
construction).

2.C. Hopf decomposition of the boundary action. We are now ready to
proceed to the main application of Theorem 23 which is a description of the Hopf
decomposition of the boundary action of a discrete subgroup G ⊂ Iso(X ) with
respect to (the measure class of) a quasi-conformal invariant stream.

As the atomic part of such a stream is obviously discontinual (so that by The-
orem 14 its Hopf decomposition is completely determined by the size of the point
stabilizers), we can restrict our considerations to the purely non-atomic case only. We
shall use the notation introduced in Section 1.C for the subsets of ∂X determined
by the size of their G-stabilizers.

Theorem 40. Let G be a discrete group of isometries of a Gromov hyper-
bolic space X , and λ be a purely non-atomic G-invariant quasi-conformal boundary
stream. Then

(i) The infinitely conservative part of the action is (mod 0) Cons∞ = ΛhorB
G ;

(ii) The conservative part of the action of G on the hyperbolic boundary ∂X
with respect to the measure class of λ is (mod 0) Cons = ΛhorB

G ∪ ∂X>1, and
its dissipative part is (mod 0) Diss = ∂X \ Cons = ∂X1 \ ΛhorB

G .

Proof. Fix a reference point o ∈ X and consider the associated measure λo.
Without loss of generality we may assume that it is normalized, so that (∂X , λo)
is a Lebesgue space. Since the action of G on X is properly discontinuous, the G-
stabilizer of the point o is at most finite. Then, in view of (39) and Remark 35, the
description of Cons∞ immediately follows from Theorem 29, whereas the description
of Cons follows from Corollary 15. ¤

Theorem 40(i) in combination with Theorem 29 implies

Corollary 41. The big horospheric limit set ΛhorB
G coincides (mod 0) with the

divergence set of the Poincaré–Busemann series{
ω ∈ ∂X :

∑
g∈G

eDβω(go,o) = ∞
}

.

Remark 42. Since the stream λ is purely non-atomic, the set of fixed points
of hyperbolic and parabolic elements of G is at most countable, and therefore it is
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λ-negligible. On the other hand, the set of fixed points of an elliptic element may
be quite big and may even coincide with the whole boundary ∂X . For the simplest
example take a finite group G0, and let X ′ = G0 ×X . The space X ′ is hyperbolic
simultaneously with the space X, and G′ = G0×G is a discrete subgroup of Iso(X ′)
provided G is a discrete subgroup of Iso(X ). Then the action of the group G0 ⊂ G′

on the hyperbolic boundary ∂X ′ ∼= ∂X is trivial.

Remark 43. The infinitely conservative part Cons∞ coincides with the continual
part C of the boundary action on the set ∂X<∞. On the other hand, they need not
coincide on the set ∂X∞. An easy modification of the above arguments shows that
C ∩ ∂X∞ is (mod 0) the set of points ω ∈ X∞ for which a certain horoball centered
at ω contains infinitely many Gω-orbits. By discarding fixed points of hyperbolic and
parabolic elements we may assume that Gω is an infinite torsion group.

It is easy to construct an example of an infinite torsion group embedded as a
discrete parabolic subgroup in the group of isometries of a Gromov hyperbolic space (I
am grateful to I. Kapovich for a discussion of this topic). Let X be the homogeneous
tree of degree d+1 endowed with the graph metric. Fix a vertex o ∈ X , a boundary
point ω ∈ ∂X , and let L : X → Zd be a labelling of vertices of X with elements of
the cyclic group Zd such that for any vertex x ∈ X all the d neighbours y of x with
βω(x, y) = 1 (the ones which are “further” from ω) are labelled differently. Then any
point x ∈ X , by reading the labels along the geodesic ray γ = [x, ω) according to
the formula εk = L (γ(βω(o, x) − k)), gives rise to the associated sequence of labels
(εk)k≤βω(o,x). By using this correspondence one can now define, for any integer k, the
group Gk

∼= Zd of isometries of X : it cyclically changes the symbol εk in the above
sequence (provided β(o, x) ≥ k; otherwise the action of Gk is trivial). Obviously,
the groups Gk commute, so that the direct sum G =

∑
k≤0 Gk is an infinite torsion

group. The group G fixes the boundary point ω; on the other hand, it is not hard to
see that G is discrete.

However, it is highly unlikely that the set ∂X∞, or, equivalently, the set of points
ω ∈ ∂X whose stabilizer Gω is an infinite torsion group, may be uncountable, let
alone be non-negligible with respect to a quasi-conformal invariant stream.

Remark 44. For Fuchsian groups with respect to the visual stream on the
boundary circle Theorem 40 and Corollary 41 were proved by Pommerenke [Pom76]
(although in a somewhat different terminology, see the discussion in [Pom82, Sec-
tion 1]). Pommerenke’s argument uses analytic properties of the Blaschke products
and does not immediately carry over to the higher dimensional situation. Sullivan
[Sul81] used a more direct geometrical approach and established Theorem 40 for
Kleinian groups, again with respect to the visual stream (actually he considered the
small horospheric limit set ΛhorS essentially showing that ΛhorB \ ΛhorS is a null set,
see Remark 45 below). By extending Sullivan’s approach (with some technical com-
plications) Tukia [Tuk97] proved Theorem 40 for Kleinian groups with respect to an
arbitrary invariant conformal stream. In all these particular cases the set ∂X>1 is
negligible, so that Cons = Cons∞ = C .

Remark 45. Our argument used the characterization of the infinitely conserva-
tive part of an action G ª (X,m) as the set of all the points x ∈ X such that for a
certain t > 0

{g ∈ G : dgm/dm(x) > t} is infinite
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(Theorem 29), which in our setup is precisely the big horospheric limit set ΛhorB.
The small horospheric limit set ΛhorS corresponds to requiring that the above con-
dition hold for any t > 0, which, in general, is not equivalent to conservativity (see
Remark 27). From this point of view the right object in the context of studying
conservativity of boundary actions is definitely ΛhorB rather than ΛhorS. The differ-
ence ΛhorB \ ΛhorS is the set of all the boundary points ω ∈ ∂X for which among
the horoballs centered at ω there are both ones containing finitely many points from
the orbit Go of a fixed reference point o ∈ X and ones containing infinitely many
points from Go. Sullivan [Sul81] essentially proved that ΛhorB \ ΛhorS is a null set
with respect to the visual stream for Kleinian groups (also see the discussion of his
result in [Pom82, Section 1]); for subgroups of a free group (again with respect to
the uniform stream on the boundary of the ambient group) it was done in [GKN09].
We are not aware of any other results of this kind; in particular, it is already not
known for Kleinian groups with respect to general invariant conformal streams, see
[Tuk97]. Nonetheless, it seems plausible that ΛhorB \ ΛhorS is a null set with respect
to any invariant quasi-conformal stream on an arbitrary Gromov hyperbolic space.
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