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Abstract. Our aim in this paper is to deal with approximate identities in generalized Lebesgue
spaces Lp(·)(log L)q(·)(Rn). As a related topic, we also study Young type inequalities for convolution
with respect to norms in such spaces.

1. Introduction

Following Cruz-Uribe and Fiorenza [2], we consider two variable exponents p(·) :
Rn → [1,∞) and q(·) : Rn → R, which are continuous functions. Letting Φp(·),q(·)(x, t)

= tp(x)(log(c0 + t))q(x), we define the space Lp(·)(log L)q(·)(Ω) of all measurable func-
tions f on an open set Ω such thatˆ

Ω

Φp(·),q(·)

(
y,
|f(y)|

λ

)
dy < ∞

for some λ > 0; here we assume
(Φ) Φp(·),q(·)(x, ·) is convex on [0,∞) for every fixed x ∈ Rn.

Note that (Φ) holds for some c0 ≥ e if and only if there is a positive constant K such
that

(1.1) K(p(x)− 1) + q(x) ≥ 0 for all x ∈ Rn

(see Appendix). Further, we see from (Φ) that t−1Φp(·),q(·)(x, t) is nondecreasing in t.
We define the norm

‖f‖Φp(·),q(·),Ω = inf

{
λ > 0:

ˆ

Ω

Φp(·),q(·)

(
y,
|f(y)|

λ

)
dy ≤ 1

}

for f ∈ Lp(·)(log L)q(·)(Ω). Note that Lp(·)(log L)q(·)(Ω) is a Musielak–Orlicz space [9].
Such spaces have been studied in [2, 8, 10]. In case q(·) = 0 on Rn, Lp(·)(log L)q(·)(Ω)
is denoted by Lp(·)(Ω) ([7]).

We assume throughout the article that our variable exponents p(·) and q(·) are
continuous functions on Rn satisfying:
(p1) 1 ≤ p− := infx∈Rn p(x) ≤ supx∈Rn p(x) =: p+ < ∞;
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(p2) |p(x)− p(y)| ≤ C

log(e + 1/|x− y|) whenever x ∈ Rn and y ∈ Rn;

(p3) |p(x)− p(y)| ≤ C

log(e + |x|) whenever |y| ≥ |x|/2;
(q1) −∞ < q− := infx∈Rn q(x) ≤ supx∈Rn q(x) =: q+ < ∞;

(q2) |q(x)− q(y)| ≤ C

log(e + log(e + 1/|x− y|)) whenever x ∈ Rn and y ∈ Rn

for a positive constant C.
We choose p0 ≥ 1 as follows: we take p0 = p− if t−p−Φp(·),q(·)(x, t) is uniformly al-

most increasing in t; more precisely, if there exists C > 0 such that s−p−Φp(·),q(·)(x, s) ≤
Ct−p−Φp(·),q(·)(x, t) whenever 0 < s < t and x ∈ Rn. Otherwise we choose 1 ≤ p0 <
p−. Then note that t−p0Φp(·),q(·)(x, t) is uniformly almost increasing in t in any case.

Let φ be an integrable function on Rn. For each t > 0, define the function φt by
φt(x) = t−nφ(x/t). Note that by a change of variables, ‖φt‖L1,Rn = ‖φ‖L1,Rn . We
say that the family {φt} is an approximate identity if

´
Rn φ(x) dx = 1. Define the

radial majorant of φ to be the function

φ̂(x) = sup
|y|≥|x|

|φ(y)|.

If φ̂ is integrable, we say that the family {φt} is of potential-type.
Cruz-Uribe and Fiorenza [1] proved the following result:

Theorem A. Let {φt} be an approximate identity. Suppose that either
(1) {φt} is of potential-type, or
(2) φ ∈ L(p−)′(Rn) and has compact support.

Then
sup

0<t≤1
‖φt ∗ f‖Lp(·),Rn ≤ C‖f‖Lp(·),Rn

and
lim

t→+0
‖φt ∗ f − f‖Lp(·),Rn = 0

for all f ∈ Lp(·)(Rn).

Our aim in this note is to extend their result to the space Lp(·)(log L)q(·)(Ω) of
two variable exponents.

Theorem 1.1. Let {φt} be a potential-type approximate identity. If f ∈ Lp(·)(log
L)q(·)(Rn), then {φt ∗ f} converges to f in Lp(·)(log L)q(·)(Rn):

lim
t→0

‖φt ∗ f − f‖Φp(·),q(·),Rn = 0.

Theorem 1.2. Let {φt} be an approximate identity. Suppose that φ ∈ L(p0)′(Rn)
and has compact support. If f ∈ Lp(·)(log L)q(·)(Rn), then {φt ∗ f} converges to f in
Lp(·)(log L)q(·)(Rn):

lim
t→0

‖φt ∗ f − f‖Φp(·),q(·),Rn = 0.

We show by an example that the conditions on φ are necessary; see Remarks 3.5
and 3.6 below.

Finally, in Section 4, we give some Young type inequalities for convolution with
respect to the norms in Lp(·)(log L)q(·)(Rn).
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2. The case of potential-type

Throughout this paper, let C denote various positive constants independent of
the variables in question.

Let us begin with the following result due to Stein [11].

Lemma 2.1. Let 1 ≤ p < ∞ and {φt} be a potential-type approximate identity.
Then for every f ∈ Lp(Rn), {φt ∗ f} converges to f in Lp(Rn).

We denote by B(x, r) the open ball centered at x ∈ Rn and with radius r > 0.
For a measurable set E, we denote by |E| the Lebesgue measure of E.

The following is due to Lemma 2.6 in [8].

Lemma 2.2. Let f be a nonnegative measurable function on Rn with ‖f‖Φp(·),q(·),Rn

≤ 1 such that f(x) ≥ 1 or f(x) = 0 for each x ∈ Rn. Set

J = J(x, r, f) =
1

|B(x, r)|
ˆ

B(x,r)

f(y) dy

and

L = L(x, r, f) =
1

|B(x, r)|
ˆ

B(x,r)

Φp(·),q(·)(y, f(y)) dy.

Then
J ≤ CL1/p(x)(log(c0 + L))−q(x)/p(x),

where C > 0 does not depend on x, r, f .

Further we need the following result.

Lemma 2.3. Let f be a nonnegative measurable function on Rn such that (1 +
|y|)−n−1 ≤ f(y) ≤ 1 or f(y) = 0 for each y ∈ Rn. Set

J = J(x, r, f) =
1

|B(x, r)|
ˆ

B(x,r)

f(y) dy

and

L = L(x, r, f) =
1

|B(x, r)|
ˆ

B(x,r)

Φp(·),q(·)(y, f(y)) dy.

Then
J ≤ C

{
L1/p(x) + (1 + |x|)−n−1

}
,

where C > 0 does not depend on x, r, f .

Proof. We have by Jensen’s inequality

J ≤
(

1

|B(x, r)|
ˆ

B(x,r)

f(y)p(x)dy

)1/p(x)

≤
(

1

|B(x, r)|
ˆ

B(x,r)∩B(0,|x|/2)

f(y)p(x)dy

)1/p(x)

+

(
1

|B(x, r)|
ˆ

B(x,r)\B(0,|x|/2)

f(y)p(x)dy

)1/p(x)

= J1 + J2.
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We see from (p3) that

J1 ≤ C

(
1

|B(x, r)|
ˆ

B(x,r)∩B(0,|x|/2)

f(y)p(y)dy

)1/p(x)

.

Similarly, setting E2 = {y ∈ Rn : f(y) ≥ (1 + |x|)−n−1}, we see from (p3) that

J2 ≤ C

(
1

|B(x, r)|
ˆ

{B(x,r)\B(0,|x|/2)}∩E2

f(y)p(y)dy

)1/p(x)

+

(
1

|B(x, r)|
ˆ

{B(x,r)\B(0,|x|/2)}\E2

(1 + |x|)−p(x)(n+1)dy

)1/p(x)

≤ C

{(
1

|B(x, r)|
ˆ

B(x,r)

f(y)p(y)dy

)1/p(x)

+ (1 + |x|)−(n+1)

}
.

Since f(y) ≤ 1, f(y)p(y) ≤ CΦp(·),q(·)(y, f(y)). Hence, we have the required estimate.
¤

By using Lemmas 2.2 and 2.3, we show the following theorem.

Theorem 2.4. If {φt} is of potential-type, then

‖φt ∗ f‖Φp(·),q(·),Rn ≤ C‖φ̂‖L1,Rn‖f‖Φp(·),q(·),Rn

for all t > 0 and f ∈ Lp(·)(log L)q(·)(Rn).

Proof. Suppose ‖φ̂‖L1,Rn = 1 and take a nonnegative measurable function f on
Rn such that ‖f‖Φp(·),q(·),Rn ≤ 1. Write

f = fχ{y∈Rn:f(y)≥1} + fχ{y∈Rn:(1+|y|)−n−1≤f(y)<1} + fχ{y∈Rn:f(y)≤(1+|y|)−n−1}
= f1 + f2 + f3,

where χE denotes the characteristic function of a measurable set E ⊂ Rn.
Since φ̂t is a radial function, we write φ̂t(r) for φ̂t(x) when |x| = r. First note

that

|φt ∗ f(x)| ≤
ˆ

Rn

φ̂t(|x− y|)f1(y) dy

=

ˆ ∞

0

(
1

|B(x, r)|
ˆ

B(x,r)

f1(y) dy

)
|B(x, r)| d(−φ̂t(r)),

so that Jensen’s inequality and Lemma 2.2 yield

Φp(·),q(·)(x, |φt ∗ f1(x)|)

≤
ˆ ∞

0

Φp(·),q(·)

(
x,

1

|B(x, r)|
ˆ

B(x,r)

f1(y) dy

)
|B(x, r)| d(−φ̂t(r))

≤ C

ˆ ∞

0

(
1

|B(x, r)|
ˆ

B(x,r)

Φp(·),q(·)(y, f1(y)) dy

)
|B(x, r)| d(−φ̂t(r))

= C(φ̂t ∗ g)(x),
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where g(y) = Φp(·),q(·)(y, f(y)). The usual Young inequality for convolution givesˆ

Rn

Φp(·),q(·)(x, |φt ∗ f1(x)|) dx ≤ C

ˆ

Rn

(φ̂t ∗ g)(x) dx

≤ C‖φ̂t‖L1,Rn‖g‖L1,Rn ≤ C.

Similarly, noting that 1
|B(x,r)|

´
B(x,r)

f2(y) dy ≤ 1 and applying Lemma 2.3, we
derive the same result for f2.

Finally, noting that |φt ∗ f3| ≤ C‖φt‖L1,Rn ≤ C, we obtainˆ

Rn

Φp(·),q(·)(x, |φt ∗ f3(x)|) dx ≤ C

ˆ

Rn

|φt ∗ f3(x)| dx

≤ C‖φt‖L1,Rn‖f3‖L1,Rn ≤ C,

as required. ¤
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Given ε > 0, we find a bounded function g in Lp(·)(log L)q(·)

(Rn) with compact support such that ‖f − g‖Φp(·),q(·),Rn < ε. By Theorem 2.4 we
have

‖φt ∗ f − f‖Φp(·),q(·),Rn

≤ ‖φt ∗ (f − g)‖Φp(·),q(·),Rn + ‖φt ∗ g − g‖Φp(·),q(·),Rn + ‖f − g‖Φp(·),q(·),Rn

≤ Cε + ‖φt ∗ g − g‖Φp(·),q(·),Rn .

Since |φt ∗ g| ≤ ‖g‖L∞,Rn ,
‖φt ∗ g − g‖Φp(·),q(·),Rn ≤ C ′‖φt ∗ g − g‖L1,Rn → 0

by Lemma 2.1. (Here C ′ depends on ‖g‖L∞,Rn .) Hence
lim sup

t→0
‖φt ∗ f − f‖Φp(·),q(·),Rn ≤ Cε,

which completes the proof. ¤
As another application of Lemmas 2.2 and 2.3, we can prove the following result,

which is an extension of [4, Theorem 1.5] and [8, Theorem 2.7] (see also [6]).
Let Mf be the Hardy–Littlewood maximal function of f .

Proposition 2.5. Suppose p− > 1. Then the operator M is bounded from
Lp(·)(log L)q(·)(Rn) to Lp(·)(log L)q(·)(Rn).

Proof. Let f be a nonnegative measurable function on Rn such that ‖f‖Φp(·),q(·),Rn

≤ 1 and write f = f1 + f2 + f3 as in the proof of Theorem 2.4. Take 1 < p1 < p−
and apply Lemmas 2.2 and 2.3 with p(·) and q(·) replaced by p(·)/p1 and q(·)/p1,
respectively. Then

Φp(·),q(·)(x,Mf1(x)) ≤ C[Mg1(x)]p1

and
Φp(·),q(·)(x,Mf2(x)) ≤ C

{
[Mg1(x)]p1 + (1 + |x|)−n−1

}
,

where g1(y) = Φp(·)/p1,q(·)/p1(y, f(y)). As to f3, we have
Φp(·),q(·)(x,Mf3(x)) ≤ C[Mf3(x)]p1 .

Then the boundedness of the maximal operator in Lp1(Rn) proves the proposition.
¤
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Remark 2.6. If p− > 1, then the function Φp(·),q(·) is a proper N -function and
our Proposition 2.5 implies that this function is of class A in the sense of Diening [5]
(see [5, Lemma 3.2]). It would be an interesting problem to see whether “class A ” is
also a sufficient condition or not for the boundedness of M on Lp(·)(log L)q(·)(Rn).

3. The case of compact support

We know the following result due to Zo [12]; see also [1, Theorem 2.2].

Lemma 3.1. Let 1 ≤ p < ∞, 1/p + 1/p′ = 1 and {φt} be an approximate iden-
tity. Suppose that φ ∈ Lp′(Rn) has compact support. Then for every f ∈ Lp(Rn),
{φt ∗ f} converges to f pointwise almost everywhere.

Set

p(x) = p(x)/p0 and q(x) = q(x)/p0;

recall that p0 ∈ [1, p−] is chosen such that t−p0Φp(·),q(·)(x, t) is uniformly almost in-
creasing in t.

For a proof of Theorem 1.2, the following is a key lemma.

Lemma 3.2. Let f be a nonnegative measurable function on Rn with ‖f‖Φp(·),q(·),Rn

≤ 1 such that f(x) ≥ 1 or f(x) = 0 for each x ∈ Rn and let φ have compact support
in B(0, R) with ‖φ‖L(p0)′ ,Rn ≤ 1. Set

F = F (x, t, f) = |φt ∗ f(x)|

and

G = G(x, t, f) =

ˆ

Rn

|φt(x− y)|Φp(·),q(·)(y, f(y)) dy.

Then

F ≤ CG1/p(x)(log(c0 + G))−q(x)/p(x)

for all 0 < t ≤ 1, where C > 0 depends on R.

Proof. Let f be a nonnegative measurable function on Rn with ‖f‖Φp(·),q(·),Rn ≤ 1

such that f(x) ≥ 1 or f(x) = 0 for each x ∈ Rn and let φ have compact support in
B(0, R) with ‖φ‖L(p0)′ ,Rn ≤ 1. By Hölder’s inequality, we have

G ≤ ‖φt‖L(p0)′ ,Rn

(ˆ

Rn

Φp(·),q(·)(y, f(y)) dy

)1/p0

≤ t−n/p0 .

First consider the case when G ≥ 1. Since G ≤ t−n/p0 , for y ∈ B(x, tR) we have by
(p2)

G−p(y) ≤ G−p(x)+C/ log(e+(tR)−1) ≤ CG−p(x)

and by (q2)

(log(c0 + G))q(y) ≤ C(log(c0 + G))q(x).
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Hence it follows from the choice of p0 that

F ≤ G1/p̄(x)(log(c0 + G))−q(x)/p(x)

ˆ

Rn

|φt(x− y)| dy

+ C

ˆ

Rn

|φt(x− y)|f(y)

{
f(y)

G1/p̄(x)(log(c0 + G))−q(x)/p(x)

}p̄(y)−1

·
{

log(c0 + f(y))

log(c0 + G1/p̄(x)(log(c0 + G))−q(x)/p(x))

}q̄(y)

dy

≤ CG1/p̄(x)(log(c0 + G))−q(x)/p(x)

(cf. the proof of [8, Lemma 2.6]).
In the case G < 1, noting from the choice of p0 that f(y) ≤ CΦp(·),q(·)(y, f(y))

for y ∈ Rn, we find

F ≤ CG ≤ CG1/p̄(x) ≤ CG1/p̄(x)(log(c0 + G))−q(x)/p(x).

Now the result follows. ¤

Lemma 3.3. Suppose that ‖φ‖L1,Rn ≤ 1. Let f be a nonnegative measurable
function on Rn with ‖f‖Φp(·),q(·),Rn ≤ 1. Set

I = I(x, t, f) =

ˆ

{y∈Rn : |y|>|x|/2}
|φt(x− y)|f(y) dy

and

H = H(x, t, f) =

ˆ

Rn

|φt(x− y)|Φp(·),q(·)(y, f(y)) dy.

If A > 0 and H ≤ H0, then

I ≤ C(H1/p(x) + |x|−A/p(x))

for |x| > 1 and 0 < t ≤ 1, where C > 0 depends on A and H0.

Proof. Suppose that ‖φ‖L1,Rn ≤ 1. Let f be a nonnegative measurable function
on Rn with ‖f‖Φp(·),q(·),Rn ≤ 1.

Let |x| > 1 . In the case H0 ≥ H ≥ |x|−A with A > 0, we have by (p3)

H−p(y) ≤ CH−p(x)−C/ log(e+|x|) ≤ CH−p(x)

for |y| ≥ |x|/2. Hence we find by (Φ)

I ≤ C

{
H1/p(x) +

ˆ

{y∈Rn : |y|>|x|/2}
|φt(x− y)|f(y)

·
{

f(y)

H1/p(x)

}p(y)−1 {
log(c0 + f(y))

log(c0 + H1/p(x))

}q(y)

dy

}

≤ CH1/p(x).

Next note from (p3) that

|x|p(y) ≤ |x|p(x)+C/ log(e+|x|) ≤ C|x|p(x)
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for |y| ≥ |x|/2. Hence, when H ≤ |x|−A, we obtain by (Φ)

I ≤ C

{
|x|−A/p(x) +

ˆ

{y∈Rn:|y|>|x|/2}
|φt(x− y)|f(y)

·
{

f(y)

|x|−A/p(x)

}p(y)−1 {
log(c0 + f(y))

log(c0 + |x|−A/p(x))

}q(y)

dy

}

≤ C|x|−A/p(x),

which completes the proof. ¤

Theorem 3.4. Suppose that φ ∈ L(p0)′(Rn) has compact support in B(0, R).
Then

‖φt ∗ f‖Φp(·),q(·),Rn ≤ C‖φ‖L(p0)′ ,Rn‖f‖Φp(·),q(·),Rn

for all 0 < t ≤ 1 and f ∈ Lp(·)(log L)q(·)(Rn), where C > 0 depends on R.

Proof. Let f be a nonnegative measurable function on Rn such that ‖f‖Φp(·),q(·),Rn

≤ 1 and let φ have compact support in B(0, R) with ‖φ‖L(p0)′ ,Rn ≤ 1. Write

f = fχ{y∈Rn:f(y)≥1} + fχ{y∈Rn:f(y)<1} = f1 + f2.

We have by Lemma 3.2,

|φt ∗ f1(x)| ≤ C(|φt| ∗ g(x))p0/p(x)(log(c0 + |φt| ∗ g(x)))−q(x)/p(x),

where g(y) = Φp̄(·),q̄(·)(y, f(y)) = Φp(·),q(·)(y, f(y))1/p0 , so that

(3.1) Φp(·),q(·)(x, |φt ∗ f1(x)|) ≤ C(|φt| ∗ g(x))p0 .

Hence, since g ∈ Lp0(Rn), the usual Young inequality for convolution givesˆ

Rn

Φp(·),q(·)(x, |φt ∗ f1(x)|) dx ≤ C

ˆ

Rn

(|φt| ∗ g(x))p0dx

≤ C (‖φt‖L1,Rn‖g‖Lp0 ,Rn)p0 ≤ C.

Next we are concerned with f2. Write

f2 = f2χB(0,R) + f2χRn\B(0,R) = f ′2 + f ′′2 .

Since |φt ∗ f2(x)| ≤ C on Rn, we haveˆ

B(0,2R)

Φp(·),q(·)(x, |φt ∗ f2(x)|) dx ≤ C.

Further, noting that φt ∗ f ′2 = 0 outside B(0, 2R), we findˆ

Rn

Φp(·),q(·)(x, |φt ∗ f ′2(x)|) dx ≤ C.

Therefore it suffices to proveˆ

Rn\B(0,2R)

Φp(·),q(·)(x, |φt ∗ f
′′
2 (x)|) dx ≤ C.

Thus, in the rest of the proof, we may assume that 0 ≤ f < 1 on Rn and f = 0
on B(0, R). Note that ˆ

B(0,|x|/2)

φt(x− y)f(y) dy = 0
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for |x| > 2R. Hence, applying Lemma 3.3, we have

|φt ∗ f(x)|p(x) ≤ C(|φt| ∗ h(x) + |x|−A)

for |x| > 2R, where h(y) = Φp(·),q(·)(y, f(y)). Thus the integration yields
ˆ

Rn\B(0,2R)

|φt ∗ f(x)|p(x)dx ≤ C,

which completes the proof. ¤
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Given ε > 0, choose a bounded function g with compact
support such that ‖f − g‖Φp(·),q(·),Rn < ε. As in the proof of Theorem 1.1, using
Theorem 3.4 this time, we have

‖φt ∗ f − f‖Φp(·),q(·),Rn ≤ Cε + ‖φt ∗ g − g‖Φp(·),q(·),Rn .

Obviously, g ∈ Lp0(Rn). Hence by Lemma 3.1, φt ∗ g → g almost everywhere in Rn.
Since there is a compact set S containing all the supports of φt ∗ g,

‖φt ∗ g − g‖Φp(·),q(·),Rn ≤ C ′‖φt ∗ g − g‖Lp++1,Rn

with C ′ depending on |S|, and the Lebesgue convergence theorem implies ‖φt ∗ g −
g‖Lp++1,Rn → 0 as t →∞. Hence

lim sup
t→0

‖φt ∗ f − f‖Φp(·),q(·),Rn ≤ Cε,

which completes the proof. ¤

Remark 3.5. In Theorem 1.2 (and in Theorem A), the condition φ ∈ L(p−)′(Rn)
cannot be weakened to φ ∈ Lq(Rn) for 1 ≤ q < (p−)′. In fact, for given p1 > 1 and
1 ≤ q < (p1)

′, we can find a smooth exponent p(·) on Rn such that p− = p1,
f ∈ Lp(·)(Rn) and φ ∈ Lq(Rn) having compact support for which

‖φ ∗ f‖Lp(·),Rn = ∞.

For this, let a ∈ Rn be a fixed point with |a| > 1 and let p2 satisfy

1

(p1)′
+

1

p2

<
1

q
.

Then choose a smooth exponent p(·) on Rn such that

p(x) = p1 for x ∈ B(0, 1/2), p(x) = p2 for x ∈ B(a, 1/2),

p− = p1 and p(x) = const. outside B(0, |a|+ 1). Take

φj = jn/qχB(a,j−1) and fj = jn/p1χB(0,j−1), j = 2, 3, . . . .

Then

‖φj‖Lq ,Rn = C < ∞ and ‖fj‖Lp(·),Rn = ‖fj‖Lp1 ,B(0,1/2) = C < ∞.

Note that if x ∈ B(a, j−1), then

φj ∗ fj(x) = jn/q+n/p1|B(a, j−1) ∩B(x, j−1)| ≥ Cjn/q+n/p1j−n,
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so that ˆ

Rn

{φj ∗ fj(x)}p(x)dx ≥
ˆ

B(a,j−1)

{φj ∗ fj(x)}p(x)dx

≥ Cjp2(n/q+n/p1−n)j−n

= Cjp2n(1/q−1/(p1)′−1/p2).

Now consider

φ =
∞∑

j=2

j−2φ2j and f =
∞∑

j=2

j−2f2j .

Then φ ∈ Lq(Rn) and f ∈ Lp(·)(Rn). On the other hand,
ˆ

Rn

{φ ∗ f(x)}p(x)dx ≥ j−4

ˆ

Rn

{φ2j ∗ f2j(x)}p(x)dx

≥ Cj−42p2nj(1/q−1/(p1)′−1/p2) →∞
as j →∞. Hence, ‖φ ∗ f‖Lp(·),Rn = ∞.

Remark 3.6. Cruz-Uribe and Fiorenza [1] gave an example showing that it can
occur

lim sup
t→0

‖φt ∗ f‖Lp(·),R = ∞

for f ∈ Lp(·)(R) when φ does not have compact support.
By modifying their example, we can also find p(·) and φ ∈ L(p−)′(R), whose

support is not compact, such that

‖φ ∗ f‖Lp(·),R ≤ C‖f‖Lp(·),R

does not hold, namely there exists fN (N = 1, 2, . . .) such that ‖fN‖Lp(·),R ≤ 1 and

lim
N→∞

‖φ ∗ fN‖Lp(·),R = ∞.

For this purpose, choose p1 > 1, p2 > p1 and a > 1 such that

−p1/p2 − ap1 + 2 > 0,

and let p(·) be a smooth variable exponent on R such that

p(x) = p1 for x ≤ 0, p(x) = p2 for x ≥ 1

and p1 ≤ p(x) ≤ p2 for 0 < x < 1. Set φ =
∑∞

j=1 χj, where χj = χ[−j,−j+j−a). Then
ˆ

R

φ(x)q dx =
∞∑

j=1

ˆ −j+j−a

−j

χj(x)q dx =
∑

j

j−a ≤ C(a) < ∞

for any q > 0. Further set fN = N−1/p2χ[1,N+1]. Note that for 1 − j + j−a < x < 0
and j ≤ N

χj ∗ fN(x) ≥
ˆ x+j

x+j−j−a

χj(x− y)fN(y) dy = N−1/p2j−a,
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so that
ˆ

R

{φ ∗ fN(x)}p(x)dx ≥
ˆ 0

−∞

{ ∞∑
j=1

χj ∗ fN(x)

}p1

dx

≥
N∑

j=2

ˆ 0

1−j−j−a

{χj ∗ fN(x)}p1dx

≥ N−p1/p2

N∑
j=2

j−ap1(j − j−a − 1)

≥ CN−p1/p2−ap1+2 →∞ (N →∞).

4. Young type inequalities

Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains true if φ sat-
isfies the additional condition

(4.1) |φ(x− y)− φ(x)| ≤ |y|
|x|n+1

when |x| > 2|y|.

Noting that this condition implies

sup
x,z∈B(0,2j+1)\B(0,2j)

|φ(x)− φ(z)| ≤ C2−nj,

we see that lim|x|→∞ φ(x) = 0 since φ ∈ L1(Rn) and

(4.2) |φ(x)| ≤ C|x|−n.

if φ satisfies (4.1). In this connection we show

Theorem 4.1. Let p− > 1. Suppose that φ ∈ L1(Rn) ∩ L(p0)′(B(0, R)) and φ
satisfies (4.2) for |x| ≥ R. Then

‖φ ∗ f‖Φp(·),q(·),Rn ≤ C(‖φ‖L1,Rn + ‖φ‖L(p0)′ ,B(0,R))‖f‖Φp(·),q(·),Rn

for all f ∈ Lp(·)(log L)q(·)(Rn).

Remark 4.2. Theorem 4.1 does not imply an inequality

‖φt ∗ f‖Φp(·),q(·),Rn ≤ C‖f‖Φp(·),q(·),Rn

with a constant C independent of t ∈ (0, 1] even if φ satisfies (4.2) for all x, because
{‖φt‖L(p0)′ ,B(0,R)}0<t≤1 is not bounded.

Proof of Theorem 4.1. Let f be a nonnegative measurable function on Rn such
that ‖f‖Φp(·),q(·),Rn ≤ 1. Suppose that φ satisfies (4.2) for |x| ≥ R and ‖φ‖L1,Rn +

‖φ‖L(p0)′ ,B(0,R) ≤ 1. Decompose φ = φ′ + φ′′, where φ′ = φχB(0,R). We first note by
Theorem 1.2 that

‖φ′ ∗ f‖Φp(·),q(·),Rn ≤ C.

Hence it suffices to show that

‖φ′′ ∗ f‖Φp(·),q(·),Rn ≤ C.

For this purpose, write

f = fχ{y∈Rn:f(y)≥1} + fχ{y∈Rn:f(y)<1} = f1 + f2,
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as before. Then we have by (4.2) and (Φ)

|φ′′ ∗ f1(x)| ≤ C

ˆ

Rn\B(x,R)

|x− y|−nf1(y) dy

≤ CR−n

ˆ

Rn

f1(y) dy

≤ CR−n

ˆ

Rn

Φp(·),q(·)(y, f(y)) dy ≤ C.

Noting that |φ′′ ∗ f2| ≤ 1, we obtain
ˆ

B(0,R)

Φp(·),q(·)(x, φ′′ ∗ f(x)) dx ≤ C.

Next, let h(y) = Φp(·),q(·)(y, f(y)). Then

|φ′′| ∗ h(x) ≤ CR−n

ˆ

Rn

h(y) dy ≤ CR−n.

If x ∈ Rn \B(0, R), then we have by (4.2) and Lemma 3.3

|φ′′ ∗ f(x)| ≤
ˆ

B(0,|x|/2)

|φ′′(x− y)|f(y) dy +

ˆ

Rn\B(0,|x|/2)

|φ′′(x− y)|f(y) dy

≤ C

{
|x|−n

ˆ

B(x,3|x|/2)

f(y) dy +
(|φ′′| ∗ h(x)

)1/p(x)
+ |x|−A/p(x)

}

≤ C
{

Mf(x) +
(|φ′′| ∗ h(x)

)1/p(x)
+ |x|−A/p(x)

}

with A > n. Now it follows from Proposition 2.5 that
ˆ

Rn\B(0,R)

Φp(·),q(·)(x, |φ′′ ∗ f(x)|) dx ≤ C

{ˆ

Rn\B(0,R)

Φp(·),q(·)(x,Mf(x)) dx

+

ˆ

Rn

|φ| ∗ h(x) dx +

ˆ

Rn\B(0,R)

|x|−A dx

}

≤ C,

as required. ¤

Theorem 4.3. Let 1− p−/p+ ≤ θ < 1, 1 < p̃ < p−,

1

s
= 1− θ

p̃
and

1

r(x)
=

1− θ

p(x)
.

Take ν = p−/p̃, if t−p−/p̃Φp(·)/p̃,q(·)(x, t) is uniformly almost increasing in t; otherwise
choose 1 ≤ ν < p−/p̃. Suppose that φ ∈ L1(Rn) ∩ Ls(Rn) ∩ Lsν′(B(0, R)) and φ
satisfies

|φ(x)| ≤ C|x|−n/s

for |x| ≥ R. Then

‖φ ∗ f‖Φr(·),q(·),Rn ≤ C(‖φ‖L1,Rn + ‖φ‖Ls,Rn + ‖φ‖Lsν′ ,B(0,R))‖f‖Φp(·),q(·),Rn

for all f ∈ Lp(·)(log L)q(·)(Rn).
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Proof. Suppose that ‖φ‖L1,Rn + ‖φ‖Ls,Rn + ‖φ‖Lsν′ ,B(0,R) ≤ 1 and φ satisfies

|φ(x)| ≤ C|x|−n/s

for |x| ≥ R. Let f be a nonnegative measurable function on Rn such that ‖f‖Φp(·),q(·),Rn

≤ 1, and decompose
f = f1 + f2,

where f1 = fχ{x∈Rn : f(x)≥1}. Let
1

r
=

1− θ

p−
and

1

s1

= 1 +
1

r
− 1

p+

.

By our assumption, s1 ≥ 1. It follows from Young’s inequality for convolution that

‖φ ∗ f2‖Lr,Rn ≤ ‖φ‖Ls1 ,Rn‖f2‖Lp1 ,Rn .

Here note that 1 ≤ s1 < s, so that ‖φ‖
Ls1 ,Rn ≤ ‖φ‖L1,Rn + ‖φ‖Ls,Rn ≤ 1. Since

0 ≤ f2 < 1, ‖f2‖Lp+ ,Rn ≤ C‖f‖Φp(·),q(·),Rn ≤ C. Thus, noting that |φ ∗ f2| ≤ 1 and

1

r(x)
− 1

r
=

1− θ

p(x)
− 1− θ

p−
≤ 0,

we see that

(4.3) ‖φ ∗ f2‖Φr(·),q(·),Rn ≤ C‖φ ∗ f2‖Lr,Rn ≤ C.

On the other hand, we have by Hölder’s inequality

|φ ∗ f1(x)| ≤
(ˆ

Rn

|φ(x− y)|sf1(y)p̃ dy

)(1−θ)/p̃ (ˆ

Rn

|φ(x− y)|s dy

)1−1/p̃

·
(ˆ

Rn

|f1(y)|p̃ dy

)θ/p̃

≤ C
(
|φ|s ∗ f p̃

1 (x)
)(1−θ)/p̃

.

(4.4)

Noting that |φ|s ∈ L1(Rn) ∩ Lν′(B(0, R)), |φ|s satisfies (4.2) for |x| ≥ R and
‖f p̃

1 ‖Φp(·)/p̃,q(·),Rn ≤ C, we find by Theorem 4.1

‖φs ∗ f p̃
1 ‖Φp(·)/p̃,q(·),Rn ≤ C.

Since (4.4) implies

Φr(·),q(·)(x, φ ∗ f1(x)) ≤ CΦp(·)/p̃,q(·)(x, |φ|s ∗ fp1

1 (x)),

it follows that
‖φ ∗ f1‖Φr(·),q(·),Rn ≤ C.

Thus, together with (4.3), we obtain

‖φ ∗ f‖Φr(·),q(·),Rn ≤ C,

as required. ¤

Remark 4.4. Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains
true if φ satisfies the additional condition (4.1).

If p− > 1, this conjecture was shown to be true by Cruz-Uribe, Fiorenza, Martell
and Pérez in [3], using an extrapolation theorem ([3, Theorem 1.3 or Corollary 1.11]).
Using our Proposition 2.5, we can prove the following extension of [3, Theorem 1.3]:
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Proposition 4.5. Let F be a family of ordered pairs (f, g) of nonnegative mea-
surable functions on Rn. Suppose that for some 0 < p0 < p−,ˆ

Rn

f(x)p0w(x) dx ≤ C0

ˆ

Rn

g(x)p0w(x) dx

for all (f, g) ∈ F and for all A1-weights w, where C0 depends only on p0 and the
A1-constant of w. Then

‖f‖Φp(·),q(·),Rn ≤ C‖g‖Φp(·),q(·),Rn

for all (f, g) ∈ F such that g ∈ Lp(·)(log L)q(·)(Rn).

Then, as in [3, p. 249], we can prove:

Theorem 4.6. Assume that p− > 1. If φ is an integrable function on Rn

satisfying (4.1), then

‖φt ∗ f‖Φp(·),q(·),Rn ≤ C‖f‖Φp(·),q(·),Rn

for all t > 0 and f ∈ Lp(·)(log L)q(·)(Rn). If, in addition,
´

φ(x) dx = 1, then

lim
t→0

‖φt ∗ f − f‖Φp(·),q(·),Rn = 0.

5. Appendix

For p ≥ 1, q ∈ R and c ≥ e, we consider the function

Φ(t) = Φ(p, q, c; t) = tp
(
log(c + t)

)q
, t ∈ [0,∞).

In this appendix, we give a proof of the following elementary result:

Theorem 5.1. Let X be a non-empty set and let p(·) and q(·) be real valued
functions on X such that 1 ≤ p(x) ≤ p0 < ∞ for all x ∈ X. Then, the following (1)
and (2) are equivalent to each other:

(1) There exists c0 ≥ e such that Φ(p(x), q(x), c0; · ) is convex on [0,∞) for every
x ∈ X;

(2) There exists K > 0 such that K(p(x)− 1) + q(x) ≥ 0 for all x ∈ X.

This theorem may be well known; however, the authors fail to find any literature
containing this result.

This theorem is a corollary to the following

Proposition 5.2. (1) If

(1 + log c)(p− 1) + q ≥ 0,

then Φ is convex on [0,∞).
(2) Given p0 > 1 and c ≥ e, there exists K = K(p0, c) > 0 such that Φ is not

convex on [0,∞) whenever 1 ≤ p ≤ p0 and q < −K(p− 1).

Proof. By elementary calculation we have

Φ′′(t) = tp−2(c + t)−2
(
log(c + t)

)q−2
G(t)

with

G(t) = p(p− 1)(c + t)2
(
log(c + t)

)2
+ 2pqt(c + t) log(c + t)− qt2 log(c + t) + q(q− 1)t2

for t > 0. Φ(t) is convex on [0,∞) if and only if G(t) ≥ 0 for all t ∈ (0,∞).
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(1) If q ≥ 0, then

G(t) ≥ qt
(
2p(c + t)− t

)
log(c + t)− qt2 ≥ qt

(
2pc + 2(p− 1)t

) ≥ 0

for all t ∈ (0,∞), so that Φ is convex on [0,∞).
If −(1 + log c)(p− 1) ≤ q < 0, then

G(t) = p

{√
p− 1(c + t) log(c + t) +

q√
p− 1

t

}2

− pq2

p− 1
t2 − qt2 log(c + t) + q(q − 1)t2

≥ (−q)t2
(

pq

p− 1
+ log c− (q − 1)

)

= (−q)t2
(

q

p− 1
+ log c + 1

)
≥ 0

for all t ∈ (0,∞), so that Φ is convex on [0,∞).

(2) If p = 1 and q < 0, then

G(t) = qt
(
(t + 2c) log(c + t) + (q − 1)t

) → −∞
as t →∞. Hence Φ is not convex on [0,∞).

Next, let 1 < p ≤ p0 and q = −k(p− 1) with k > 0. Then

G(t)

p− 1
= p

(
(c + t) log(c + t)− kt

)2
+ k

(
log(c + t)− k + 1

)
t2

≤ p0

(
(c + t) log(c + t)− kt

)2
+ k

(
log(c + t)− k + 1

)
t2.

Let λ = 1− 1/(2p0). Then 0 < λ < 1. If k > (log c)/λ, there is (unique) tk > 0 such
that log(c + tk) = λk. Note that tk/k →∞ as k →∞. We have

G(tk)

p− 1
≤ p0

(
(c + tk)λk − ktk

)2
+ k(λk − k + 1)t2k

= kt2k

{(
p0(1− λ)− 1

)
(1− λ)k + 1− 2p0cλ(1− λ)

k

tk
+ p0c

2λ2 k

t2k

}
.

Since p0(1 − λ) − 1 = −1/2, it follows that there is K = K(c, p0) > (log c)/λ
such that G(tk) < 0 whenever k ≥ K. Hence Φ is not convex if 1 < p ≤ p0 and
q ≤ −K(p− 1). ¤
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