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Abstract. Our aim in this paper is to deal with approximate identities in generalized Lebesgue
spaces LP()(log L)) (R™). As a related topic, we also study Young type inequalities for convolution
with respect to norms in such spaces.

1. Introduction

Following Cruz-Uribe and Fiorenza |2|, we consider two variable exponents p(-):
R™ — [1,00) and ¢(-): R* — R, which are continuous functions. Letting ®, 4)(z,?)
= 7@ (log(co + 1))1™), we define the space LP()(log L)?")(Q) of all measurable func-
tions f on an open set () such that

/ Du0.40) (y, @) dy < oo
Q

for some A > 0; here we assume
(®) Ppyg (2, -) is convex on [0, 00) for every fixed x € R".

Note that (®) holds for some ¢ > e if and only if there is a positive constant K such
that

(1.1) K(p(z) —1)+¢q(x) >0 foralzeR"

(see Appendix). Further, we see from (®) that ¢~ 1®,. ,)(z,t) is nondecreasing in ¢.
We define the norm

i fly
1/ ll2,400.0 = inf {A > 0: /Qq’po,q(-) (.% )l (A ) dy <1

for f € LPO)(log L)?)(Q). Note that LP¢)(log L)?0)(Q) is a Musielak—Orlicz space [9].
Such spaces have been studied in [2, 8, 10]. In case ¢(-) = 0 on R™, LP")(log L)1) ()
is denoted by LPU)(Q) ([7]).

We assume throughout the article that our variable exponents p(-) and ¢(-) are
continuous functions on R" satisfying:

(pl) 1 < p_ :=infyern p(x) < SUPLern P(T) = p1 < O0;
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(02) [p(x) — py)] < ¢

~ log(e +1/|z —yl)

— < h > 2;

(p3) |p(z) — p(y)| < logle 1 o) Vhemever lyl = [=]/2;
(ql) —o0 < ¢— :=inf,ern ¢(x) < SUp,ern ¢(T) =: g4 < 00;

(42) la(z) —q(y)| < oa(e Tloa(e 1 1/1x— D)
for a positive constant C'.

We choose py > 1 as follows: we take py = p_ if t7P= Py 4 (2, t) is uniformly al-
most increasing in ¢; more precisely, if there exists C' > 0 such that s~ @, 4y (2, 5) <
Ct™P=®py gy (2, 1) whenever 0 < s < ¢ and v € R". Otherwise we choose 1 < py <
p—. Then note that t77°®, ,)(x,t) is uniformly almost increasing in ¢ in any case.

Let ¢ be an integrable function on R"™. For each ¢ > 0, define the function ¢; by
¢e(x) = t7"¢p(x/t). Note that by a change of variables, ||¢¢||z1 e = [|@||L1 rn. We
say that the family {¢,} is an approximate identity if [, ¢(x)dr = 1. Define the
radial majorant of ¢ to be the function

d(z) = sup |p(y)|-

ly| =]

whenever x € R™ and y € R™;

whenever x € R" and y € R"

If ¢ is integrable, we say that the family {¢,} is of potential-type.
Cruz-Uribe and Fiorenza [1]| proved the following result:

Theorem A. Let {¢;} be an approximate identity. Suppose that either
(1) {¢:} is of potential-type, or
(2) ¢ € L»-)(R™) and has compact support.

Then

sup ||¢t * fHLP('),R" < C||f||Lp(~>,Rn
0<t<1

and
tliffo |pe * f — fHLP('),R" =0
for all f € LPO)(R™).
Our aim in this note is to extend their result to the space LP()(log L)?")(Q) of
two variable exponents.
Theorem 1.1. Let {¢,} be a potential-type approximate identity. If f € LP*)(log
L)1O(R™), then {¢, * f} converges to f in LP")(log L)1) (R"):

11_{% H¢t * f - f”‘bP(%q(A),R” =0.

Theorem 1.2. Let {¢,;} be an approximate identity. Suppose that ¢ € L®0)'(R")
and has compact support. If f € LP®)(log L)40)(R™), then {¢, * f} converges to f in
11_1;% H¢t * f - fHCI)p(A%q(A),R" = 0.

We show by an example that the conditions on ¢ are necessary; see Remarks 3.5
and 3.6 below.

Finally, in Section 4, we give some Young type inequalities for convolution with
respect to the norms in LP¢)(log L)1) (R™).
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2. The case of potential-type

Throughout this paper, let C' denote various positive constants independent of
the variables in question.
Let us begin with the following result due to Stein [11].

Lemma 2.1. Let 1 < p < oo and {¢;} be a potential-type approximate identity.
Then for every f € LP(R"), {¢; * f} converges to f in LP(R").

We denote by B(z,r) the open ball centered at © € R"™ and with radius r > 0.
For a measurable set E, we denote by |E| the Lebesgue measure of FE.
The following is due to Lemma 2.6 in [§].

Lemma 2.2. Let f be a nonnegative measurable function on R" with ||f{|s,, ., ®rn
< 1 such that f(x) > 1 or f(z) =0 for each x € R". Set

1
J=Jx,rf)=——— f(y)dy
|B(,T,7”>| B(z,r)
and
1
L=Lzrf)=—— D000 (W, f(y)) dy.
|B(.I‘,T>| B(z,r) POt

Then

J < CLVP®) (log(co + L))~1@)/p@)
where C' > 0 does not depend on x,r, f.
Further we need the following result.

Lemma 2.3. Let f be a nonnegative measurable function on R" such that (1 +
ly )"t < f(y) <1 or f(y) =0 for each y € R™. Set

1

J=1J -
D) =BG S

f(y)dy
and
1

L =1 - -
D =BG S

Dpya) (s f(y)) dy.

Then
J < C{LYP® 4 (14 |z|)™ '},
where C' > 0 does not depend on x,r, f.
Proof. We have by Jensen’s inequality

1 @ 1/p(x)
J< (— [ s dy)
|B(l’, T)‘ B(z,r)
( 1 / - 1/p(x)
<\ o0 [y dy)
|B(z,7)] B(z,r)NB(0,|z|/2)

( . o )
+ | = / f(y)”dy>
|B(@,7)| JB@m\B(,)2l/2)

=Ji+ Jo.
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We see from (p3) that

1 W 1/p(z)
e (— / Py dy) |
|B(x,7)| B(x,r)NB(0,]x|/2)

Similarly, setting Fy = {y € R™: f(y) > (1 + |z|)™" "'}, we see from (p3) that

1 1/p(x)
Jy < C <B—/ f(y)p(y)dy)
|B(x,7)| {B(z,r)\B(0,|z|/2)}NE>

( 1 @)t ) 1/p(z)
+ —/ (14 |z|)~P=tn dy)
|B(x,7)| {B(z,")\B(0,|z|/2)}\ E2

o (e R

Since f(y) <1, f(y)P¥) < CPp.) g1 (y, f(y)). Hence, we have the required estimate.
U

By using Lemmas 2.2 and 2.3, we show the following theorem.

Theorem 2.4. If {¢,} is of potential-type, then

||¢t * f”q’p(.),q(.),R" < C“ngLl,R"
for all t > 0 and f € LP")(log L)7")(R™).

Proof. Suppose |||z g = 1 and take a nonnegative measurable function f on
R™ such that || f]|¢ re < 1. Write

f“‘bp(.),q(.),R”

p(-),q(-)’

= Xyerr:p@)=13 + X yerm(+y) 1< f@)<1} + X {yeRmp ) <(0+y) -1}
=fi+ fa+fs,

where y g denotes the characteristic function of a measurable set £ C R™.
Since ¢, is a radial function, we write ¢ (r) for ¢,(z) when |z| = r. First note
that

oo F@)I < [ Gl =)o) dy

I (ﬁ / ) dy) Bz, )] d(~u(r),

so that Jensen’s inequality and Lemma 2.2 yield
Dp().a0) (2, |01 % f1(2)])
o0 1 R
< [ (x oy [ Ay B a6

T T)| B(z,r)

<c[” ( - / R >>dy) B, )] d(~u(r)

= C(@ * g)(z),
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where g(y) = Pp(yq¢) (¥, f(y)). The usual Young inequality for convolution gives
/ Qpyq) (@, |0+ fi(2)])dz < C [ (¢ % g) () da
n Rn
< Cllgull 2 me llgll 1 e < C.
Similarly, noting that Wﬂlcr)l i) Blar) fo(y)dy < 1 and applying Lemma 2.3, we

derive the same result for fs.
Finally, noting that |¢; * f3| < C||¢¢||r r» < C, we obtain

| @aaofalons p@hds <€ [ Joe o] ds
R" R"
< COll¢dllpr mell f3llorme < C,

as required. O
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1.  Given & > 0, we find a bounded function g in LP()(log L)*)
(R") with compact support such that [|f — glls,. ., r* < €. By Theorem 2.4 we
have

[§e 5 f = fllo, o) B
< g (f = 9oy oo re + 10 9 = gllo, oo rr + 1L = glloy 0 me
< Ce+||or* g — gllo, R
Since [¢¢ * g < ||gl|Lo r,
160 %9 = glloy o re < C'llde kg — gllirn — 0
by Lemma 2.1. (Here C’ depends on ||g|| L~ r».) Hence
lintnjélp @ * [ = flla, g0 mre < C,

which completes the proof. 0

As another application of Lemmas 2.2 and 2.3, we can prove the following result,
which is an extension of [4, Theorem 1.5] and [8, Theorem 2.7| (see also [6]).
Let M f be the Hardy—Littlewood maximal function of f.

Proposition 2.5. Suppose p_ > 1. Then the operator M is bounded from
L) (log L)1) (R™) to LPO)(log L)1) (R™).
Proof. Let f be a nonnegative measurable function on R" such that || f|s, ., ., R»
< 1 and write f = f; + fo + f3 as in the proof of Theorem 2.4. Take 1 < p; < p_
and apply Lemmas 2.2 and 2.3 with p(-) and ¢(-) replaced by p(:)/p; and ¢(-)/p1,
respectively. Then
Dp().q() (2, M f1(x)) < ClM gy ()
and
Qp g0 (T, M fo()) < C{[Mg ()] + (1 + |2) "7},
where g1(y) = ®p()/pra)/m (U, f(y)). As to fs, we have
@p(.),q(A)(l’, Mfg(.T)) S C’[Mfg(x)]m
Then the boundedness of the maximal operator in LP'(R™) proves the proposition.
O
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Remark 2.6. If p_ > 1, then the function ®, ) is a proper N-function and
our Proposition 2.5 implies that this function is of class &7 in the sense of Diening [5]
(see [5, Lemma 3.2]). It would be an interesting problem to see whether “class .7 is
also a sufficient condition or not for the boundedness of M on LPU)(log L)?C)(R™).

3. The case of compact support

We know the following result due to Zo [12]; see also [1, Theorem 2.2].

Lemma 3.1. Let 1 <p<oo, 1/p+1/p' =1 and {¢,;} be an approximate iden-
tity. Suppose that ¢ € L (R") has compact support. Then for every f € LP(R"),
{¢r * f} converges to f pointwise almost everywhere.

Set

p(x) =p(r)/po and q(z) = q(x)/po;

recall that py € [1,p_] is chosen such that t77°®,) ,y(x,t) is uniformly almost in-
creasing in t.
For a proof of Theorem 1.2, the following is a key lemma.

Lemma 3.2. Let f be a nonnegative measurable function on R" with ||f{|s,, ., r
< 1 such that f(z) > 1 or f(x) =0 for each x € R"™ and let ¢ have compact support
in B(0, R) with ||| ey gn < 1. Set

F=F(z,t f) =g * f(z)]
and
G=G(r,t, f)= / |0e(x = y)[Pp,a0) (s f(y)) dy.
RTL
Then
F < CGY/P) (log(co + G))—E(m)/ﬁ(z)

for all 0 <t < 1, where C' > 0 depends on R.

Proof. Let f be a nonnegative measurable function on R" with || f{ls,., . re <1
such that f(z) > 1 or f(z) = 0 for each 2 € R™ and let ¢ have compact support in
B(0, R) with [|¢||;wey ge < 1. By Holder’s inequality, we have

1/po
G < 19l oy mon (/R Ppya() (¥, f(Y)) dy) < i,

First consider the case when G > 1. Since G < t~"/?  for y € B(x,tR) we have by
(p2)
G PW) < GP@)+C/log(e+(tR)™Y) < Cy—p(=)
and by (q2)
(log(co + G))1¥) < C(log(co + G))7@).
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Hence it follows from the choice of pg that

F < GYP® (log(cy + G)) T/ / 6 — )| dy

£() py)—1
C/Rn |pe(x — y)| f(v) {Gl/ﬁ(m) (log(co i G))~1()/p() }

. { log(co + f(y)) }"(y) J
log(co + GL/P@ (log(co + G))—1@)/5()) Y

< CGYP@) (log(co + G))~ (x)/p(z)

(cf. the proof of [8, Lemma 2.6]).
In the case G < 1, noting from the choice of py that f(y) < CPs0yq50) (¥, f(y))
for y € R", we find

F<OG< CcGL/r) < CG /@) (log(co + G)) x)/p(x)
Now the result follows. ]

Lemma 3.3. Suppose that ||¢||;1rn < 1. Let f be a nonnegative measurable
function on R"™ with || f[le,., &> < 1. Set

~ It )= [ e = )7 ) dy
{yeRm: y|>[x|/2}
and
H=H(zt f)= /R [6e(2 = )| Ppeyae (, f(y) dy
If A> 0 and H < H,, then
I < C(HYP® 4 |g|~A/P@))
for |x] > 1 and 0 < t < 1, where C' > 0 depends on A and Hy.

Proof. Suppose that ||¢||,1 r» < 1. Let f be a nonnegative measurable function
on R" with || flls,., & < 1.
Let |x| > 1. In the case Hy > H > |z|~* with A > 0, we have by (p3)

HPW < og—p@)-C/legletlzl) < o f—p@)
for |y| > |x|/2. Hence we find by (®)

I< C{HVW) +/ |pe(z — )| f(y)
{yeRm: |y|>|x|/2}

{7 }“y“ { dosen 0 }q(’”d}
H/r(@) log(co + H/@) Y

< CH/r@)

Next note from (p3) that

|x|p(y) < |$|p(w)+0/log(€+|$|) < C|x|p(x)
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for |y| > |x|/2. Hence, when H < |z|~*, we obtain by (®)

1< C’{|x|‘A/p(“) +/ [9e(z —y)|f(y)
{yeR™:ly|>|z]/2)

{ f(y) }p(y)l{ log(co+f(y)) }Q(y)d }
|2 [~ A/P@) log(co + |z|~A/7@) y

< Cla] /7@,

which completes the proof. 0

Theorem 3.4. Suppose that ¢ € L®)(R"™) has compact support in B(0, R).
Then

H¢t * f”¢p(~)7(1(~)aRn < C||¢|’L(p0)l7RnHf||¢p(~)7q(~)7Rn
for all 0 <t <1 and f € LP")(log L)?")(R"), where C' > 0 depends on R.

Proof. Let f be a nonnegative measurable function on R" such that || f|s, . ., Rn
<1 and let ¢ have compact support in B(0, R) with ||¢| ;o gn < 1. Write

/= fX{yER":f(y)Zl} + fX{yER":f(y)<1} = fi+ fa
We have by Lemma 3.2,

(@ fi(2)] < O(e]  g(2))"/" D (log(co + |¢] * g(x))) 1P,
where g(y) = Pp()a0) (Y, () = Pp)a0) (Y, f(y)) /™, so that
(3.1) Dy().q() (@, |01 % fi(2)]) < C|de] * g(x))™.
Hence, since g € LP°(R"), the usual Young inequality for convolution gives
| Bl n@hde < ¢ [ (ol gymas
n RTL
< C (el rellglleo me)™ < C.

Next we are concerned with fy. Write

fo= faxBo.r) + foxmmBoRr) = f2+ 3.
Since |¢; * fo(z)| < C on R™, we have

/ Dpyq) (T, [P * fo)]) do < C.
B(0,2R)
Further, noting that ¢, x f5 = 0 outside B(0,2R), we find
/ D) q() (@, |Pr % fo(x)])dx < C.
Therefore it suffices to prove
/ (I)P(')7(I(')(x7 | Py * f; (x)])dx < C.
R"\B(0,2R)

Thus, in the rest of the proof, we may assume that 0 < f <1 on R" and f =0
on B(0, R). Note that

Q/ oule — o) f(y)dy = 0
B(0,|z|/2)
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for |x| > 2R. Hence, applying Lemma 3.3, we have
(@05 (@) < O (el  h(z) + 2] )
for |x| > 2R, where h(y) = ®p)q¢) (¥, f(y)). Thus the integration yields

[ e s <,
R"\B(0,2R)

which completes the proof. 0J
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Given € > 0, choose a bounded function g with compact
support such that || f — g||¢p(')’q(')7Rn < €. As in the proof of Theorem 1.1, using
Theorem 3.4 this time, we have

||¢t * f - f”@p(.)’q(.),R" < Ce+ ||¢t *g— g”‘bp(.)’q(.),R"'
Obviously, g € LP°(R"). Hence by Lemma 3.1, ¢, * ¢ — g almost everywhere in R".
Since there is a compact set S containing all the supports of ¢; * g,
e % g — 9||<I>p<.>,q<.>,Rn <y * g — 9||LP++1,Rn
with C” depending on |S|, and the Lebesgue convergence theorem implies ||¢; * g —
gllpp++1 gn — 0 as t — co. Hence
lim sup f[gr # f = fllo, o0, re < O,

which completes the proof. 0]

Remark 3.5. In Theorem 1.2 (and in Theorem A), the condition ¢ € L*-)"(R™)
cannot be weakened to ¢ € LY(R"™) for 1 < ¢ < (p_)". In fact, for given p; > 1 and
1 < ¢ < (p1), we can find a smooth exponent p(-) on R™ such that p_ = py,
f e LPO(R™) and ¢ € LY(R™) having compact support for which

| * fHLP(-),Rn = 0.
For this, let a € R™ be a fixed point with |a| > 1 and let py satisfy
1 1 1

(p1) p2 ¢

Then choose a smooth exponent p(-) on R™ such that
p(x) =py for z € B(0,1/2), p(z) = py for x € B(a,1/2),
p— = py and p(x) = const. outside B(0, |a| + 1). Take

¢; = 1Y B@-1y and fj = "oy, J=2,3,....
Then
¢jllLapn = C < oo and || fj|l oo me = [IfillLr1,B0,1/2) = C < o0
Note that if 2 € B(a,j~'), then
oj * fi(z) = jM P B(a, i) N Blx, j71)| > Cgratregr



414 Fumi-Yuki Maeda, Yoshihiro Mizuta and Takao Ohno

so that

{65 % ()P Dd > / (6 % f;(2) 1D

B(a,j~1)
> (P (n/q+n/p1 *n)j -n

R

— ijn(l/q—l/(m)’—l/pz)

Now consider
6= ¢y and f=> jfu.
j=2 j=2
Then ¢ € LY(R™) and f € LP0)(R™). On the other hand,

{ﬁb * f(ZE)}P(w)d:p > j—4 {¢2j % fo (x)}p(z)dx
R R
> Cj—42p2nj(1/q—1/(p1)’—1/p2) O s

as j — oo. Hence, ||¢ * fl|1o() gn = 00.

Remark 3.6. Cruz-Uribe and Fiorenza [1| gave an example showing that it can
occur

lim sup || ¢ * f”LP('),R =
t—0

for f € LP)(R) when ¢ does not have compact support.
By modifying their example, we can also find p(-) and ¢ € L®-)(R), whose
support is not compact, such that

16+ fllsorm < Cllflloe v
does not hold, namely there exists fx (N = 1,2,...) such that || fx|[;,cr < 1 and

dim | oo r = 00
For this purpose, choose p; > 1, p, > p; and a > 1 such that
—p1/pa —apy +2 >0,
and let p(-) be a smooth variable exponent on R such that
p(z) =p; for z <0, p(x)=pyforx>1

and py < p(z) <py for 0 < < 1. Set ¢ = > 77, xj, where x; = Xx|_j _j1j-a). Then

a

[ oty = f} / W) =Y < Cla) < o

for any ¢ > 0. Further set fy = Nfl/mX[LNH]. Note that for 1 — 7+ <2 <0
and j < N

z+j
Xj * fn(z) 2 / Xj(x —y) fnly) dy = N~1/P2j=e

aj—j
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oty [ { > fN(:r)}pl o

N 0

23 [ iy

7j=2 1—j—j—¢

so that

N
>Ny (=g =)
j=2
> ONP/Pment2 o5 (N — 00).

4. Young type inequalities

Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains true if ¢ sat-
isfies the additional condition

(4.1) 6 —y) — o) < U when [o] > 2y,

|x|n+1
Noting that this condition implies
sup |6(z) — ¢(2)] < C277,

,2€B(0,2711)\ B(0,27)

we see that limj,_.. ¢(x) = 0 since ¢ € L'(R") and
(42) 6(2)] < Claf ",
if ¢ satisfies (4.1). In this connection we show

Theorem 4.1. Let p_ > 1. Suppose that ¢ € L'(R™) N L®)(B(0, R)) and ¢
satisfies (4.2) for |x| > R. Then

165 flle, o0 me < CUONL R + 0l Loy B0,R)) 1 @) 000 R

for all f € LPO)(log L)7)(R™).

Remark 4.2. Theorem 4.1 does not imply an inequality

||¢t * f||‘1>p(.),q(.),R" < O”f”‘bp(.),q(.),R"
with a constant C' independent of ¢ € (0, 1] even if ¢ satisfies (4.2) for all x, because
{ll@¢ll Loy B(o.r)bo<t<1 is not bounded.

Proof of Theorem 4.1. Let f be a nonnegative measurable function on R" such
that [|fls,., ., r" < 1. Suppose that ¢ satisfies (4.2) for [z| > R and [|¢]|z1 mn +
HqﬁHL(,,O)/’B(&R) < 1. Decompose ¢ = ¢' + ¢", where ¢ = dxp(o,r). We first note by
Theorem 1.2 that

/
H(b * f”@p(A),q(A),R” S C
Hence it suffices to show that

167 % Fllo, o mr < C.

For this purpose, write

[ = 'Xerr:sw)>1y + [X{yernp)<1y = f1 + fo,



416 Fumi-Yuki Maeda, Yoshihiro Mizuta and Takao Ohno

as before. Then we have by (4.2) and (P)

0" % fi(x)] < C lz —y|™" fi(y) dy

R™\B(z,R)

<CR™ fi(y) dy
Rn

<CR™ [ B0 ) dy < C

Noting that |¢” * fo| < 1, we obtain
/ ®p(.)7q(.)($, qb” f( )) dx < C.
B(0,R)
Next, let h(y) = ®p(yq¢)(y, f(y)). Then
|¢"| % h(z) < CR_”/ h(y)dy < CR™.

If z € R"\ B(0, R), then we have by (4.2) and Lemma 3.3

\W*ﬂ@hg/ W%x—wuwww+/’ 16" (x — )| f(y) dy

B(0,]z]/2) R™M\B(0,]x[/2)

< O{|x|‘”/ F)dy + (16"] % h(z)) " + |x|—A/p<w>}
B(z,3|x|/2)
< C{MF(@) + (6] b)) 7+ Jaf A}

with A > n. Now it follows from Proposition 2.5 that

[ watle @ <o [ a0 de
R™\B(0,R) R\ B(0,R)

+/ |¢|*h(x)dac+/ |x\—Adx}
Rn R"\B(0,R)

<C,
as required. O

Theorem 4.3. Let 1 —p_/p, <0<1,1<p<p_,

1 1 1—-
_:1_Q and —— = 0

s P r(z)  px)’

Take v = p_/p, if t 7=/, /() (@, t) is uniformly almost increasing in t; otherwise
choose 1 < v < p_/p. Suppose that ¢ € L'(R™) N L*(R™) N L**'(B(0, R)) and ¢
satisfies

|6(x)] < Clae| ™"

for |x| > R. Then
19 flle, ) o0prr < Ol 7 + (|0
for all f € LPV)(log L)?)(R™).

Ls Rn + ||¢||st/,B(O,R))Hf”‘bp(»,q(-wR"
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Proof. Suppose that ||¢]|1 re + [|¢]

rsre + ||
¢(z)| < Clz|™*

for x| > R. Let f be a nonnegative measurable function on R™ such that || ||
< 1, and decompose

L' po,r) < 1 and ¢ satisfies

p(),a()R"

f = fl + f27
where fi = fX{zerr: fa)>13- Let
1 1-46 1 1 1
—-=—— and —=14-——.
r Do S1 roopy

By our assumption, s; > 1. It follows from Young’s inequality for convolution that

¢ * follor e < ||DllLsr me | follLor R

Here note that 1 < s; < s, so that [[¢[|,., .. < [[#llzire + [|4llzsre < 1. Since
0 < fo <1, | foller+ rn < C[flla,, ., mRn < C. Thus, noting that ¢ * fo| <1 and

1 1 1—-6 1-06
- . = - S 07
r(z) r  plx)  p-
we see that
(4.3) 105 follo, ) o rr < Cllo* follrre < C.

On the other hand, we have by Hoélder’s inequality

[&* fi(2)] < (/Rn [6(z — y)° f(y)? dy) o (/n 6z — y)|sdy>1l/ﬁ

44) ([ 1nwra) "

<o (jof = @)

Noting that |¢]* € L'(R") N LY (B(0, R)), |¢|° satisfies (4.2) for |z| > R and
Hf1p||<1>p(,)/m(,),m < C, we find by Theorem 4.1

||¢S * flﬁH‘l’p(‘)/z;,q(‘),R" <C.
Since (4.4) implies
Dr).a0) (2,0 fr(2)) < COpy g0y (2, [0+ [T (7)),
it follows that
||¢ * f1||¢>r(,)7q(,),R" < C.
Thus, together with (4.3), we obtain
H¢ * fH‘I’r(%q(A),R" S C?

as required. 0

Remark 4.4. Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains
true if ¢ satisfies the additional condition (4.1).

If p_ > 1, this conjecture was shown to be true by Cruz-Uribe, Fiorenza, Martell
and Pérez in [3], using an extrapolation theorem (|3, Theorem 1.3 or Corollary 1.11]).
Using our Proposition 2.5, we can prove the following extension of [3, Theorem 1.3]:
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Proposition 4.5. Let .# be a family of ordered pairs (f, g) of nonnegative mea-
surable functions on R"™. Suppose that for some 0 < py < p~,

- f(x)PPw(x)de < C’O/ g(x)Pw(z) dz

n

for all (f,g) € % and for all A;-weights w, where Cy depends only on py and the
A;-constant of w. Then

1/, 0087 < Cliglle, ) o e
for all (f,g) € % such that g € LP")(log L)?")(R™).
Then, as in [3, p. 249|, we can prove:

Theorem 4.6. Assume that p_ > 1. If ¢ is an integrable function on R"
satisfying (4.1), then

100 % Fllaye oy mr < Cllflloye 0 me
for all t > 0 and f € LV (log L)?(R™). If, in addition, [ ¢(z)dx =1, then
15% H¢t * f - fH‘I’p(.)’q(.),R" = 0.

5. Appendix
For p > 1, g € R and ¢ > e, we consider the function
D(t) = ®(p,q,c;t) = t*(log(c + 1)), t€0,00).
In this appendix, we give a proof of the following elementary result:

Theorem 5.1. Let X be a non-empty set and let p(-) and q(-) be real valued
functions on X such that 1 < p(x) < py < oo for all x € X. Then, the following (1)
and (2) are equivalent to each other:

(1) There exists ¢y > e such that ®(p(x), q(x), co; - ) is convex on [0, o) for every
reX;
(2) There exists K > 0 such that K(p(z) — 1)+ q(x) >0 for all x € X.

This theorem may be well known; however, the authors fail to find any literature
containing this result.
This theorem is a corollary to the following

Proposition 5.2. (1) If
(1+loge)(p—1)+4¢ =0,

then ® is convex on [0, c0).
(2) Given py > 1 and ¢ > e, there exists K = K(pg,c) > 0 such that ® is not
convex on [0,00) whenever 1 <p < py and ¢ < —K(p—1).

Proof. By elementary calculation we have
o"(t) = (¢ + )2 (log(c + 1)) T°G(t)

with
G(t) = p(p—1)(c+1)* (log(c+1))* + 2pgt(c+t) log(

¢ qt*log(c+1) +q(g — 1)’
for t > 0. ®(¢) is convex on [0, 00) if and only if G(t)

+1) -
>0 for all t € (0, 00).
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(1) If ¢ > 0, then
G(t) > qt(2p(c+t) — t) log(c + t) — qt* > qt(2pc +2(p — 1)t) > 0

for all t € (0,00), so that ® is convex on [0, 00).
If —(1+4+1logc)(p—1) <q <0, then

G(t) :p{\/p— L(c+t)log(c+1t)+ \/]%t}

pg*
— —1t2 — qt®log(c+t) + q(q — 1)t?

> (=) (2L Lloge—(g—1
> (—q)t (p_1+0gc (¢—1)
= (—q)t2 (p%l + lOgC+ 1> >0
for all ¢ € (0, 00), so that ® is convex on [0, 00).
(2) If p=1 and ¢ < 0, then
G(t) = qt((t +2c)log(c+t) + (¢ — 1)t) — —o0

as t — oco. Hence ® is not convex on [0, 00).
Next, let 1 < p <po and ¢ = —k(p — 1) with £ > 0. Then
G(t
]% = p((c + t)log(c +t) — kt)* + k(log(c + t) — k + 1)#?
< po((c +t)log(c +t) — kt)* + k(log(c + t) — k + 1)¢2.

Let A=1—1/(2pg). Then 0 < A < 1. If k > (logc)/A, there is (unique) ¢ > 0 such
that log(c + t) = MAk. Note that ¢;,/k — oo as k — oo. We have

t
;}(_’“1) < po((c+ te) Mk — ktk)Q +Ek(\k —k+ 1)t

k k
= ktz{ (po(1 = A) —1)(1 = Nk + 1 — 2poeA(1 — A)t— +p002)\2t—2}.
k k
Since po(1 — A\) — 1 = —1/2, it follows that there is K = K(c¢,po) > (loge)/A
such that G(t;) < 0 whenever k& > K. Hence ® is not convex if 1 < p < py and
¢ < —K(p-1). O

Acknowledgement. The authors are grateful to the referee for his/her valuable
comments.
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