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Abstract. The various dimensions of the intersections of the graph-directed sets { K;}!_, ¢ R"
with (n — m)-planes V + a; (a; € V1) were investigated for 5™ almost all parameters a; € V+
satisfying (V + a;) N K; # @, where V C R" is a fixed (n — m)-dimensional subspace and V1 its
orthogonal complement. We obtain the typical value of dimensions of sections for typical directions
V' and also provide a weaker result for exceptional directions.

1. Introduction

1.1. Graph-directed construction. Let m and n be integers with 0 < m < n.
Denote by O(n) the orthogonal transformation group of R". Given p € (0,1),b € R
and R € O(n), we obtain a contracting similitude S of R" defined by S(x) = pRx+b.

We recall the graph-directed construction [MW] as follows: Suppose G is a di-
rected graph, which contains [ vertexes {1, -- - ,[} and some directed edges {e: e € G}
among the vertexes. Let I';; be the set of all the edges from 7 to j. Assume
{Ky,- -+, K;} is a family of compact sets in R™, and there are similitudes {S.: e € G}
such that

(1.1) K= | S.(K)).
Jj eely;
where S.(z) = peRe(z) + b, with p. € (0,1), R, € O(n) and b, € R". We say that
G is irreducible, if for any vertex pair (i, j) there exists an admissible directed path
starting at ¢ and ending at j.
For any admissible directed path e* = e;---e; in G, write Sex = Sejie, =
Sey 02 08¢,, Per = Pey** Pe, ANA Rex = Re, 0---0R,, . Let

A, j ={R.: € =ejey---e; is a path from i to j} C O(n).
To ensure certain finiteness, we pose the following assumption:
(1.2) G is irreducible and # A, ; < oo for some 1 <74, j </I.

Under this assumption of irreducibility, the Hausdorff dimensions of Ky, - , K; have
the same value, denoted by s.
The structure of the sets A; ; is described in the following lemma.
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Lemma 1. Suppose G is irreducible and # A < 00. Then forany 1 <i,j,k <

10,j0
L,
(1) #Aij = #Aipjo
(2) Am‘ = Ai,kAk,j;'
(3) A;; is a finite subgroup of O(n) for any i.
Proof. (1) By using irreducibility, take any h € A, ;, t € A;j,. Then hA; ;t C
A, o, which implies that #A, ; = #(hA;;t) < #A,,, < oo since t,h € O(n) are

invertible. On the other hand, by using irreducibility again, take v € A;;, and
v € Aj,;, and we have uA; ;v C A, ;, which implies #A < #A, ;. Therefore,
#Aij = #Ai,jo-

(2) Take any g € Ay ;; then A; rg C A; ;. Since #(A;xg) = #Air = #A,;, then
Airg = A; ;. On the other hand, it follows from the definition that A; ;A ; C A, ;.
Therefore, A; s Ax; = A, ;.

(3) Since A;;A;; C A;; and #A,,; < 0o, A;; is a finite subgroup of O(n). O

The following examples illustrate condition (1.2).
Example 1. Let S;(z) = p;Ri(x) + b; for 1 < i < k. If

i0,J0 10,J0

(1.3) {R;}; is contained in a finite subgroup of O(n),
then assumption (1.2) holds.

Scaling self-similar set: If R; is the identical mapping for each i, then the invari-
ant set of the similitudes

(1.4) Fi(z) = pix + bi,

is said to be a scaling self-similar set, e.g., the Sierpinski carpet.

Figure 1. Steps of generating the Sierpinski carpet.

For the Koch curve, the orthogonal transformations of its corresponding simili-

tudes are contained in a finite rotation group {e**™/3: k € Z}, and thus assumption

(1.3) holds.

Figure 2. Steps of generating the Koch curve.
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Figure 3. Penrose tiling: a graph-directed construction.

Example 2. In Figure 3, solid triangles I and II include several copies with
ratio A2 (A = @) of themselves, respectively. Keep some selected copies as the
initial pattern and replace them by smaller contained copies of elements in the pat-
tern, continue this procedure over and over again, and we always get two limit sets,
named Penrose fractals, with graph-directed construction. Here we suppose that the
graph-directed construction is irreducible. Notice that any rotation appearing in the
corresponding similitudes belongs to {e’*™/°: k € Z}, and thus (1.2) holds.

1.2. Dimensions of sections. For any (n —m)-dimensional subspace V' C R",
let V+ = {z € R": 2LV} be its orthogonal complement. Given z € R", let V + 2
denote the (n —m)-plane {y+z: y € V}. For a € V*+, we consider K; N (V +a), the
intersections of graph-directed sets K7, - -+, K; with the (n —m)-plane V +a. Denote
by Jy; the set of all the parameters a € V* such that K; N (V + a) is non-empty,
that is to say

Jvi={acV*t: K;N(V +a)#92} = Pyi(K),

where P,1: R" — V4 is the corresponding orthogonal projection. Notice that if
s > m, then ™ [Py.(K;)] > 0 for v,,, almost all V+ € G(n,m), where J#™ is
the m-dimensional Hausdorff measure on V1. Here G(n,m) is the Grassmannian
manifold consisting of all m-dimensional linear subspaces of R", and 7, ,, is the
natural measure on it such that v, ,,(A4) = a " (n)(L" x - x L") {(v1, - -vm) €
(R™)™, |v;| < 1foralliand L(vy, -+ ,vm) € A}), where L(vy, - - -, vyy,) is the subspace
spanned by the vector vq,- -+, v, € R" [Mat5].

In the paper, we will investigate the various dimensions of the plane section
(V +a) N K; for ™ almost all a € Py1(K;).

Recall that there are plenty of achievements on the dimensions of plane sections
or the measures supported on sections. Among these, the following Marstrand’s
theorem |M, Mat2] is well-known: Suppose m < s < n, and A C R™ is a Borel set
with 0 < 2#°(A) < co. Then

(1) for v, n_m-almost all V'€ G(n,n —m),
H™{a €V dimg[AN(V +a)]=s—m} >0
(2) for A% X Ypn—m-almost all (z,V) € A x G(n,n —m),
dimy[AN(V+2)]=s—m, AN (V +2)] < .

In fact, for n =2, m =1, (1) and (2) were first proved by Marstrand |[M] and later
generalized by Mattila [Mat1] to higher dimensions. Furthermore, the intersections
AN fB were researched for given compact sets A, B C R", where f runs through
the isometry group or other geometric transformation groups of R™ [Mat4, K].
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The packing dimension of plane sections with corresponding measures was dis-
cussed in [C,FJM, FJ,FM, JM|, and so on. They showed that Marstrand’s theorem
is not valid for the packing dimension. For example, in [FJM] Falconer, Jarvenpaa
and Mattila gave some examples illustrating the instability of packing dimensions of
sections. Moreover, in [C| Csornyei obtained a planar construction which allows one
to prescribe the packing dimensions of line sections, that is, given a Borel measurable
function f from the space of planar lines into [0, 1], there is a Borel set A C R? such
that for a.e. line [,

dimp(AN1) = f(I).

In [M] and [Matl|, the direction V is random. Notice that in [BP| and [KP],
Benjamini, Kenyon and Peres studied the intersections of some special planar sets
with lines in a fized direction. For example, in [BP| the dimensions of fibres F, =
{y € [0,1]: (z,y) € F} for almost all € [0,1] were discussed for some certain
geometric construction in the unit square [0, 1] x [0, 1].

1.3. Typical cases: Theorem 1. Under the above notations, we will state our
first result on typical parameters as follows (see Theorem 2 for the exceptional case):

Theorem 1. Suppose {K7, -, K} are graph-directed sets satisfying (1.1) and
(1.2). Assume dimy Ky = -+ = dimy K; = s > m. Then for each 1 < i < [,
Ynn—m-almost all V- € G(n,n —m), and ™ -almost all a € Py . (K;),

dimg[(V + a) N K;] = dimg[(V + a) N K;] = dimp[(V + a) N K]
=dimp[(V+a)NK;] =5—m.

As the self-similar structure is a special irreducible graph-directed construction,
we have the following corollary:

Corollary 1. Given similitudes S;(x) = p;Ri(x) + b; (1 < i < k), let E denote

the self-similar set generated by {S;};. Suppose that the set
{R;}; is contained in a finite subgroup of O(n).
Then assumption (1.2) holds. If dimyg E > m, then for 7, ,_m-almost all V €
G(n,n —m), and S"-almost all a € Py (F),
dimH Evﬂ = di_mBEV,a = MBEV@ = dlIIlp EV,a = dlIIlH E— m,

where By, = (V +a)NE.

Remark 1. In this remark, for notational convenience, we only discuss Theo-

rem 1 for self-similar sets. By Marstrand’s theorem, for the general compact set F,
we only have

%m(c‘/) > 07
where Cy = {a € V*+: dimg[EN(V +a)] = dimg E — m} C Jy = Py E, and we
cannot obtain the conclusion that
(1.5) Cy has full measure 5™ (Jy) for a.e. direction V,

as shown in Theorem 1 for the self-similar sets.
In the following Example 3, E is not a self-similar set and there is A C G(n,n—m)
with ¥y, —m(A) > 0 such that

H(Cy) < H™(Jy) whenever V € A.

That means for the general compact sets not self-similar,
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(1) Marstrand’s theorem is sharp, that is, (1.5) is false,
(2) and Theorem 1 is invalid.

Example 3. Suppose that A and B are two self-similar sets, generated by con-
tractions in the form of (1.4), satisfying

m < dimyg A < dimy B.

Assume that the least distance between A and B is so large that there exists a set
A C G(n,n —m) with v, ,-m(A) > 0 such that for any V € A, the sets P, . (A),
Py (B) are disjoint and ™ (P, A) > 0.

Let E = AU B; then dimy £ = dimy B. For any V € A and a € Py.i(A),
(V+a)NE C A, which means (V+a)NE = (V+a)NA. By Theorem 1, the section
(V + a) N E has dimension

dimg A — m(< dimg E —m)
for 7™ almost all a € Py (A). Here ™ (Py1A) >0 and Pyi A C Jy = Py (E).

Example 4. The Sierpinski carpet E has dimension log8/log3. Let Ly, =
{(z,y): y = (tanf)x + b} and Jy = {b: EN Ly, # @}. Then

I = [—tanf,1] if 6 € (0,7/2),
‘- 0,1 —tand] if0 e (n/2,7),

is an nterval.
(1) Then by Theorem 1, there is a small direction set D C (0, 27) with (D) =
0 such that given any 6 € (0,27)\D, for s#'-almost all b € Jy,

dimy E N Lyp = log8/log3 — 1,

where dimy can be replaced with dimpg or dimp. But from Marstrand’s Theorem,
we only have

ZLYb: dimy EN Lyy, = log8/log3 — 1} > 0.
(2) For tanf € Q, by |[LXZ|, dimy E'N Ly, = ¢y for a.e. b € Jy. For example,
0=m/4,cg=0.8858--- <log8/log3 —1 (see also [KP] for tan = 1).
(3) When b and tanf € Q, as shown in [L], the section E'N Ly, will generate a
graph-directed construction, and thus its dimension can be computed.

Figure 4. The first three steps of generating C x C.

Example 5. Let F' = C x C, where C is the Cantor ternary set. Then dimy F' =
log4/log3. Let theline Ly, = {(x,y): y = (tanf)x+b}, and Fy = {b: FNLy, # T}.
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Then by Theorem 1, there is a small set 2 C (0,27) with #'(2) = 0 such that
given any 6 € (0,2m)\2, for s -almost all b € _Zp,

(1.6) dimpy F'N Ly = log4/log3 — 1,

where dimy could be dimpg or dimp.

Here (1.6) is true for any typical direction, but it is invalid even for 6y = 7/4.
In fact, for almost all b € #p, = [—1,1], dim F' N Ly, , = log2/(3log3). That is a
consequence of the following result of Hawkes [Hal:

dim[C' N (C +t)] = log2/(3log3) for " a.e. t € [-1,1].

where log2/(3log3) < log4/log3 — 1.
In addition, when b and tanf € Q, as shown in [L], the section F'N Lyp will
generate a graph-directed construction and thus its dimension can be computed.

For example, let G denote the corresponding line section with respect to the line
y = 2x/5. Then

dimy G = dimp G = dimp G = 0.34793 - - - .

Example 6. Given {p;}5_ satisfying 0 < p; < 1 and 325, (p;)* = 1 with s >
m(€ N). Let E(c) C R" be the self-similar set generated by T,z = p;z+c¢;: R" — R”
(1<i<k),wherec=(c, - ,cx) € (R")*. Let Jy(c) ={a € V*t: E(c)N(V +a) #
@}. By Theorem 9.12 in [Fa2], just for the simple case of similitudes, for (J#")k
almost all (cy,---c;) € (R™)F,

dimy E(c) = s.
It follows from Theorem 1 that for v, ,,—, almost all V' € G(n,n—m), 5™ (Jy(c)) > 0
and for any dimension dim appearing in Theorem 1,

dim[E(c) N (V 4+ a)] = s —m.
for 7™ almost all a € Jy(c).

Example 7. The Koch curve H has dimension log4/log3 > 1. Then by Corol-
lary 1, for a typical direction V' = {(x,y): y = (tanf)z} and a typical parameter
a € Jy (an interval), the section (V + a) N H has dimension log4/log3 — 1.

Example 8. In Figure 5, solid rectangles I and II include several copies with
ratio 1/2 of themselves, respectively. Any related similitude has the scaling form,
Se(z) = pex + be, and thus (1.2) holds. The limit sets have dimension log3/log 2.
As the limit sets are path-connected, their projections are intervals. Then for typical
parameters, the corresponding section has dimension log 3/log2 — 1.

II

II
1 1 1 1

Figure 5. An irreducible graph-directed construction.
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Example 9. Figure 6 is a construction of Penrose fractals. Here the dimen-
sion of two connected limit sets is log5h/ log(\/_+3) Then by Theorem 1 for typical

parameters, the corresponding section has dimension log 5/ log(\[”’) 1.

P
‘%\

Figure 6. An irreducible construction of Penrose fractals.

1.4. Exceptional cases: Theorems 2 and 3. In Theorem 1, we focus on the
typical directions, but what about the exceptional directions? The following is our
second result about exceptional directions.

Theorem 2. Suppose {K7,---, K|} are graph-directed sets satisfying (1.1) and
(1.2). Assume dimy Ky = --- = dimy K; = s > m. If V € G(n,n —m), then there
exist constants c1, cs, c3, ¢4 depending on V', satisfying cs, ¢4 € [c1, c3] and c3 < (s—m)
such that for ™ almost all a € Py1(K;),

dimg[(V 4 a) N K] = ¢1, dimp[(V +a) N K] = ¢,
dimp[(V +a) N Kj] = ¢35, dimp[(V +a) N K] = ¢4

As the self-similar structure is a special irreducible graph-directed construction,
we have the following corollary:

Corollary 2. Given similitudes S;(x) = p;Ri(x) + b; (1 < i < k), let E denote
the self-similar set generated by {S;};. Suppose that the set

{R;}; is contained in a finite subgroup of O(n).

Then assumption (1.2) holds. Given V € G(n,n —m) for some j, then there exist
constants ci, ¢, c3, ¢y only depending on V and E, satisfying ca,cqy € [c1,c3] and
c3 < (s —m) such that for 7™ almost all a € Py . (E),

dimg[(V +a) N E] = ¢, dimg[(V +a) N E] = ¢,
dimp[(V 4+ a) N E] = c3, dimp[(V +a) N E] = 4.

Remark 2. As in Example 4 (or 5), for the fixed direction § = 7/4 and for
almost all a € Jy (or _#y), the Hausdorff dimension of sections is not log 8/log3 — 1
(or log4/log3 — 1). That means the exceptional set is not empty, that is,

{V:#"{a € Py.(E): dim(Ev,) =s—m} = #"(Py.(E)) >0}
C{V: A" (Py.(E)) > 0}

Remark 3. Theorem 2 is valid for each fixed direction but only meaningful for
the direction V satisfying 52 (Py 1 (K;)) > 0 for all 4.
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Remark 4. In Theorems 1 and 2, similitudes need mot satisfy the open set
condition of the graph-directed construction. Also, we do not need the condition
0 < #%(K;) < oo appearing in Marstrand’s theorem.

For every self-similar set F, we always have 7*(F) < oo ( e.g., see [Fa3]). But
H%(F) > 0 maybe fails. For example, when s = dimy E is the self-similar dimension,
that is, Zle p; =1, then by Schief’s theorem [S], we notice that .7*(E) > 0 if and
only if the family of similitudes satisfies the open set condition.

Let dim be any dimension function on the subsets of R" satisfying the following
three conditions:

(Cl1) dim(A) < dim(B) if A C B C R™

(C2) dim(A) < dim(S(A)) for any contracting similitude S: R” — R™ and A C
R"™;

(C3) Given a Borel set A C R™ and V € G(n,n —m), the function f: V+ — R
defined by f(a) = dim[(V + a) N A)] is .#"-measurable.

For example, dimp, dimp,dimg, dimp satisfy these conditions, and dim(A) =
dim(S(A)) here (For (C3), see [MM]| and Proposition 2).
We have a generalization of Theorem 2:

Theorem 3. Suppose {K7, -, K} are graph-directed sets satisfying (1.1) and
(1.2). Assume dimy K; = --- = dimy K; = s > m. Let dim be any dimension
function satisfying (C1)—-(C3). If V € G(n,n — m), then there exist constants c
depending on V' and dim such that for all j and for 7¢™-almost all a € Py (K;),

dim[(V 4+ a) N K] = ¢

The rest of the paper is organized as follows. In Section 2, we obtain some
preliminary on sections, including a weaker Marstrand’s theorem and a typical esti-
mation of the upper Box dimension of plane sections. In Section 3, we provide the
structure of the projection for graph-directed sets satisfying assumption (1.2). In
particular, the projection of the scaling self-similar set is a scaling self-similar set. In
Section 4, we provide a proposition of ergodic type for general graph-directed sets
without assumption (1.2). Using the proposition of ergodic type, we prove Theorems
in Section 5. In Section 3, Section 4 and Section 5, we deal with scaling self-similar
sets before the graph-directed sets, because the method of dealing with the scaling
self-similar sets is easy to read and leads to the general method.

2. Preliminaries on sections

Recall some classical results:

(1) Projection theorem (e.g., see [Mat5|): If E C R™is a Borel set with dimg £ >
m, then for v, ,-a.e. V € G(n,m), [Py (E)] > 0.

(2) Marstrand’s theorem (e.g., see [Math]): Suppose m < s <n and A C R" is
a Borel set with 0 < J#°(A) < oo. Then for 7, ,_m-a.e. V € G(n,n —m),

H"{a €V dimy[AN(V +a)] =s—m} > 0.

(3) If A C R™ is a Borel set and 0 < ¢t < dimy A, then there is a compact set
B C A satisfying 0 < #*(B) < oo (e.g., see [Fa2]).



On the dimensions of sections for the graph-directed sets 523
Proposition 1. Suppose m < s <n, and A C R" is a Borel set with dimyg A =
s. Then for any fixed t with m <t < s, for v, n_m-a.e. V€ G(n,n —m),
(2.1) H"{a eV dimg[AN(V +a)] >t —m} > 0.

Proof. By the above classical result (3), there is a compact set B C A, such that
0 < A (B) < oo. It follows from Marstrand’s theorem that for a.e. V,

H"™{a eV dimyg[AN(V +a)] >t —m)}
> " {acV*+: dimg[BN(V +a)] >t—m} > 0. O
Proposition 2. [MM] The following functions
fi(a) = dimg[K N (W* +a)], fila) = dimp[K N (W +a)],
fa(a) = dimp[K N (W +a)], fs(a) = dimp[K N (W +a)],
are 7™ -measurable for any compact set K and any m-dimensional subspace W C
R™.
2.1. Estimation of upper box dimension. The following proposition is an

analogue of some classical results (see Lemma 5 of [Fal| and Chapter 10 of [Mat5]):
If FCR"and V € G(n,n —m),

dimp[(V + a) N F] < max{0,dimp F' — m},
dimy[(V +a) N F| < max{0,dimyg F' — m},
for #™-almost all a € V*.

Proposition 3. Given F C R" and an (n — m)-dimensional subspace V', then
for #™-almost all a € V+ we have

(2.2) dimp[(V + a) N F] < max{0,dimpF — m}.

The proof is standard, please refer to the proof of Lemma 5 in [Fal].

3. Projection of graph-directed set

Given an (n — m)-dimensional subspace V C R", let Pyi: R®™ — V* be the
orthogonal projection from R"™ onto V.

3.1. Version of scaling self-similar sets. Suppose Fi(z) = piz+b; (1 <i <
k), and E is the self-similar set generated by {F;}F |, ie., B = Ule F;(E). Now, a
family {S;}F_; of the self-contractions of V* is defined by
SZ(SL’> = ij_ o Fi‘VJ- = P + PvJ_(bi), Ve VJ_ (1 < 1 < ]{7)
We have the following proposition.

Proposition 4. Jy = P, (E) C V1 is a self-similar set, that is,
(3.1) Jv = U Si(Jv).

Proof. In fact, we have
k k k
Py (E) = J(Pyr o F)(E) = | J(Pyi o Eilyr o Pyi)E = Si(Pyo B),
i=1 i=1 i=1
and thus, Jyy = P,1(F) is the invariant set of {S;}%_,. O
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In general, we may consider some dimension function dim satisfying (C1) and
(C2) as follows.

(C1) dim(A) < dim(B) if AC B C R™
(C2) dim(A) < dim(S(A)) for any contracting similitude S: R” — R™ and A C
R™.
For example, dimy, dimp, dimpg, dimp satisfy these conditions with dim(A) =
dim(S(A)).

Now, we have the following proposition.
Proposition 5. For any dim satisfying(C1) and (C2),
(32) dim EV,Si(a) > dim EV,aa

Proof. In fact,
k
Eve=(V+a)NE=]J(V+a)nF(E)
i=1
k k
=UERFV +anFE)] = JEEFEV +a)n(B),
i=1 =1
with
FYV4a)=p;'(V+a)—p;'b; (ash; = Pyb; + PyLb;)
=o'V = p {(Pvbi)] + [pi o — p Pyabi] = V + S a),
and thus
k k

Buo= RV 45 @) 0 (B = FBrsrw) = U FlBugw)
i=1 i=1 i,8; H(a)ETy
where Fj(Ey, g-1(,)) is a similar copy of EY, g-1,). Then it follows from (C1) and (C2)
that
dim[Fi(Ey g-1(4))] = dim By s1(a)

(3

and thus

dim Ey, > max dimEmsﬂ(a).
Z’Si (a)EJV ¢

In particular, as a = S; *(S;a) € Jy,
dim EV,SZ-(a) > dim Ev,a. ]

3.2. Version of graph-directed constructions. For each directed edge e in
the irreducible graph G, we have a similitude

Se(l’) = peReZlf _l_ be-
Then
A, j={Rc0---0R. e e is a path from i to j}.

From the irreducibility of the graph, A; ; is non-empty for any 1 <4,7 <.
Given W € G(n,m), let Py : R™ — W be the orthogonal projection from R”
onto W. Notice that for any orthogonal transformation R,

(3.3) R'PyR = Ppay.
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Since K; =J U Se(K;), we have

j eel“”»
(PwK) =J | PwS(E)) = U lpePwRe(K;) + Pbe]
Jj e€l; Jj e€ly;
= U U [peRe(Re_IPWRe)(Kj) + Pwbe].
Jj e€l;
Then (3.3) yields
(3.4) (Pw K;) U U [pe e ( w(E5)) + Pwbel.
Jj eely;

That means that (Py Kj;) includes a similar copy of Pp-1y,(Kj;), where e is an edge
from i to j and the similitude from (Pp1y, (K;) C)R;'W to (Pw (K;) C)W is

(3.5) S(x) = pele| g1y (7) + Piybe.
Fix W* € G(n,m) and 1 < j* <, and define
(3.6) =W, 5%) U{ RTW*i): R € A}

Then there is a graph-directed construction on the graph with the vertex set Z(W*, j*).
(1) For each (W,4) € Z(W*, j*), we have the compact set
(2) For any (W,1), (W' i) € Z(W*,5%), if there is an edge e from i to ¢’ in the
graph G such that
(3.8) W' = R;'W,

then we consider the edge e as an edge in =Z(W*, j*) from (W,7) to (W’,¢'), which is
still denoted by e. For this edge, let

(39) Te(x) = peRe|W’(z) + PWbe

be the contracting similitude from (PyK; C)W' to (PwK; C)W with respect to e
such that T,(x)(Pw Ky) C Py K;.

Let I'(w,), w7,y be the set of all the edges from (W, ) to (W’,4") and F’(fWZ ) (Wi
the set of all the paths from (W, i) to (W', 7') of length k.

(3) By (3.4), we have

(310) K(WJ') = U U Te[K(W’,i’)]-
(W7,i") e€T w4y, (w7 ity

Naturally, for each positive integer k,

(3.11) Kwy= U U TeEw.an)
(le'/) € EF(WZ) (W',i)

where Te« =T, 0---0T,, fore=-e;---¢y.

Now, in the above construction, there is an edge e in G from 7 to j, if and only
if there is an edge from (W,i) to (R;'W, 7). An important fact is that the above
construction is irreducible.
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Proposition 6. Z(W*, %) = U U (R™'W* x {i}) is irreducible under the
i REA;
above construction.

Proof. In fact, for any (W,4), (W', i") € Z(W*, j*), one has
W = R_1W* with R € Aj*ﬂ',
W/ = (R')_lVV* with R/ c Aj*,i’-

Now we seek for a path from (W,7) to (W', 7).
By (2) of Lemma 1, Aj. ; = A« ;A; 7, so there is a path e* = e; - - - ¢;, from i to
i', passing through i = jo, j1, -+, jr =4, such that R’ = R - R.«, which implies

W/ — (R/)—lw* — Re_kl L. Re—llR—lw*
Therefore, there is a path from (W) to (W', 4'):
(W7 Z) = (R_1W*7j0)
— (RRT'W* j1) € Al x{j} CE
— (W)= (R, - RJR'W* ji) € AL, x {jx} CE. O

Example 10. For the Koch curve, {R.}. = {1,1,e"/3, e7"/3}. Given W €
G(2,1), let Wy, = e*/3W for 0 < k < 5. Here Figure 7 is the graph for = = Z(W, 1).

(Wa, 1) (W1,1)

Figure 7. £ = E(W, 1) for the Koch curve.
Given W* € G(n,m) and j* € NN[1,[], let
(3.12) = =AW x {i}.

For (W,4) € Z, a function g, : W — R is defined by
(3.13) g (z) = dim[(W+ 4+ 2) N K] for x € W,

where dim is any dimension function satisfying (C1) and (C2).
We need the following proposition:

Proposition 7. For any (Wi,i1),(Wa,is) € = and any edge e from (Wy,i,) to
(W2, i2),

(314) g(leil)(Te(z)) > g(WQ,iQ)(x)7
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that is
(3.15) dim[(Wi- 4+ T.(x)) N K;,] > dim[(W5- + ) N K3,
for any x € Py, K;,. Here (C1) and (C2) hold.

Proof. Here Wy = R7'Wy, W3+ = RZ'W{t with the edge e from iy to iy in the
graph G, and for z € W,

Te(x) = peRelw, () + Pw,be.

It follows from the graph-directed construction that
Ki, D Se(Ky,),

where S.(x) = peRe(z) + b.. Hence,

(Wit + To(2)) N Ky, O (Wi + Te(x)) N (Se(K3,))

= S5, (Wit + Te(2)) N (Se(K4,))]
= S[(STN Wi + Te(2))) N K.

As S, is a similitude and (C1), (C2) hold, we have

dim[(Wi + T.(x)) N K;)] > dim{ S [(S7H (Wi + To(2))) N K]}
> dim|(S;H (Wi + To(x))) N Ky,

where
STHWi + Tu(x))) = po R Wi + (Tox — b,)]
= Wi+ p. 'R peRe(@) + Pibe — b
= W5 +a+p, 'R (P i) = Wy +
since
pe R (Pypbi)] € po {RSTWH] = p ' W5 = W
Therefore,

dim[(W- + T.(2)) N K;,] > dim[(W5- + 2) N K. O

4. Result of ergodic type

4.1. Version of scaling self-similar sets. Suppose that {T;(z) = p;R;(x) +
bi}¥_, is a family of contracting similitudes of R™, where {R;}¥_, are orthogonal
transformations of R™. Let F/(C R™) denote the self-similar set generated by {T;}%_,.
For notational convenience, write

ﬂlzk - ilO---Oﬂk,
Proposition 8. If B C F is an ™ -measurable set such that
(4.1) Ut Ty(B) C B,

then " (B) = ™ (F) or 0.

Proof. Without loss of generality, we suppose " (F') > 0. On the contrary, we
may assume 0 < Z"(B) < #™(F). Then

0 <" (F\B) < ™ (F).
Since U;T;(B) C B, we have T;,..; (B) C B.
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Obviously, we have
(T;,...,) " (F\B) C R™\B for any i - - - ij,.

Since ™ (F\B) > 0, we can take a Lebesgue point xy € F'\ B with .#"-density 1,
which implies that for any 6 > 0 there exists g > 0 such that
A0 PNB) |

(1)
whenever zg is the center of the ball I C R™ of diameter diam(I) < &y.

Take an integer p such that 2(max; p;)? diam(F') < eo. As F' = U;T;(F),

F= U le--'jp(F)'

jl"'jp

(4.2)

Since zp € F, we may assume xy € T;,..,, (F) for a certain sequence i ---i, €
{1,--- k}». Then let y = (T},..;,) *(x0) € F. Choose a minimal ball I* centered
at y and covering F', which implies F' C I*, and the diameter of I* is less than
2diam(F"). Then the ball I = T;,..; (I*) centered at xq with diameter

diam(I) = (pi, - - - ps,) diam(I*) < (max p;)? diam(I*) < 2(max p;)? diam(F) < &.

Therefore, by (4.2), we have

A (L) IO (F\B))] _ (piy - pi,) "™ I 0 (F\B)]

HA(Ty-,) (1) (Pir === i)~ A (1)

AN (F\B)]
(1)

> >1—0.

We also have
(Tiyes,) " IOV (F\B)] € (Tiyee,) ™ (F\B) N (Tiyq,) ™ (1)
C(R™\B)NI"=1I"\B
and (T;,..;,)"*(I) = I*. This implies that
HI\B) _ A" (Tyq,) [T O (F\B)]]
2 — >1-04.
A (1%) A () ~H(T)]
On the other hand, since the radius of I* is less than diam(F’), by [Mat5],
A1) = 2"a(m) L L™(ITY) < 2™ [diam(F)])™,

(4.3)

we have
AMINB) | A™MB) . AT(B)
A1) (1) T 2m[diam(F)]™’
This is in contradiction with the inequality (4.3) when ¢ is small enough so that
§ < D) O]

2m[diam(F)|™ *

Remark 5. The condition J_, 7;(B) C B is like that of the definition of the
upper self-similar set [Fa3|. However, here we only need the assumption that B is a
Lebesgue measurable set.
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Corollary 3. Suppose f: F — R is an J¢™-measurable function such that for
anya € Fand1 <1<k,
(4.4) f(Ti(a)) = f(a).
Then

for #™-almost all a € F.
Proof. Assume ™ (F') > 0. Let d be the .#-essential upper bound of f. For
any integer p > 0, let us define the set
C,={ae F: f(a)>d—1/p}.
It follows from the definition of the essential upper bound that for any p,
HM(C,) > 0.
As f(Ti(a)) > f(a) for any a € F, we have
J7i(c,) c G, and 2(C,) > 0.

Due to Proposition 8, 7™ (C,) = ™ (F).
Consequently, the following subset of F’

C={a€eF: fa)>d}=()C,

p>1

has full measure 2™ (F'). Since d is the essential upper bound of f, we have

fla)=d
for ##™-almost all a € F'. O

4.2. Version of graph-directed constructions. We shall obtain a result of
ergodic type, in the sense that sets satisfying certain conditions have full measure or
measure zero.

Let & be an irreducible directed graph including [ vertexes {1,--- ,l}. For each
1, there is an m-dimensional linear space V; equipped with Euclidean metric and
Hausdorff measure 7. For any edge e from 7 to j, there is a contracting similitude
T.: V; — V;. That means

(4.5) dy,(Te(x), Te(2')) = pedy, (z, 2')

for some ratio p. € (0,1).
By [MW], there exists a unique family of compact sets {Mj,--- , M;} satisfying
Mi C V; and

(4.6) M= U (1),

i eeé”i,j
where &; ; is the set of all the edges from 7 to j. Let éjk] be the set of all the paths of
length k from ¢ to j. For the path ey - - - ey, let T,- =T, 0---0T,, and pex = pe, = - * pe, -
Proposition 9. Suppose {B;}\_, are ##™-measurable sets satisfying
(1) B; C M;,
2) U U Tu(Bj) C B;.

7 eeé”i,j
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Then either
H(B;) = HA™(M;) for all i,

or

A" (B;) =0 for all i.

Proof. Without loss of generality, we suppose that there exists j, such that
J™(By,) > 0.
Due to the irreducibility of & and the fact that
M,; = U U Te(M;) for every k,
i eeét;

for any 4, the set B; contains T¢«(B;,) for a certain path e*, where T¢.«(B;,) is a similar
copy of Bj, and thus has positive J#-measure. Hence,

" (B;) > 0 for all 4.
This also shows that

S (M;) > 0 for all 4.
As a result, diam(M;) > 0 for all 1.

To prove the proposition, we assume on the contrary that 0 < J#™(B;,) <

(M) for some ig. Then
0< %m[Mzo\Bzo] < %m(MZO)
For any path e* passing from 7 to j, we conclude that
(Te) "' [M\B)] € V,\B;.
Otherwise, take a point b € [(T,«)~'(M;\B;)] N B;. Then we have
Te*(b) € MZ\BZ and Te*(b) S Te* (B]) C Bi,
which yields a contradiction.

Because ¢ [M;,\B;,] > 0, we can take a Lebesgue point zy € M;,\B;, with
JM-density 1, which implies that for any € > 0, there exists § > 0 such that
%m[ll n (Mio\Bio)]

(1)
whenever I’ C V,, is a ball centered at xy with diameter diam(I") <.

Take an integer p such that

2(max p )P (max diam(M;)) < /2.

MiOZU U T@(Mj).

i p
J e*EéaiO,j

As o € M;,, we may assume zo € Te-(M;) for a certain path e* € &7 ;. Let
y = (T) (o) € M;.

Choose a minimal ball I C V; centered at y and covering M;, which implies M; C I
and diam(/) < 2diam(M;). Then the ball I* = T.«(I) C V;, centered at z, with
diameter

diam(I*) = (pe-) diam(7) < (max p.)? diam(/) < 2(max p,)? diam(M;) < /2.

(4.7) >1—¢,

Then we have
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Therefore, by (4.7), we have
A (Te) NI O (Mi\Big)] _ (per) ™" A™ [I" N (M \ By )]

A ((Tex)7H(17)] (pes) =m0 (1*)
_ A0 (Mg \Bio)]

B S (1)

>1—c.

In fact, since
(Te) ™' [I" N (M \Biy )] = (Ter) ™ (") N (Ter) T M3, \Bio] C I0 ((V))\B;) € 1\B;,

and (T,-)~Y(I*) = I, we have
ANB))  A{(Te) I 0 (Mig\Bi )]}

) 2 (¢S 1V
that is,
S (I\B
s ),
On the other hand, 7™ (I) = 2™a(m)~*.£™(I) < 2™[diam(M;)]™, and thus
ANy _ AT(By) o, HAT(B)
(1) (D) — 2m[diam(M;)|™
This is in contradiction with the inequality (4.8) when ¢ is small enough, so that
€ < min A (By)
i 2m[diam(M;)]™’
because here ™ (B;/) > 0 for all j' shown above. O

Corollary 4. Suppose g;: M; — R is an ™ -measurable function for each
1 <¢ <. If for any edge e and any x € M;,

(4.9) g9i(Te(x)) = g;(z),
then there is a constant d such that for any i,

for 7" -almost all y € M.
Proof. Without loss of generality, suppose ™ (M;) > 0 for all i. Let

d= mlax[ess sup(g;)]-
In particular, take iy such that d = esssup g;,. For any integer p > 0, let the set
B,;={x € M;: gi(x) >d—1/p}.
It follows from the definition of the essential upper bound that
F™(By,i,) > 0.
Using the inequality g;(7%.(z)) > g;(x) for e € & ;, we have

U U T.(B,,) C By

J e€di;
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Since S (B,;) > 0, applying Proposition 9 for all i, we have
H™(Byi) = A" (M;) for any p > 1.
It means that for any ¢ the following subset of M;
Ci = (\Byi = {z € M;: gi(z) > d}
p

has full measure 7™ (M;). Since d is the maximal essential upper bound of {g;};,
we have

for sZ™-almost all x € M,;. O

5. Proofs of Theorems

5.1. Version of scaling self-similar sets.

5.1.1. Proof of Theorem 1. It follows from Proposition 3 that given V &
G(n,n —m), then for J#™-almost all a € Jy,

dimpEy, < max(0,dimpE — m).
For a self-similar set, we always have dimp E = dimy F (e.g., see [Fa3]). And thus,
we have
(5.1) dimpFy, < max(0,s —m).
Case I: s = m. Using (5.1) and the inequality
dim By, < dimpFEy,
for dim = dimy, dimy and dimp, we obtain the typical value 0 = s —m.

Case II: s > m. By Proposition 1, given ¢ € Q with m <t < s, for v, p,—m-a.c.
Ve G(n,n—m),
Q) >0,
where
Qf = {a: dimy[EN(V +a)] >t—m}C PLECV™*
Let fi(a) = dimg(E N (V 4 a)). Then f; is measurable. By Proposition 5,
f1(S;a) > fi(a) for all 4.
As a result,
UZSZ(Qt) C 0! with %m(Qt) > O,
where {S;: V+ — V43, are similitudes. It follows from Proposition 8 that
A () = A" (P E),
where Py E' = US;(Py. E) (Proposition 4).
Letting t — s, we have
(52)  A™{a: dimp(By,) > s—m}="( (| Q)=H"(PyLE).
teQ,t<s

for vun—m-a.e. V.€ G(n,n —m). Also we notice that
(53) di_mBEV,a, dlmp EV,a € [dlmH EV,a> di—mBEvﬂ].
Therefore, Theorem 1 is proved by using (5.1)—(5.3).
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5.1.2. Proof of Theorems 2 and 3. Since dimy, dimp, dimg and dimp satisfy
(C1)—(C3), it is enough to prove Theorem 3. Here by Proposition 5, the conditions
(C1) and (C2) imply that for any a € Py (F) = U;S;(Py.(F)),

(5.4) f(Sia) = f(a),

where f(a) = dim Ey,, is s#™-measurable by (C3) and {S;}; are contracting simili-
tudes of V+. Therefore, it follows from Corollary 3 that

(5.5) dim By, = f(a) = ¢,
where c is a constant depending on V' and dim.

5.2. Version of graph-directed constructions.
5.2.1. Proof of Theorem 1.

Lemma 2. Supposedimy K; = --- =dimy K; = s. Given any V € G(n,n—m),
for each 1 <i <[ and ™-almost all a € Py (K;)
(5.6) dimp[(V + a) N K;] < max(0, s —m).

Proof. Notice that the irreducible graph-directed sets are always regular, that is,
dimy K; = dimg K; for each ¢ (Section 3.1 of [Fa3|). Then the lemma follows from
Proposition 3. O]

Case I: s = m. Using (5.6) and the inequality
dim[(V +a) N K;] < dimp[(V + a) N K]
for dim = dimy, dim; and dimp, we obtain the typical value 0 = s —m.
Case II: s > m.

Lemma 3. If dimy K; = --- = dimy K; = s > m, then for each j and 7, ,—pm
almost all V' € G(n,n —m), we have 7" [Py (K;)] > 0 and

dimy[(V+a)N K] >s—m
for 7™ almost all a € Py1(K;).
Proof. For t € (m,s)NQ, let

Q) = {a € W: dimg[(WH +a) N K;] >t —m}.
It follows from Proposition 1 that for 4, ,,-almost all W € G(n,m),
(5.7) A" () >0, Y€ (m,s)NQand i.
Let

II={W e Gn,m): A" (QUpy,) >0, Ve (m,s)NQandi}.
Then
VoG (n, m)\IT] = 0.
Given W* € IT and j* € NN [1,1], let
===(W* 7).

For (W,i) €e Z and t € (m,s) N Q, let

Qi = {a € W dimg[(W +a) N K;] >t —m}.
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For any edge e from (W3,41) to (Ws,i2) and any x € QIEWsz)’ by Proposition 7, we
have
dim[(Wi + T.(x)) N Ky, ] > dim[(W3- + 2) N K;,] >t —m,
which implies
TG(Q€WQ7Z'2)) C Qléwl,il)'
Now, we have

(1) By (3.10), { Pw K, }(w,)e= are compact sets satisfying
K(W;L) = U U Te[K(W’7i’)]7
(W’,’i/) eEF(W,i),(W’,i’)

and = is irreducible (Proposition 6).
(2) For any (W,7) € =,

For any edge e from (Wy,1i1) to (Wa,ia),
To(Qwaiz) € Ay i-
(3) Since W* € 11,
A" (g =) > 0.
Applying (1)-(3) to Proposition 9, we have
A" Q) = A (P )
for any (W,i) € = and t € (m,s) N Q. Letting t — s, since (W*, j*) € Z, we have
A" {a € W*: dimy[(W*) +a) N Kj:] > s —m} = ™ (Py-Kj-)
for any W* € Il and 1 < j* < [. The lemma is proved since 7, ,,|G(n, m)\II] = 0. O
Now notice that for any set A,
(5.8) dimpA,dimp A € [dimy A, dimpA].
Therefore, Theorem 1 is proved by Lemma 2, 3 and (5.8).

5.2.2. Proof of Theorems 2 and 3. Since dimy, dimp, dimp and dimp satisfy
(C1)—(C3), it is enough to prove Theorem 3. Let

gowy () = dim[(W + z) N K],

Then gaw,(x) is A ™-measurable by (C3).
By Proposition 7, the conditions (C1) and (C2) imply that given an edge e
from (Wy,41) € = to (Ws,is) € Z, then for any « € Py, Ky,
g(W17i1)(Te(I)) > g(Wz,Zé)(x)'
Therefore, it follows from (C3) and Corollary 4 that

a.e

dim[(W + 2) N K;] = gw,(z) = ¢,

where c¢ is a constant depending on W and dim, This completes the proof of Theo-
rems 2 and 3.
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