
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 35, 2010, 581–593

FREDHOLM EIGENVALUE FOR A QUASI-CIRCLE
AND GRUNSKY FUNCTIONALS

Yuliang Shen

Soochow University, Department of Mathematics
Suzhou 215006, P.R. China; ylshen@suda.edu.cn

Abstract. We give several new formulas of the least positive Fredholm eigenvalue for a quasi-
circle, answering a problem posed recently by Kühnau. During the proof, we show that the Grunsky
functionals corresponding to the two complementary domains of the quasi-circle are the same and
equal to the reciprocal of the Fredholm eigenvalue.

1. Introduction

Let Γ be a Jordan curve in the extended complex plane Ĉ with complemen-
tary domains D and D∗. Then the least positive Fredholm eigenvalue is the curve
functional λΓ defined by the equality (see Schiffer [14])

(1.1)
1

λΓ

= sup
H

|DD[h1]−DD∗ [h2]|
DD[h1] + DD∗ [h2]

=
max{s(D,D∗), s(D∗, D)} − 1

max{s(D, D∗), s(D∗, D)}+ 1
.

Here and in what follows,

(1.2) DΩ[h] =
1

π

¨

Ω

(|∂zh|2 + |∂z̄h|2) dx dy

is the Dirichlet integral, H is the set of all the pairs (h1, h2), where h1 is real-valued
and continuous in D, harmonic in D, while h2 is real-valued and continuous in D∗,
harmonic in D∗, such that h1 = h2 on Γ, and DD[h] + DD∗ [h] < +∞. Also

(1.3) s(D, D∗) = sup
H

DD[h1]

DD∗ [h2]
, s(D∗, D) = sup

H

DD∗ [h2]

DD[h1]

are known as the Schober’s domain functionals (see Schober [15]). Clearly, λΓ ≥ 1,
and λΓ = +∞ if and only if Γ is a circle, while λΓ > 1 if and only if Γ is a quasi-circle,
namely, Γ is the image of the unit circle under some quasiconformal mapping of the
complex plane (see [1], [22]).

It is well known that the least positive Fredholm eigenvalue λΓ is very important
to the study in geometric function theory, in particular, it plays a significant role in
determining the rate of convergence of the classical Neumann–Poincaré series (see
[2], [13]), and many interesting properties of λΓ have been obtained in the literature
(see [1], [7], [13–16], [22]). We recall the following fact (see [18–19] and [10]) which
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will be used later: for any quasi-circle Γ, s(D, D∗) = s(D∗, D), so Schober’s domain
functionals s are actually curve functionals, and

(1.4)
λΓ + 1

λΓ − 1
= sup

H

DD[h1]

DD∗ [h2]
= sup

H

DD∗ [h2]

DD[h1]
.

When Γ is three times continuously differentiable, this fact was already pointed out
by Schober [15, p. 379].

Recently, some new characterizations of the Fredholm eigenvalue λΓ were given
by Kühnau [8–11] (see also [21]). In particular, the following result was proved in [8]
and [11].

Theorem A. Let Γ be a piecewise analytic Jordan curve. Then it holds that

(1.5)
λΓ + 1

λΓ − 1
= sup

| ´
Γ
h1 dh2|2

4DD[h1]DD∗ [h2]
,

where the sup is taken from all functions h1 and h2 which are real analytic in D and
D∗ respectively.

As pointed out by Kühnau [11], a great advantage of the property (1.5) of λΓ

in comparison with (1.1), (1.3) and (1.4) is that the functions h1 and h2 are not
necessarily linked at the curve Γ: we can choose h1 and h2 completely independently.
On the other hand, there is the disadvantage that in the formulation and the proof
of (1.5), the Jordan curve Γ is assumed to be piecewise analytic. There arises the
natural question whether (1.5) still holds for a general quasi-circle Γ, which was also
asked by Kühnau [11].

In this paper, we will extend Theorem A in case of a general quasi-circle Γ (see
Theorem 5.1), which gives a positive answer to the above-mentioned problem. Our
proof is based on univalent function theory and thus differs largely from Kühnau’s
discussion. Here is the organization of the paper: in section 2 we recall some basic
results on univalent functions, especially on Grunsky inequalities; in sections 3 and
4 we shall study the (generalized) Faber polynomials for univalent functions in the
exterior of the unit disk along the lines in the paper [20], where we have dealt with
the Faber polynomials for univalent functions in the unit disk; we will give the proof
of our results in the final section 5, and as a by-product, we show that the Grunsky
functionals corresponding to the two complementary domains of the quasi-circle Γ
are the same and equal to the reciprocal of the Fredholm eigenvalue λΓ, a fact which
appears to have gone unnoticed.

2. Grunsky functionals

We begin with some well known results from univalent function theory (see [12],
and also [5]). For a meromorphic function g(z) = bz +

∑+∞
n=0 bnz

−n, b 6= 0, in a
neighborhood of∞ in the extended complex plane Ĉ, its Grunsky coefficients βmn(g)
are determined from the expression

(2.1) log
g(z)− g(ζ)

z − ζ
= log b−

+∞∑
m,n=1

βmn(g)z−mζ−n.
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Then g can be extended to a univalent function in ∆∗ = {z : |z| > 1} ∪ {∞} and
belongs to the class Σ̃ if and only if the inequality

(2.2)

∣∣∣∣∣
+∞∑

m,n=1

√
mnβmn(g)xmxn

∣∣∣∣∣ ≤
+∞∑
m=1

|xm|2

holds for any x = (x1, x2, · · · ) ∈ l2. If g ∈ Σ̃ can be extended to a k-quasiconformal
mapping inside the unit disk ∆ = {z : |z| < 1} and belongs to the subclass Σ̃(k), its
Grunsky coefficients βmn(g) satisfy the stronger inequality

(2.3)

∣∣∣∣∣
+∞∑

m,n=1

√
mnβmn(g)xmxn

∣∣∣∣∣ ≤ k

+∞∑
m=1

|xm|2.

Conversely, from the inequality (2.3) we can deduce that g can be extended to a
k′-quasiconformal mapping into ∆ with k′ ≥ k, namely, g ∈ ⋃

k<1 Σ̃(k).
It was an open question whether the (necessary) condition (2.3) is also sufficient

for g ∈ Σ̃(k) before Kühnau [6] gave some concrete example which says that there
exists g ∈ Σ̃ which satisfies (2.3) but can not be extended to a k′-quasiconformal
mapping inside the unit disk ∆ with k′ ≤ k. By means of the extremal dilatation

(2.4) k(g) = min{k : g ∈ ∪k<1Σ̃(k)},
and the Grunsky functional

(2.5) b(g) = sup
x∈Sl2

∣∣∣∣∣
+∞∑

m,n=1

√
mnβmn(g)xmxn

∣∣∣∣∣ ,

where Sl2 is the unit sphere in l2, Krushkal [3–4] gave a complete solution to the
question.

Similarly, we denote by S̃ the class of all univalent functions f(z) =
∑+∞

n=1 anzn in
∆, and by S̃(k) the subclass of S̃ consisting of those functions which can be extended
to a k-quasiconformal mapping to ∆∗. For each function f ∈ S̃, we may define its
Grunsky coefficients αmn(f), extremal dilatation k(f) and Grunsky functional b(f)
in the same manner as (2.1), (2.4) and (2.5). Specifically, αmn(f) are determined
from the expression

(2.6) log
f(z)− f(ζ)

z − ζ
= −

+∞∑
m,n=0

αmn(f)zmζn.

Now let Γ be a quasi-circle in the extended complex plane Ĉ with complementary
domains D and D∗ such that 0 ∈ D and ∞ ∈ D∗. Then there exists a uniquely
determined pair of functions f and g in

⋃
k<1 S̃(k) and ∪k<1Σ̃(k) respectively, such

that f ′(0) > 0, g′(∞) > 0, and f(∆) = D, g(∆∗) = D∗. It is easy to see that
k(f) = k(g) for each quasi-circle Γ. As we shall see in section 5, the following
analogous result holds.

Theorem 2.1. Under the notations above, it holds that b(f) = b(g).

We end this section with some background on the Fredholm eigenvalue and Grun-
sky functionals. By the quasi-invariance of Dirichlet integral under quasiconformal
mappings, Ahlfors [1] observed that λ−1

Γ ≤ k(f)(= k(g)). It is also known that the
Fredholm eigenvalue λΓ and Grunsky functionals are closely related to each other.
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In an important article [6], Kühnau proved that b(g) = λ−1
Γ when Γ is smooth. Ac-

tually, this fact is implicit in the fundamental work of Bergman and Schiffer (see [2],
[14]). By means of this result, Kühnau [6] found the first example of a univalent
function g ∈ ⋃

k<1 Σ̃(k) with b(g) < k(g). Later, Kühnau [7] was able to prove that
b(g) = λ−1

Γ for any quasi-circle Γ by an approximation process. In section 5, we will
prove the following result, form which and (1.4) Theorem 2.1 follows immediately. It
also provides a somewhat different approach to Kühnau’s result that b(g) = λ−1

Γ .

Theorem 2.2. Under the notations above, it holds that

(2.7) b(f) =
s(D, D∗)− 1

s(D,D∗) + 1
, b(g) =

s(D∗, D)− 1

s(D∗, D) + 1
.

3. Convergence properties for Faber polynomials

In the classical approach to the Grunsky inequalities (2.2), (2.3), Faber polyno-
mials play an important role (see [12]). In a previous paper [20], the author obtained
some fundamental properties of Faber polynomials for univalent functions in the class
Σ̃, which as will be seen are crucial in the proof of our results. We need to explore
some analogous properties of Faber polynomials for univalent functions in the class
S̃. For the sake of completeness and also of their own interest, we will go into the
details here.

Recall that the n-th (generalized) Faber polynomial Fn(w) for f ∈ S̃ is a poly-
nomial of w−1 of degree n determined by the following expression:

(3.1) log
w − f(z)

w
= log

f(z)

a1z
−

+∞∑
n=1

1

n
Fn(w)zn, w 6= 0, z → 0.

It follows from (2.6) and (3.1) that Grunsky coefficients and Faber polynomials are
related by the following relation:

(3.2) Fn(f(z)) = z−n + n

+∞∑
m=1

αmn(f)zm, 0 6= z ∈ ∆.

By a standard computation, it follows that

(3.3)
1

π

¨

Ĉ−f(∆)

|F ′
n(w)|2 du dv = n

(
1− n

+∞∑
m=1

m|αmn(f)|2
)

.

More generally, it holds that

(3.4)
1

π

¨

Ĉ−f(∆)

F ′
m(w)F ′

n(w) du dv =
√

mn

(
δm,n −

√
mn

+∞∑
j=1

jαmj(f)αnj(f)

)
,

where, as usual, δm,n = 1 when m = n, and δm,n = 0 when m 6= n.
Now set D = f(∆). By Koebe’s one-quarter theorem, D contains the ball

{w : |w| ≤ |a1|/4}. We assume that Ĉ−D has non-empty interior D∗ which contains
a neighborhood of ∞.
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Note that (3.1) converges absolutely and locally uniformly in D∗ ×∆. Differen-
tiation of (3.1) with respect to z gives

(3.5)
f ′(z)

f(z)
− 1

z
− f ′(z)

f(z)− w
=

+∞∑
n=1

Fn(w)zn−1, w ∈ D∗, z ∈ ∆,

which also converges absolutely and locally uniformly in D∗ ×∆. Thus,

lim
z→0

(
f ′(z)

f(z)
− 1

z
− f ′(z)

f(z)− w

)
= F1(w) =

a1

w
+

a2

a1

.

Noting that |w| ≥ |a1|/4 when w ∈ D∗, we conclude that there exist some r < 1 and
M1 > 0 such that

∣∣∣f ′(z)
f(z)

− 1
z
− f ′(z)

f(z)−w

∣∣∣ < M1 when |z| < r. Thus
¨

|z|<r

∣∣∣∣
f ′(z)

f(z)
− 1

z
− f ′(z)

f(z)− w

∣∣∣∣
2

dx dy ≤ M2
1 r2π.

Clearly, there exists some R1 > 0 such that |f(z)| ≥ R1 when |z| ≥ r. Since D∗

contains a neighborhood of ∞, there exists some R2 > 0 such that {w : |w| > R2}
is contained in D∗. Thus |f(z)| ≤ R2 whenever z ∈ ∆. Now, for any w ∈ D∗, set
d(w, ∂D∗) = inf{|ζ − w| : ζ ∈ ∂D∗}. Then for any z ∈ ∆, d(w, ∂D∗) ≤ |f(z)− w| ≤
2R2 + d(w, ∂D∗). Thus,
¨

r<|z|<1

∣∣∣∣
f ′(z)

f(z)
− 1

z
− f ′(z)

f(z)− w

∣∣∣∣
2

dx dy

≤ 2

¨

r<|z|<1

(∣∣∣∣
f ′(z)

f(z)

∣∣∣∣
2

+
1

|z|2 +

∣∣∣∣
f ′(z)

f(z)− w

∣∣∣∣
2
)

dx dy

= 2

¨

f(r<|z|<1)

(
1

|ζ|2 +
1

|ζ − w|2
)

dξ dη + 4π log
1

r

≤ 2

¨

R1<|ζ|<R2

1

|ζ|2 dξ dη + 2

¨

d(w,∂D∗)<|ζ−w|<2R2+d(w,∂D∗)

1

|ζ − w|2 dξ dη + 4π log
1

r

= 4π log
R2(2R2 + d(w, ∂D∗))

R1rd(w, ∂D∗)
.

Consequently, there exist positive constants M1, M2, M3 such that for any w ∈ D∗,

(3.6)
1

π

¨

∆

∣∣∣∣
f ′(z)

f(z)
− 1

z
− f ′(z)

f(z)− w

∣∣∣∣
2

dx dy ≤ M1 + M2 log
M3 + d(w, ∂D∗)

d(w, ∂D∗)
.

It follows from (3.5) and (3.6) that
+∞∑
n=1

|Fn(w)|2
n

=
1

π

¨

∆

∣∣∣∣
f ′(z)

f(z)
− 1

z
− f ′(z)

f(z)− w

∣∣∣∣
2

dx dy

≤ M1 + M2 log
M3 + d(w, ∂D∗)

d(w, ∂D∗)
.

(3.7)

We have proved

Proposition 3.1.
∑+∞

n=1
F 2

n

n
converges absolutely and locally uniformly in D∗

and thus represents an analytic function in D∗.
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Remark 3.1. In general,
∑+∞

n=1
F 2

n

n
does not converge absolutely on Ĉ − D or

uniformly in D∗. In fact, let f be the identity map so that D is the unit disk ∆ and
Ĉ −D is the closed disk ∆

∗. Then, Fn(w) = w−n, and
∑+∞

n=1
F 2

n(w)
n

=
∑+∞

n=1
w−2n

n
=

log w2

w2−1
converges neither absolutely on ∆

∗ nor uniformly in ∆∗. This also shows
that the order in the inequality (3.7) is precise.

We proceed to derive another convergence property concerning the derivatives of
Faber polynomials. Recall that the series in (3.5) converges absolutely and locally
uniformly in D∗ × ∆. For any natural number p ≥ 1, differentiation of (3.5) with
respect to w ∈ D∗ p times gives

(3.8)
(−1)pp!f ′(z)

(w − f(z))p+1
=

+∞∑
n=1

F (p)
n (w)z−(n+1), w ∈ D∗, z ∈ ∆,

which also converges absolutely and locally uniformly in D∗ × ∆. By a similar
reasoning as above, we conclude that there exist some constant Mp such that for any
w ∈ D∗,

(3.9)
+∞∑
n=1

|F (p)
n (w)|2

n
=

p!

π

¨

∆

∣∣∣∣
f ′(z)

(w − f(z))p+1

∣∣∣∣
2

dxdy ≤ Mp

d2p(w, ∂D∗)
.

We have proved

Proposition 3.2. For any natural number p ≥ 1,
∑+∞

n=1
(F

(p)
n )2

n
converges abso-

lutely and locally uniformly in D∗ and represents an analytic function in D∗.

4. Operators on l2

In this section, we shall discuss some important operators on the l2 space, which
will be used to prove our results in the next section. These results also have inde-
pendent interest of their own.

Recall that l2 is a Hilbert space of sequences x = (xm) with the inner product
and norm

(4.1) 〈x, y〉 =
+∞∑
m=1

xmȳm, ‖x‖ =

(
+∞∑
m=1

|xm|2
) 1

2

.

Let l20 denote the subspace of l2 of sequences x = (xm) with all terms xm, except possi-
bly finitely many, being zero. Then l20 is dense in l2. In fact, for x = (x1, x2, · · · ) ∈ l2,
setting xl = (x1, x2, · · · , xl, 0, 0, · · · ), then xl ∈ l20, and xl → x as l → +∞.

Let f ∈ S̃ be given. Then f ∈ S̃ determines the so-called Grunsky operator
G(f) : l2 → l2 by

(4.2) G(f) : (xm) 7→
(

+∞∑
n=1

√
mnαmn(f)xn

)
,

so that

(4.3) 〈G(f)x, x̄〉 =
+∞∑

m,n=1

√
mnαmn(f)xmxn,



Fredholm eigenvalue for a quasi-circle and Grunsky functionals 587

and

(4.4) ‖G(f)x‖2 =
+∞∑
m=1

∣∣∣∣∣
+∞∑
n=1

√
mnαmn(f)xn

∣∣∣∣∣

2

.

Since αmn(f) = αnm(f), Schur’s result ([17]) implies that

(4.5) b(f) = sup
x∈Sl2

|〈G(f)x, x̄〉| = sup
x∈Sl2

‖G(f)x‖.

It follows from the results in section 2 that G(f) is a bounded operator of norm
b(f) ≤ 1, and b(f) < 1 if and only if f ∈ ⋃

k<1 S̃(k).
We continue to use the notations in the last section, namely, D = f(∆), and D∗

is the non-empty interior of Ĉ−D, which contains a neighborhood of ∞. Consider

(4.6) Px,l(w) =
l∑

n=1

xn√
n

Fn(w), x = (x1, x2, · · · ) ∈ l2.

Px,l(w) is a polynomial of w−1 of degree at most l. It follows from (3.4) that

(4.7)
1

π

¨

Ĉ−D

|P ′
x,l(w)|2 du dv = ‖xl‖2 − ‖G(f)xl‖2.

More generally, it holds that for x, y ∈ l2,

(4.8)
1

π

¨

Ĉ−D

P ′
x,l(w)P ′

y,l(w) du dv = 〈xl, yl〉 − 〈G(f)xl, G(f)yl〉.

Noting that
(

+∞∑
n=1

|xn|√
n
|Fn(w)|

)2

≤
+∞∑
n=1

|xn|2
+∞∑
n=1

|Fn(w)|2
n

,

we conclude by Proposition 3.1 that the function

(4.9) Px(w) =
+∞∑
n=1

xn√
n

Fn(w)

converges absolutely and locally uniformly in D∗ and represents an analytic function
in D∗. Thus,

(4.10) P ′
x(w) =

+∞∑
n=1

xn√
n

F ′
n(w)

converges locally uniformly in D∗. In fact, it follows from Proposition 3.2 that (4.10)
also converges absolutely in D∗. By Fatou’s lemma and (4.7) we get that

1

π

¨

D∗
|P ′

x(w)|2 du dv ≤ lim inf
l→+∞

1

π

¨

D∗
|P ′

x,l(w)|2 du dv

≤ lim inf
l→+∞

1

π

¨

Ĉ−D

|P ′
x,l(w)|2 du dv

= ‖x‖2 − ‖G(f)x‖2.

(4.11)
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Now for any domain Ω in the extended complex plane Ĉ, let A D(Ω) denote the
Hilbert space of all holomorphic functions (up to constants) φ in Ω with the inner
product and norm

(4.12) 〈φ, ψ〉 =
1

π

¨

Ω

φ′(w)ψ′(w) du dv, ‖φ‖ =

(
1

π

¨

Ω

|φ′(w)|2 du dv

) 1
2

< +∞.

Coming back to our situation, it follows from (4.11) that (4.9) determines a linear
operator P : l2 → A D(D∗) sending x ∈ l2 to Px ∈ A D(D∗) which is a bounded and
thus continuous operator with norm ‖P‖ ≤ 1. Consequently, Px,l = Pxl → Px as
l → +∞, so Px(w) =

∑+∞
n=1

xn√
n
Fn(w) converges in A D(D∗). In particular, the first

inequality in (4.11) is actually an equality. When Ĉ − (D ∪ D∗) has measure zero,
we conclude that

(4.13) ‖Px‖2 = ‖x‖2 − ‖G(f)x‖2, x ∈ l2.

More generally, taking limit in (4.8) we obtain

(4.14) 〈Px, Py〉 = 〈x, y〉 − 〈G(f)x,G(f)y〉, x, y ∈ l2.

The following result can be proved by the same reasoning as in [20]. It says that
f ∈ S̃ belongs to

⋃
k<1 S̃(k) if and only if each element of A D(D∗) can be uniquely

represented as
∑+∞

n=1
xn√

n
Fn, x ∈ l2, which converges absolutely and locally uniformly

in D∗ and converges in A D(D∗).

Proposition 4.1. P : l2 → A D(D∗) is one to one and surjective if and only
if f can be extended to a quasiconformal map into the whole plane Ĉ, namely,
f ∈ ⋃

k<1 S̃(k).

5. Main results

In this section, we shall extend Theorem A to a general quasi-circle Γ (see The-
orem 5.1). During the proof, we shall obtain several formulas of the Fredholm eigen-
value λΓ. Recall that Γ is a quasi-circle in the extended complex plane Ĉ with
complementary domains D and D∗. Without loss of generality, we assume that
0 ∈ D and ∞ ∈ D∗. Let f and g belong to

⋃
k<1 S̃(k) and

⋃
k<1 Σ̃(k) respectively,

such that f ′(0) > 0, g′(∞) > 0, and f(∆) = D, g(∆∗) = D∗.
Denote by H̃ the space of all the pairs (h1, h2), where h1 and h2 are real-valued

and harmonic in D and D∗, respectively, with norm

(5.1) ‖(h1, h2)‖ = (DD[h1] + DD∗ [h2])
1
2 < +∞.

It is well known that for each pair (h1, h2) in H̃ , h1 and h2 have boundary values
almost everywhere in Γ = ∂D = ∂D∗. We also denote these boundary values by h1

and h2, respectively. We denote by Ĥ the subspace of H̃ which consists of those
pairs (h1, h2) such that h1 and h2 are equal to each other on Γ almost everywhere.
Clearly, H can be considered as a sub-space of Ĥ . In the following, we sometimes
use h = h1χD + h2χD∗ , which is defined in D ∪D∗, to denote a pair (h1, h2) in H̃ .
Then, h|D = h1, h|D∗ = h2. We first prove the following result.



Fredholm eigenvalue for a quasi-circle and Grunsky functionals 589

Lemma 5.1. There exists some bounded linear isomorphism P̂ : l2 → Ĥ such
that P̂x ∈ H if x ∈ l20. Furthermore, for any x ∈ l2, it holds that

(5.2) DD[P̂x] =
1

2
(‖x‖2+2<〈G(f)x, x̄〉+‖G(f)x‖2), DD∗ [P̂x] =

1

2
(‖x‖2−‖G(f)x‖2).

Proof. For any x ∈ l2, set

(5.3) P̃x(z) =
∞∑

n=1

xn√
n

z̄n +
∞∑

m,n=1

√
nαmn(f)xnzm, z ∈ ∆.

Clearly, the above series converges absolutely and locally uniformly in ∆ and thus
represents a harmonic function in ∆. A direct computation will show

(5.4) D∆[P̃x] = ‖x‖2 + ‖G(f)x‖2.

It follows from (5.4) that (5.3) determines a bounded linear operator P̃ on l2 sending
x to P̃x.

Define

(5.5) P̂x(w) =

{
<P̃x(f

−1(w)), w ∈ D;

<Px(w), w ∈ D∗.

Clearly, P̂x is real and harmonic in D ∪ D∗. A direct computation will show that
P̂x satisfies (5.2). Consequently, (5.5) determines a bounded and thus a continuous
linear operator P̂ : l2 → H̃ which sends x to P̂x. Recall that P̂x denotes the pair
(<P̃x(f

−1),<Px).
Let x ∈ l20. Then Px is a polynomial of w−1 and thus analytic in Ĉ − {0}, so

Px ◦ f is continuous in ∆− {0}. It follows from (3.2), (4.9) and (5.3) that

(5.6) P̃x(z) = Px(f(z)) +
+∞∑
n=1

xn√
n

z̄n −
+∞∑
n=1

xn√
n

z−n, z ∈ ∆.

Thus, P̃x is continuous in ∆, and P̃x = Px ◦ f on the unit circle ∂∆. It follows that
P̂x ∈ H .

Now suppose x ∈ l2. Set xl as before. Then xl ∈ l20, and xl → x as l → +∞.
By the continuity of the operators of P and P̃ , it follows that Pxl → Px, P̃xl → P̃x.
Noting that Pxl ◦ f = P̃xl on ∂∆, we conclude that Px|∂D∗ and P̃x ◦ f−1|∂D are equal
to each other almost everywhere on Γ. Thus, P̂x ∈ Ĥ .

It is clear that P̂ : l2 → Ĥ is one-to-one. It remains to prove that P̂ : l2 → Ĥ
is surjective. Let h ∈ Ĥ be given. We choose an analytic function F on D∗ such
that h = <F on D∗ so that F ∈ A D(D∗), and ‖F‖2 = 2DD∗ [h]. By Proposition 4.1,
there exists some x ∈ l2 such that F = Px. Then h = <Px = P̂x on D∗. We continue
to show that P̂x = h on D. Actually, since h|∂D = h|∂D∗ = <Px|∂D∗ = <P̃x ◦ f−1|∂D

almost everywhere on Γ, we conclude by Dirichlet Principle that h = <P̃x ◦f−1 = P̂x

on D. ¤
Now we begin to prove Theorem 2.2. By Lemma 5.1, any x ∈ l20 corresponds to

P̂x ∈ H such that (5.2) holds. Thus

(5.7)
‖x‖2 + 2<〈G(f)x, x̄〉+ ‖G(f)x‖2

‖x‖2 − ‖G(f)x‖2
=

DD[P̂x]

DD∗ [P̂x]
≤ s(D, D∗).
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Since l20 is dense in l2, we may choose a sequence (xn) in l20 such that ‖xn‖ = 1, and
<〈G(f)xn, x̄n〉 → b(f) as n → +∞. Taking limit in (5.7) we obtain 1+2b(f)+b2(f)

1−b2(f)
≤

s(D,D∗), or equivalently, 1+b(f)
1−b(f)

≤ s(D,D∗).
Conversely, for any h ∈ Ĥ , there exists some x ∈ l2 such that P̂x = h. It follows

from (5.2) that

DD[h]

DD∗ [h]
=

DD[P̂x]

DD∗ [P̂x]
=
‖x‖2 + 2<〈G(f)x, x̄〉+ ‖G(f)x‖2

‖x‖2 − ‖G(f)x‖2
≤ 1 + b(f)

1− b(f)
.

Thus,

s(D,D∗) ≤ sup
Ĥ

DD[h]

DD∗ [h]
≤ 1 + b(f)

1− b(f)
.

This finishes the proof of the first part of Theorem 2.2.
The second part of Theorem 2.2 can be proved by the same way. For com-

pleteness, we sketch the proof here. We need some fundamental properties of Faber
properties for g which we have established in [20]. Precisely, let Gn denote the n-th
Faber polynomial for g, which is a polynomial of degree n determined by the following
expression:

(5.8) log
g(z)− w

bz
= −

∞∑
n=1

1

n
Gn(w)z−n, w ∈ C, z →∞.

It follows from (2.1) and (5.8) that Grunsky coefficients and Faber polynomials are
related by the following relation:

(5.9) Gn(g(z)) = zn + n

∞∑
m=1

βmn(g)z−m, z ∈ ∆∗.

It was proved in [20] that for any x ∈ l2 the function

(5.10) Qx(w) =
∞∑

n=1

xn√
n

Gn(w)

converges absolutely and locally uniformly in D and also converges in A D(D). (5.10)
then determines a bounded linear operator Q : l2 → A D(D) which sends x to Qx. If
we denote by G(g) : l2 → l2 the Grunsky operator determined by

(5.11) G(g) : (xm) 7→
(

+∞∑
n=1

√
mnβmn(g)xn

)
,

it then holds

(5.12) ‖Qx‖2 = ‖x‖2 − ‖G(g)x‖2, x ∈ l2.

For x ∈ l2, set

(5.13) Q̃x(z) =
∞∑

n=1

xn√
n

z̄−n +
∞∑

m,n=1

√
nβmn(g)xnz−m, z ∈ ∆∗,

and define

(5.14) Q̂x(w) =

{
<Qx(w), w ∈ D;

<Q̃x(g
−1(w)), w ∈ D∗.
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The second part of Theorem 2.2 follows from the following result.

Lemma 5.2. The operator Q̂ which sends x to Q̂x is a bounded linear isomor-
phism from l2 onto Ĥ such that Q̂x ∈ H if x ∈ l20. Furthermore, for any x ∈ l2, it
holds that

DD[Q̂x] =
1

2
(‖x‖2 − ‖G(g)x‖2),

DD∗ [Q̂x] =
1

2
(‖x‖2 + 2<〈G(g)x, x̄〉+ ‖G(g)x‖2).

(5.15)

Remark 5.1 From the above discussion, we conclude that in (1.1), (1.3) and
(1.4) we may allow the functions taken from Ĥ , namely,

(5.16)
λΓ + 1

λΓ − 1
= sup

Ĥ

DD[h1]

DD∗ [h2]
= sup

Ĥ

DD∗ [h2]

DD[h1]
.

On the other hand, we may impose some smooth condition on the functions in (1.4).
Precisely, let H1 denote the set of pairs (h1, h2) in H such that h1 is harmonic in
D, and H2 the set of pairs (h1, h2) in H such that h2 is harmonic in D∗. Then for
any x ∈ l2, P̂x ∈ H2, Q̂x ∈ H1. Thus, we have

(5.17)
λΓ + 1

λΓ − 1
= sup

H1

DD∗ [h2]

DD[h1]
= sup

H2

DD[h1]

DD∗ [h2]
.

We proceed to extend Theorem A to a general quasi-circle. For any pair (h1, h2) ∈
H̃ , we denote by h̃2 the harmonic function in D with boundary values h2 on Γ, we
also denote by h∗1 and h̃∗2 the harmonic conjugations of h1 and h̃2, respectively. In
the following, we will use the notation

DΩ[u, v] =
1

π

¨

Ω

(∂zu∂z̄v + ∂z̄u∂zv) dx dy.

It is easy to see that |DΩ[u, v]|2 ≤ DΩ[u]DΩ[v]. Then we have

Proposition 5.1. Under the above notations, it holds that

(5.18)
λΓ + 1

λΓ − 1
= sup

H̃

|DD[h1, h̃
∗
2]|2

DD[h1]DD∗ [h2]
.

Proof. For any pair (h1, h2) ∈ H̃ , noting that (h̃2, h2) ∈ Ĥ , we conclude from
(5.16) that

|DD[h1, h̃
∗
2]|2 ≤ DD[h1]DD[h̃∗2] = DD[h1]DD[h̃2] ≤ λΓ + 1

λΓ − 1
DD[h1]DD∗ [h2].

Thus,

sup
H̃

|DD[h1, h̃
∗
2]|2

DD[h1]DD∗ [h2]
≤ λΓ + 1

λΓ − 1
.

Conversely, let (h1, h2) ∈ H2. Then, h1 = h̃2. Noting that (h∗1, h2) is a pair in
H̃ , we conclude from (5.17) that

sup
H̃

|DD[h1, h̃
∗
2]|2

DD[h1]DD∗ [h2]
≥ sup

H2

|DD[h∗1, h̃
∗
2]|2

DD[h∗1]DD∗ [h2]
= sup

H2

DD[h1]

DD∗ [h2]
=

λΓ + 1

λΓ − 1
.

This finishes the proof of Proposition 5.1. ¤
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Let H̃2 denote the subspace of H̃ consisting of the pairs h = (h1, h2) such that
h1 is continuous in D, harmonic in D, while h2 is harmonic in D∗. Note that we
don’t require that h1 and h2 have the same boundary values on Γ. Clearly, H2 can
be considered as a subspace of H̃2. Examining the proof of Proposition 5.1 (and also
of (5.17)), we find it holds that

(5.19)
λΓ + 1

λΓ − 1
= sup

H̃2

|DD[h1, h̃
∗
2]|2

DD[h1]DD∗ [h2]
.

On the other hand, if h = (h1, h2) ∈ H̃2, then
´

Γ
h1dh2 is well defined, and as

observed by Kühnau [11], we have
ˆ

Γ

h1 dh2 =

ˆ

Γ

h1 dh̃2 =

ˆ

Γ

(h1∂zh̃2 dz + h1∂z̄h̃2 dz̄)

= 2i

¨

D

(∂z̄(h1∂zh̃2)− ∂z(h1∂z̄h̃2)) dx dy

= 2i

¨

D

(∂z̄h1∂zh̃2 − ∂zh1∂z̄h̃2) dx dy

= −2

¨

D

(∂z̄h1∂zh̃
∗
2 + ∂zh1∂z̄h̃

∗
2) dx dy

= −2DD[h1, h̃
∗
2].

(5.20)

The following result follows from (5.19) and (5.20). It is a generalization of Theorem
A in case of a general quasi-circle.

Theorem 5.1. Let Γ be a quasi-circle with complementary domains D and D∗.
Then it holds that

(5.21)
λΓ + 1

λΓ − 1
= sup

| ´
Γ
h1dh2|2

4DD[h1]DD∗ [h2]
,

where the sup is taken from all pairs (h1, h2), where h1 is continuous in D, harmonic
in D, while h2 is harmonic in D∗.
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