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Abstract. In this work we first generalize the projection results concerning the dimension
spectrum of projected measures on Rn to parametrized families of transversal mappings between
smooth manifolds and measures on them. The projection theorems for the lower q-dimension were
first considered in [FO] and [HK]. Theorems for the upper q-dimension were first considered in
[FO] and [JJ]. After proving the generalized results, we compute for 1 < q ≤ 2 the lower and the
upper q-dimensions of the natural projection of a probability measure which is invariant under the
geodesic flow on the unit tangent bundle of a two-dimensional Riemann manifold.

1. Introduction

The dimensional properties of projections of sets and measures have been studied
for decades. This study was initiated by Marstrand in 1954. In [Mar] he proved a well-
known theorem according to which the Hausdorff dimension, dimH, of a planar set is
preserved under typical orthogonal projections. In 1968 Kaufman [K] reproved the
same result using potential theoretic methods and in 1975 Mattila [Mat1] generalized
it to higher dimensions. For measures the analogous principle was discovered by
Kaufman [K], Mattila [Mat2], Hu and Taylor [HT] and Falconer and Mattila [FM].
It can be stated in the following form: if µ is a compactly supported Radon measure
on Rn, then for almost all V ∈ G(n,m)

dimH PV ∗µ = dimH µ provided that dimH µ ≤ m.

Here we mean almost all with respect to the natural orthogonally invariant proba-
bility measure on G(n,m). On the other hand, if dimH µ > m, then for almost all
V ∈ G(n,m)

PV ∗µ ¿ H m|V .

In addition, if the m-energy of µ is finite, then for almost all V ∈ G(n,m)

PV ∗µ ¿ H m|V with the Radon–Nikodym derivative in L2(V, H m|V ).

Above G(n,m) denotes the Grassmann manifold of all m-dimensional linear sub-
spaces of Rn, PV : Rn → V is the orthogonal projection onto V ∈ G(n, m) and PV ∗ µ
is the image measure of µ under the projection PV . In addition, by µ ¿ ν we denote
the absolute continuity of a measure µ with respect to a measure ν, and µ|A is the
restriction of a measure µ to a set A.
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The geometry of the packing dimension, dimp, is less regular then that of the
Hausdorff dimension. Falconer and Howroyd [FH] proved the following theorem for
the packing dimension of projected measures: if µ is a finite Borel measure on Rn,
then

dimp PV∗µ = dimm µ

for almost all V ∈ G(n,m), where dimm is a packing type dimension defined by
using a certain m-dimensional kernel. It can happen that dimm µ < dimp µ, which
means that the dimension can decrease under typical projections, but still the packing
dimension is the same for almost all projections.

Hunt and Kaloshin [HK] showed that the lower q-dimension, Dq, behaves similar
to the Hausdorff dimension under projections, provided that 1 < q ≤ 2 (for the
definition of q-dimensions, see section 2). They proved the following theorem using
potential theoretic methods: Let 1 < q ≤ 2 and let µ be a compactly supported Borel
probability measure on Rn. Then

Dq(PV ∗µ) = min{m,Dq(µ)}
for almost all V ∈ G(n,m). Falconer and O’Neil [FO] reproved their theorem by
studying certain appropriately defined convolution kernels. By these methods they
also proved the following projection theorem for the upper q-dimension, which shows
that the behaviour of the upper q-dimension is similar to that of the packing dimen-
sion: Let µ be a compactly supported Borel probability measure on Rn. Then

Dq(PV ∗µ) = D
m

q (µ)

for almost all V ∈ G(n,m), where D
m

q (µ) is a dimension defined by using the m-
dimensional kernel mentioned above. As in the case of the packing dimension, it can
happen that D

m

q (µ) < Dq(µ). In [JJ] E. Järvenpää and M. Järvenpää also consid-
ered the upper q-dimension using potential theoretic methods and they presented an
alternative proof for the above theorem.

All the results mentioned above are “almost all”-results, which give no information
about any specific projection. However, Ledrappier and Lindenstrauss discovered
that similar methods work for one specific projection. In [LL] they studied measures
on the unit tangent bundle SM of a compact Riemann surface M . They showed that
if µ is a Radon probability measure on SM and µ is invariant under the geodesic
flow, then

dimH Π∗µ = dimH µ if dimH µ ≤ 2, and Π∗µ ¿ H 2|M if dimH µ > 2.

Here Π: SM → M is the natural projection. E. Järvenpää, M. Järvenpää and
Leikas [JJLe] reproved the above theorem using the generalized projection formalism
introduced by Peres and Schlag in [PS]. Their proof also explains why the above
theorem fails in higher dimensions. Leikas [Le] proved an analogous theorem for the
packing dimension using similar methods.

In this paper we consider the question of how the dimension spectrum of an
invariant measure behaves under the natural projection. In order to do this, we first
generalize the results from [FO], [HK] and [JJ] to parametrized families of transversal
mappings between smooth manifolds and measures on them (Theorem 3.8). We use
similar methods to those of Falconer and O’Neil. However, their methods do not
directly work in our setting, but circumventing some technical problems eventually
leads to a similar proof. After this we compute the dimension spectrum of Π∗µ in
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a similar setting as in [LL] (Theorem 4.2). Altough the result for the q-dimension
is similar to those concerning the Hausdorff dimension and the packing dimension,
we have to use different methods for the proof because the q-dimensions of slices
of a measure do not behave as well as the Hausdorff or the packing dimension (see
Remark 4.4). Finally, we give an example of a locally invariant measure, whose upper
q-dimension decreases under the projection even in the two-dimensional case.

2. Preliminaries and definitions

In the following definitions (X, d) is a metric space. We denote by B(x, r) the
open ball with center at x ∈ X and radius r > 0.

Definition 2.1. Let µ be a Borel probability measure on X with compact sup-
port. For every q 6= 1 we define the lower and upper q-dimensions by

Dq(µ) = lim inf
r→0

log
´

µ(B(x, r))q−1 dµ(x)

(q − 1) log r

and

Dq(µ) = lim sup
r→0

log
´

µ(B(x, r))q−1 dµ(x)

(q − 1) log r
.

If q > 1 and if X = Rn, these definitions are equivalent to

(2.1) Dq(µ) = lim inf
r→0

log
∑

C∈Cr
µ(C)q

(q − 1) log r

and

(2.2) Dq(µ) = lim sup
r→0

log
∑

C∈Cr
µ(C)q

(q − 1) log r
,

where the sums are over all r-mesh cubes in Rn, see [FO] and [HP]. In this paper we
consider the q-dimensions only for q > 1.

As in [FO], for every k ∈ N we define a new dimension of a measure, which is
defined by means of convolving the measure with a certain k-dimensional kernel.

Definition 2.2. Let µ be a Borel probability measure on X with compact sup-
port. For every x ∈ X, r > 0 and k ∈ N we define

(2.3) F k
µ (x, r) =

ˆ

X

min{1, rkd(x, y)−k} dµ(y) = krk

ˆ ∞

r

µ (B(x, h))

hk+1
dh,

where the last inequality follows from Fubini’s theorem. Furthermore, for q 6= 1 we
define

Dk
q(µ) = lim inf

r→0

log
´

F k
µ (x, r)q−1 dµ(x)

(q − 1) log r

and

D
k

q(µ) = lim sup
r→0

log
´

F k
µ (x, r)q−1 dµ(x)

(q − 1) log r
.

The following technical lemma from [FO] is needed later on.
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Lemma 2.3. Let p ≥ 0. There exists c > 0 depending only on n and p such
that for any compactly supported finite Borel regular measure µ on Rn and for all
0 < r ≤ h ˆ

µ(B(x, h))p dµ(x) ≤ c

(
h

r

)np ˆ
µ(B(x, r))p dµ(x).

Proof. See Lemma 2.7 from [FO]. ¤
The following theorem concerning the dimension spectrum of projected measures

is also from [FO].

Theorem 2.4. Let µ be a compactly supported Borel regular probability mea-
sure on Rn and let 1 ≤ m ≤ n. Then for all q > 1 and all V ∈ G(n,m)

Dq(µV ) ≤ Dm
q (µ) = min

{
m,Dq(µ)

}
and Dq(µV ) ≤ D

m

q (µ).

Moreover, for all 1 < q ≤ 2 and for γn,m-almost all V ∈ G(n,m)

Dq(µV ) = Dm
q (µ) = min

{
m,Dq(µ)

}
and Dq(µV ) = D

m

q (µ).

Here µV = PV ∗µ is the image measure under the orthogonal projection onto an
m-plane V .

Proof. See Theorem 3.9 from [FO]. ¤

3. The dimension spectrum and transversal mappings between manifolds

In this section we generalize Theorem 2.4 to families of transversal mappings.
First we state two propositions from [FO] for later use.

Proposition 3.1. Let (N, dN) be a smooth n-dimensional Riemann manifold
equipped with the distance function dN induced by the Riemann metric. Let 1 ≤
m ≤ n, p > 0, ε > 0 and R > 1. Then there exists a constant c > 0 such that for any
compactly supported Borel regular probability measure µ on N with spt µ ⊂ B(y,R)
for some y ∈ N , and for any 0 < r ≤ 1

ˆ

N

Fm
µ (x, r)p dµ(x) ≤ crmp−ε

ˆ ∞

r

h−mp−1

ˆ

N

µ(B(x, h))p dµ(x) dh.

Here spt µ is the support of the measure µ.

Proof. See Proposition 2.5 in [FO]. The same proof works also in this more gen-
eral setting, since one only needs a lemma for non-decreasing functions f : [0,∞) →
[0,∞) such that f(h) is constant for all large enough h. The function for which the
lemma is applied is h 7→ µ(B(x, h)), where x ∈ spt µ is fixed. ¤

The next proposition from [FO] states that the lower q-dimension of a measure
µ is the same as the lower dimension defined using the kernel Fm

µ (x, r).

Proposition 3.2. Let (N, dN) be a smooth n-dimensional Riemann manifold
equipped with the distance function dN induced by the Riemann metric and let µ be
a compactly supported Borel regular probability measure on N . Then for 1 ≤ m ≤ n
and q > 1

Dm
q (µ) = min{m,Dq(µ)}.
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Proof. See [FO, Proposition 3.8]. Again the same proof works also in this more
general setting, since it is based on [FO, Proposition 2.5], which was above noticed
to hold also in our case. ¤

Next we introduce the setting we are going to work with. Let (L, dL) be a smooth,
l-dimensional Riemann manifold equipped with the distance function dL induced by
the Riemann metric, let (N, dN) be a smooth n-dimensional Riemann manifold and let
(M, dM) be a smooth m-dimensional Riemann manifold. We suppose that l, n ≥ m.
Let P : L × N → M, P (λ, x) = Pλ(x) be a continuous mapping such that for all
j ∈ {0, 1, 2} there exists a constant Cj such that

(3.1) ||Dj
λP (λ, x)|| ≤ Cj

for all (λ, x) ∈ L×N . The basic assumptions we need are the following:
(1) There exist collections AL = {(V, ψ)} and AM = {(U,ϕ)} of charts on L

and M , respectively, such that AL is a cover of L, AM is a cover of M and
the Lipschitz constants of the mappings ϕ, ϕ−1, ψ and ψ−1 are bounded from
above by a constant K ≥ 1, which may depend on the mapping.

(2) Define

X = {(λ, x, y) ∈ L×N2 : x 6= y, there exists
(U,ϕ) ∈ AM such that Pλ(x), Pλ(y) ∈ U}.

We assume that the mapping T : X → Rm,

Tx,y(λ) =
ϕ ◦ Pλ(x)− ϕ ◦ Pλ(y)

dN(x, y)

is transversal, i.e., there exists a constant CT > 0 (which might depend on
the chart (U,ϕ) used in the definition of T ) such that the property

(3.2) |Tx,y(λ)| ≤ CT

implies that

(3.3) det
(
DTx,y(λ) (DTx,y(λ))T

)
≥ C2

T .

Here D is the derivative with respect to λ and AT stands for the transpose of
a matrix A. We refer to this property by saying that P is transversal.

Moreover, we assume that for any chart (V, ψ) ∈ AL there exists a constant
CL such that

(3.4) |∂λj
∂λk

Tx,y(λ)i| ≤ CL

for all j, k ∈ {1, . . . , l}, i ∈ {1, . . . ,m}, and for all λ ∈ V , x, y ∈ N such that
(λ, x, y) ∈ X.

From now on we will assume that the manifolds (L, dL), (N, dN) and (M, dM), and
the mapping P : L×N → M satisfy the above assumptions.

Before stating the main result of this section, we will prove results which will
eventually lead to a proof of our main theorem. In the next proposition the transver-
sality condition plays a crucial role. The proposition is very similar to [JJN, Propo-
sition 3.1]. However, our result is a bit weaker due to our weaker assumptions.
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Proposition 3.3. Let (L, dL), (N, dN), (M, dM) and P : L×N → M be as above
and let Ñ ⊂ N be compact. Then for all λ0 ∈ L there exist constants Cλ0 > 0 and
rλ0 > 0 such that

H l{λ ∈ B(λ0, rλ0) : dM(Pλ(x), Pλ(y)) ≤ r} ≤ Cλ0 min{1, rmdN(x, y)−m}
for all 0 < r ≤ rλ0 and for all distinct x, y ∈ Ñ .

Proof. Fix λ0 ∈ L. Since Ñ is compact, the set Pλ0(Ñ) is also compact. Thus we
can choose r1 > 0 such that the closed r1-neighbourhood of the set Pλ0(Ñ), denoted
by B

(
Pλ0(Ñ), r1

)
, is compact. This follows from the fact that the set Pλ0(Ñ) can be

covered by finitely many precompact coordinate neighbourhoods. Moreover, we can
assume that B(λ0, r1) ⊂ V for some V ∈ AL. By Lebesgue’s number lemma there
exists r2 < r1/2 such that for some finite subcollection {(Ui, ϕi)}k

i=1 ⊂ AM it holds
that for any p ∈ B

(
Pλ0(Ñ), r2

)

(3.5) B(p, r2) ⊂ Ui for some i.

Moreover, B(λ, r2) ⊂ B(λ0, r1) ⊂ V for all λ ∈ B(λ0, r2). The proof itself is the same
as the proof of [JJN, Proposition 3.1]. We only have to replace the manifold L in
their proof with the ball B(λ0, r2), the manifold M with the set B

(
Pλ0(Ñ), r2

)
and

the constant R with r2. In this setting the assumptions of [JJN, Proposition 3.1] are
satisfied. However, in this case the constants in the statement depend on r2 and thus
they depend on λ0. ¤

The next lemma is similar to Lemma 2.3. In the manifold (M, dM) we get a
somewhat weaker result, but it is sufficient for our purposes.

Lemma 3.4. Let (M, dM) be as above, let µ be a compactly supported Borel
regular propability measure on M and let p ≥ 0. Then there exist constants R > 0
and c1 > 0 such that if 0 < h ≤ R, then for all 0 < r ≤ h

ˆ

M

µ(B(x, h))p dµ(x) ≤ c1

(
h

r

)mp ˆ

M

µ(B(x, r))p dµ(x).

Proof. By Lebesgue’s number lemma, we find coordinate charts (Ui, ϕi), i =
1, . . . , k, and a constant R > 0 such that for all x ∈ M there is an index i ∈ {1, . . . , k}
for which spt µ∩B(x,R) ⊂ Ui. Since the Lipschitz constants of the mappings ϕi and
ϕ−1

i are uniformly bounded from above by a constant K ≥ 1, we have that for any
x ∈ Ui

ϕ−1
i (B(ϕi(x), K−1r)) ⊂ Ui ∩B(x, r) ⊂ ϕ−1

i (B(ϕi(x), Kr))

for all 0 < r ≤ R. Let µi = µ|Ui
. By Lemma 2.3 the following holds: if 0 < h ≤ R,

then for all 0 < r ≤ h
ˆ

M

µ(B(x, h))p dµ(x) ≤
k∑

i=1

ˆ

M

µi(B(x, h))p dµi(x)

≤
k∑

i=1

ˆ

M

µi(ϕ
−1
i (B(ϕi(x), Kh)))p dµi(x)

=
k∑

i=1

ˆ

Rm

ϕi∗µi(B(y,Kh))p dϕi∗µi(y)



The dimension spectrum of projected measures on Riemann manifolds 601

≤
k∑

i=1

c

(
K2h

r

)mp ˆ

Rm

ϕi∗µi(B(y,K−1r))p dϕi∗µi(y)

≤
k∑

i=1

c

(
K2h

r

)mp ˆ

M

µi(B(x, r))p dµi(x)

≤ c1

(
h

r

)mp ˆ

M

µ(B(x, r))p dµ(x).

Thus the claim holds. ¤
Combining Proposition 3.1 and Lemma 3.4 gives the following proposition.

Proposition 3.5. Let (M,dM) be as above, let p ≥ 0 and ε > 0. Let µ be a
compactly supported Borel regular probability measure on M . Then for sufficienly
small r̂

M

µ(B(x, r))p dµ(x) ≤
ˆ

M

Fm
µ (x, r)p dµ(x) ≤ r−ε

ˆ

M

µ(B(x, r))p dµ(x).

In particular, for q > 1

Dq(µ) = Dm
q (µ).

Here Dq and Dm
q denote either the upper or the lower q-dimensions.

Proof. The left-hand inequality is clear. By Proposition 3.1 we have for small rˆ

M

Fm
µ (x, r)p dµ(x)

≤ crmp−ε

ˆ R

r

h−mp−1

ˆ

M

µ(B(x, h))p dµ(x) dh + crmp−ε

ˆ ∞

R

h−mp−1dh,

where R is as in Lemma 3.4. Combining this with Lemma 3.4 gives
ˆ

M

Fm
µ (x, r)p dµ(x) ≤ c2r

−ε

ˆ R

r

h−1

ˆ

M

µ(B(x, r))p dµ(x) dh + c2r
mp−εR−mp

≤ c2r
−ε(log R− log r)

ˆ

M

µ(B(x, r))p dµ(x) + c3r
−ε

ˆ

M

µ(B(x, r))p dµ(x),

since ( r

R

)mp

≤ c1

´
M

µ(B(x, r))p dµ(x)´
M

µ(B(x,R))p dµ(x)

by Lemma 3.4. Redefining ε gives the claim. Note that the term
´

M
µ(B(x,R))p dµ(x)

is a constant since R is a constant and it is included in c3.
The second statement follows from the first one by using it for p = q − 1, taking

logarithms, dividing by (q − 1) log r and using the definitions of q-dimensions. ¤

Proposition 3.6. Let (L, dL), (N, dN), (M,dM) and P : L × N → M be as
above, let µ be a compactly supported Borel regular probability measure on N and
let µλ = Pλ∗µ.

1) Let q ≥ 1. Given ε > 0, for all λ ∈ L,

rε

ˆ

N

Fm
µ (x, r)q−1 dµ(x) ≤

ˆ

M

µλ(B(y, r))q−1 dµλ(y)
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for sufficiently small r.
2) Let 1 ≤ q ≤ 2. Given ε > 0, for H l-almost all λ ∈ L,ˆ

M

µλ(B(y, r))q−1 dµλ(y) ≤ r−ε

ˆ

N

Fm
µ (x, r)q−1 dµ(x)

for sufficiently small r.

Proof. 1) Let λ ∈ L. First we notice that since Pλ is Lipschitz on spt µ, there
exists a constant c ≥ 1 such that

Fm
µ (x, r) ≤ cFm

µλ
(Pλ(x), r)

for all x ∈ spt µ. Thus by Proposition 3.5ˆ

N

Fm
µ (x, r)q−1 dµ(x) ≤ c

ˆ

M

Fm
µλ

(y, r)q−1 dµλ(y) ≤ cr−ε

ˆ

M

µλ(B(y, r))q−1 dµλ(y)

for small r. Redefining ε gives the claim.
2) Fix λ0 ∈ L. Using Proposition 3.3 we obtain constants Cλ0 and rλ0 such that

H l{λ ∈ B(λ0, rλ0) : dM(Pλ(x), Pλ(y)) ≤ r} ≤ Cλ0 min{1, rmdN(x, y)−m}
for all 0 < r ≤ rλ0 and for all distinct x, y ∈ spt µ. Hence by Fubini’s theoremˆ

B(λ0,rλ0
)

µλ(B(Pλ(x), r)) dH l(λ) =

ˆ

B(λ0,rλ0
)

µ(P−1
λ (B(Pλ(x), r))) dH l(λ)

=

ˆ

B(λ0,rλ0
)

µ{y ∈ N : dM(Pλ(x), Pλ(y)) ≤ r} dH l(λ)

=

ˆ

N

H l{λ ∈ B(λ0, rλ0) : dM(Pλ(x), Pλ(y)) ≤ r} dµ(y) ≤ Cλ0F
m
µ (x, r),

whenever 0 < r < rλ0 . Using Jensen’s inequality for the concave function x 7→ xq−1

we have for all x ∈ spt µ

ˆ

B(λ0,rλ0
)

µλ(B(Pλ(x), r))q−1 dH l(λ) ≤ C̃

(ˆ

B(λ0,rλ0
)

µλ(B(Pλ(x), r)) dH l(λ)

)q−1

≤ C1F
m
µ (x, r)q−1

for some constant C1 independent of r. The constant C̃ comes from the fact that the
measure H l|B(λ0,rλ0

) is not necessarily a probability measure. Integrating both sides
with respect to µ and using Fubini’s theorem gives

(3.6)
ˆ

B(λ0,rλ0
)

ˆ

M

µλ(B(y, r))q−1 dµλ(y) dH l(λ) ≤ C1

ˆ

N

Fm
µ (x, r)q−1 dµ(x)

for all 0 < r < rλ0 . From this we see that for all α > 0 and for all 0 < r < rλ0

H l

{
λ ∈ B(λ0, rλ0) :

ˆ

M

µλ(B(y, r))q−1 dµλ(y) > α

ˆ

N

Fm
µ (x, r)q−1 dµ(x)

}
≤ C1α

−1.

Using this for r = 2−k and α = 2kε, where k is large enough, the Borel–Cantelli
lemma implies that for H l-almost all λ ∈ B(λ0, rλ0) we haveˆ

M

µλ(B(y, 2−k))q−1 dµλ(y) ≤ 2kε

ˆ

N

Fm
µ (x, 2−k)q−1 dµ(x)
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for all sufficiently large integers k. Extrapolating to other r and redefining ε appro-
priately we have that for H l-almost all λ ∈ B(λ0, rλ0)ˆ

M

µλ(B(y, r))q−1 dµλ(y) ≤ r−ε

ˆ

N

Fm
µ (x, r)q−1 dµ(x)

for all sufficiently small r. The claim follows from the fact that the manifold L can
be covered with countably many balls B(λ0, rλ0), since we assume the manifold to
be second countable and therefore it is Lindelöf. ¤

Theorem 3.7. Let (L, dL), (N, dN), (M,dM) and P : L×N → M be as above,
and let µ be a compactly supported Borel regular probability measure on N . Then
for q > 1 and all λ ∈ L,

lim inf
r→0

(
log

´
Fm

µ (x, r)q−1 dµ(x)

(q − 1) log r
− log

´
µλ(B(x, r))q−1 dµλ(x)

(q − 1) log r

)
≥ 0.

Moreover, for 1 < q ≤ 2 and H l-almost all λ ∈ L,

lim
r→0

(
log

´
Fm

µ (x, r)q−1 dµ(x)

(q − 1) log r
− log

´
µλ(B(x, r))q−1 dµλ(x)

(q − 1) log r

)
= 0.

Here µλ = Pλ∗µ.

Proof. This follows directly from Proposition 3.6. ¤
Theorem 3.7 and Proposition 3.2 imply our main theorem of this section.

Theorem 3.8. Let (L, dL), (N, dN), (M,dM) and P : L×N → M be as above,
and let µ be a compactly supported Borel regular probability measure on N .

1) For all q > 1 and all λ ∈ L

Dq(µλ) ≤ Dm
q (µ) = min{m,Dq(µ)} and Dq(µλ) ≤ D

m

q (µ).

2) For all 1 < q ≤ 2 and H l-almost all λ ∈ L

Dq(µλ) = Dm
q (µ) = min{m,Dq(µ)} and Dq(µλ) = D

m

q (µ).

Here µλ = Pλ∗µ.

Proof. This follows from Theorem 3.7, Proposition 3.2 and the definitions of
q-dimensions. ¤

4. The dimension spectrum of the projection of a measure
invariant under the geodesic flow

In this section we study the natural projection of a two-dimensional Riemann
manifold. The behaviour of the Hausdorff dimension of a locally invariant probability
measure on the unit tangent bundle of a Riemann surface under the natural projection
was studied in [LL] and [JJLe]. For the packing dimension this behaviour was studied
in [Le]. By those results we know that the Hausdorff dimension is preserved under
the natural projection, but the packing dimension can decrease. Next we will prove
analogous theorems for the dimension spectrum of the projected measure. As one
could expect, the lower q-dimension is preserved under the natural projection, while
the upper one can decrease.
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Definition 4.1. Let SM be the unit tangent bundle of a smooth, compact Rie-
mann manifold M. The geodesic flow G : R× SM → SM is defined by

G(t, (x, v)) = Gt(x, v) = (γv(t), γ̇v(t)) ,

where γv is the unique geodesic satisfying γv(0) = x and γ̇v(0) = v.
A measure µ on SM is invariant under the geodesic flow, if Gt∗µ = µ for every

t ∈ R, that is, µ
(
G−1

t (A)
)

= µ(A) for all subsets A ⊂ SM .

The main result of this section is the following theorem.

Theorem 4.2. Let M be a smooth, compact Riemann surface, let µ be a Borel
regular probability measure on the unit tangent bundle SM , and let Π: SM → M be
the natural projection. If µ is invariant under the geodesic flow, then for 1 < q ≤ 2

Dq(Π∗µ) = D2
q(µ) and Dq(Π∗µ) = D

2

q(µ).

For the proof of Theorem 4.2 we need to prove a few technical lemmas, but first
we are going to fix our notation, which is similar to that of Section 3 in [JJLe]. The
invariance of the measure µ and the compactness of the manifold M imply that there
exist sets U1, . . . , Uk which cover SM and for the restricted measures µj = µ|Uj

the
following holds: µj = ψ∗(νj×L 1) is the image measure under a bi-Lipschitz mapping
ψ from a compact set Ĩ = [0, 1]3 ⊂ R3 to its image ψ(Ĩ) ⊂ SM , and νj is a finite
measure on [0, 1]2 for every j ∈ {1, . . . , k}. This kind of measures µj are from now
on called locally invariant. For more details see Section 3 in [JJLe].

It holds that

(4.1) Dq (Π∗µ) = min
j

Dq(Π∗µj) and Dq (Π∗µ) = min
j

Dq(Π∗µj).

This can be seen by covering the manifold M by finitely many coordinate neighbour-
hoods and considering the measures in local coordinates. In local coordinates (4.1) is
easy to prove using the definitions (2.1) and (2.2) for the q-dimensions and applying
Hölder’s inequality.

By (4.1) it is enough to prove Theorem 4.2 for the measures µj. To do this, we
take some j ∈ {1, . . . , k} and denote µ̃ = µj and ν = νj. In [JJLe] it was shown that
there exists a transversal mapping P : [0, 1]× [0, 1]2 → R, P (t, x) = Pt(x) such that
the dimension of (Φ ◦ Π)∗µ̃ is the same than that of the measure µ′ defined by

(4.2)
ˆ

R2

g(x, t) dµ′(x, t) =

ˆ 1

0

ˆ

R

g(x, t) dPt∗ν(x) dL 1(t)

for all Borel functions g : R× [0, 1] → [0,∞]. Here Φ is a coordinate mapping defined
on an open set U ⊂ M for which [0, 1]2 ⊂ Φ(U). For details see Sections 3 and 4 in
[JJLe].

In order to make use of the condition (4.2), we prove a lemma which gives a lower
bound for the q-dimension of the measure Π∗µ̃.

Lemma 4.3. Let 1 < q ≤ 2 and let µ′ be the measure defined by equation (4.2).
Then

D2
q((Φ ◦ Π)∗µ̃) = D2

q(µ
′) ≥ D1

q(ν) + 1.

Here Dm
q (·) is either the lower or the upper modified q-dimension.
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Proof. Let 0 < p ≤ 1. Then by the definition of µ′ and equation (2.3) it holds
thatˆ

F 2
µ′((x, t), r)pdµ′(x, t) =

ˆ (
2r2

ˆ ∞

r

h−3µ′ (B((x, t), h)) dh

)p

dµ′(x, t)

≤
ˆ 1

0

ˆ

R

(
2r2

ˆ ∞

r

h−3

ˆ t+h

t−h

Ps∗ν(B(x, h))dL 1(s)dh

)p

dPt∗ν(x)dL 1(t)

=

ˆ 1

0

ˆ

[0,1]2

(
2r2

ˆ ∞

r

h−3

ˆ t+h

t−h

ν
(
P−1

s (B(Pt(x), h))
)
dL 1(s)dh

)p

dν(x)dL 1(t).

Let y ∈ P−1
s (B(Pt(x), h)). Then by inequality (3.1)

h > |Pt(x)− Ps(y)| ≥ |Pt(x)− Pt(y)| − |Pt(y)− Ps(y)| ≥ |Pt(x)− Pt(y)| − C1h,

which implies |Pt(x)−Pt(y)| < (C1+1)h. Thus y ∈ P−1
t (B(Pt(x), Ch)) for C = C1+1.

It follows thatˆ
F 2

µ′((x, t), r)p dµ′(x, t)

≤
ˆ 1

0

ˆ

[0,1]2

(
2r2

ˆ ∞

r

h−3

ˆ t+h

t−h

ν
(
P−1

t (B(Pt(x), Ch))
)
dL 1(s)dh

)p

dν(x) dL 1(t)

=

ˆ 1

0

ˆ

R

(
4r2

ˆ ∞

r

h−2Pt∗ν ((B(x,Ch))) dh

)p

dPt∗ν(x) dL 1(t)

= C ′rp

ˆ 1

0

ˆ

R

F 1
Pt∗ν(x, Cr)p dPt∗ν(x) dL 1(t).

Let ε > 0. First using [FO, Proposition 2.8] and then covering the interval [0, 1] by a
finite number of balls B(ti, ri) given by Proposition 3.3, we have by inequality (3.6)
thatˆ

F 2
µ′((x, t), r)p dµ′(x, t) ≤ C ′rp−ε

ˆ 1

0

ˆ

R

Pt∗ν (B(x,Cr))p dPt∗ν(x) dL 1(t)

≤ C ′rp−ε

k∑
i=1

ˆ

B(ti,ri)

ˆ

R

Pt∗ν (B(x, Cr))p dPt∗ν(x) dL 1(t)

≤ C̃rp−ε

ˆ

[0,1]2
F 1

ν (x,Cr)p dν(x)

for all small enough r. Using this for p = q − 1, we have that

D2
q(µ

′) ≥ 1− ε

q − 1
+ D1

q(ν).

Since ε > 0 was arbitrary, the claim is proved. ¤

Remark 4.4. Note that in the previous lemma it is crucial that the measure µ′

is defined by using the images of ν under a transversal mapping P . If for all t ∈ [0, 1]
we have a compactly supported Borel regular measure νt on R, if µ′ is a Borel regular
measure on R× [0, 1] defined by

ˆ

R2

g(x, t) dµ′(x, t) =

ˆ 1

0

ˆ

R

g(x, t) dνt(x) dL 1(t),
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and if there exists α > 0 such that D1
q(νt) ≥ α for L 1-almost all t ∈ [0, 1], then it

does not in general hold that D2
q(µ

′) ≥ α + 1. For the Hausdorff dimension and the
packing dimension the above inequality holds. The difference follows from the fact
that the q-dimensions of slices of a measure do not behave as well as the Hausdorff or
the packing dimension. For the definition of these slices see [Mat3, Chapter 10]. For
the Hausdorff and the packing dimension we have the following: Let ϑ be a compactly
supported Borel regular measure on R2 such that dim(ϑ) > 1 and PV ∗ϑ ¿ H 1|V for
all lines V ∈ G(2, 1), where PV is the orthogonal projection onto the line V . Then
for all V ∈ G(2, 1) and almost all t ∈ V ⊥,

H 1-ess inf
t∈V ⊥

{dim(ϑV,t) : ϑV,t 6= 0} ≤ dim(ϑ)− 1.

(See the proof of Lemma 3.1 in [JM].) For the q-dimensions this does not hold, as
the following example shows. Let 1 < q ≤ 2 and let (2 − q)/q < λ < 1. Define a
measure ϑ by dϑ = ||x||−(λ+1) dL 2|[0,1]×[0,1], and let V be the x-axis. Then for the
slices ϑV,t, t ∈ [0, 1], it holds that

Dq(ϑV,t) = D1
q(ϑV,t) = 1 whenever t 6= 0,

but for the measure ϑ we have

Dq(ϑ) = D2
q(ϑ) =

q(1− λ)

q − 1
< 2.

This explains why we cannot use similar methods as in [JJLe] and [Le] to prove
the dimension bound for the measure defined by equation (4.2). This also gives
an answer to the question that arises naturally from [FO]. In Proposition 4.2 they
consider the q-dimension of slices of a measure for 0 < q < 1 and remark that similar
methods cannot be used for q > 1. The above example shows that for 1 < q ≤ 2 the
proposition does not hold.

Lemma 4.5. For 1 < q ≤ 2 it holds that

(4.3) Dq ((Φ ◦ Π)∗ µ̃) = D2
q(µ̃),

where Dq(·) and D2
q(·) are either the lower or the upper q-dimensions.

Proof. First we will show that

(4.4) D2
q(µ̃) = D1

q(ν) + 1.

Since ψ is a bi-Lipschitz mapping, we have that for all (y, s) ∈ Ĩ and r > 0

(4.5)

F 1
ν (y, r) = r

ˆ ∞

r

ν (B(y, h))

h2
dh = r

ˆ ∞

r

ν (B(y, h)) · h
h3

dh

³ r

ˆ ∞

r

(ν ×L 1) (B((y, s), h))

h3
dh

³ r

ˆ ∞

r

ψ∗(ν ×L 1) (B(ψ(y, s), h))

h3
dh

³
F 2

ψ∗(ν×L 1) (ψ(y, s), r)

r
=

F 2
µ̃ (ψ(y, s), r)

r
.

By A ³ B we denote that the ratio A
B

is bounded away from 0 and ∞ by some
constants. Above these constants are independent of y, s and r. By raising both sides
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of the equation (4.5) to the power q − 1 and integrating with respect to ν ×L 1|[0,1]

we see that ˆ
F 1

ν (y, r)q−1 dν(y) ³ r−(q−1)

ˆ
F 2

µ̃(x, r)q−1 dµ̃(x).

Equality (4.4) follows directly from this and the definition of Dm
q (·).

By Proposition 3.5 we have that Dq((Φ ◦ Π)∗ µ̃) = D2
q((Φ ◦ Π)∗ µ̃). Thus by

Lemma 4.3 and equality (4.4)

Dq((Φ ◦ Π)∗ µ̃) ≥ D1
q(ν) + 1 = D2

q(µ̃).

On the other hand, the fact that the dimension Dm
q (·) does not increase under Lips-

chitz mappings implies that

Dq((Φ ◦ Π)∗ µ̃) = D2
q((Φ ◦ Π)∗ µ̃) ≤ D2

q(µ̃),

proving the claim. ¤
Proof of Theorem 4.2. The claim follows directly from Lemma 4.5 and the fact

that Φ does not change the dimension as a bi-Lipschitz mapping. ¤
Example 4.6. Proposition 3.2 and Theorem 4.2 imply that as in the case of the

Hausdorff dimension, the lower q-dimension is preserved under the natural projection
in the two-dimensional case. However, the upper q-dimension may decrease under
the projection. Here we will give an example of such a measure. We use the measure
constructed in [FM, Example 5.1] to obtain a locally invariant measure whose upper
q-dimension for 1 < q ≤ 2 decreases under the natural projection. Using their
example we obtain for 0 < d < d < 2, d < 1 a finite, compactly supported measure
ν on [0, 1]2, for which

D
1

q(ν) ≤ d(1− 1
2
d)

1 + 1
2
d− d

< Dq(ν).

Defining
µ̃ = ψ∗(ν ×L 1),

we obtain a locally invariant measure for which

Dq(Π∗µ̃) = D
2

q(µ̃) = D
1

q(ν) + 1 < Dq(ν) + 1 = Dq(µ̃).
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