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Abstract. We develop various upper and lower estimates for p-modulus of curve families on
ring domains in the setting of abstract metric measure spaces and derive p-Loewner type estimates
for continua. These estimates are obtained for doubling metric measure spaces or Q-Ahlfors regular
metric measure spaces supporting (1, p)-Poincaré inequality for the situations of 1 ≤ p ≤ Q and
p > Q. We also study p-modulus estimates with respect to Riesz potentials.

1. Introduction and preliminaries

Recently there has been increasing interest in the geometry of the p-harmonic
world. If p = n, the relations between n-harmonics and conformal and quasicon-
formal maps allow us to discover a variety of properties of n-harmonic functions
and mappings (see e.g. Chapters 14, 15 in [HKM] or [MV1, MV2] and references
therein). The situation changes when p 6= n. In such a case either new methods and
approaches have to be developed or when applying the existing methods one has to
carefully analyze the steps of reasoning. Unfortunately, the use of quasiconformal
mappings as tools in the study of the p-modulus provides us mainly with qualita-
tive results. Thus, the cases where the precise estimates can be obtained are worth
contemplation. That is the main purpose of this note. We extend the well known
classical results of Gehring [Ge] and Väisälä [Vä] on the n-modulus of the family of
curves to the setting of p-modulus considered in abstract metric measure spaces.

Additional motivation for our studies comes from the problem of generalizing the
notion of prime ends to the setting of p-modulus. To accomplish this goal the deeper
understanding of p-modulus is necessary (see [Nä, Oh] for more on prime ends).

The paper is organized as follows. In this section we give the needed definitions,
state the key technical lemmas and explain the notation. In Section 2 we present
various known results about lower and upper estimates for the p-modulus of curves
in R

n from Väisälä’s book [Vä] and Caraman’s papers [C1, C2, C3, C4] to conclude
with a Loewner type theorem for p-modulus. Section 3 is devoted to studying the
upper estimates for p-modulus in the abstract setting of metric measure spaces. In
Section 4 we develop the lower estimates in the same setting. In Section 5 we discuss
the p-modulus in relation to Riesz potentials.

The ring domains will be for us the fundamental category of sets to deal with. An
important point is that the modulus estimates for ring domains even in the Euclidean
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setting are not so widely known for p > n − 1. Also, our discussion emphasizes the
role of the borderline value p = n− 1: for p ≤ n− 1 the curves have p-capacity zero
and therefore the modulus analysis does not result in a viable theory.

We start by recalling selected definitions and notation commonly appearing in
analysis on metric spaces. Given a metric measure space (X, d, µ), with µ a locally
finite Borel measure supported on X, and Γ a family of rectifiable curves in X, by
F (Γ) we denote the collection of all non-negative Borel measurable functions ρ on
X such that

´
γ
ρ ds ≥ 1 for every γ ∈ Γ. The p-modulus of the family Γ, denoted

Mp(Γ), is the number

Mp(Γ) := inf
ρ∈F (Γ)

ˆ

X

ρp dµ.

Should F (Γ) be empty, we set Mp(Γ) = ∞.
One of the fundamental concepts of analysis on metric spaces is that of the upper

gradient (see [He, HK]). Following [He, Section 7.22] we say that a Borel function
% : X → [0,∞] is an upper gradient of a function u : X → R if for all rectifiable
curves γ

(1.1) |u(x)− u(y)| ≤
ˆ

γ

% ds,

where x and y denote the endpoints of γ. Observe that % ≡ ∞ is the upper gradient
of every function on X and if there are no rectifiable curves in X then % ≡ 0 is an
upper gradient of every function on X. If condition (1.1) holds except for a fixed
family of curves with zero p-modulus, then % is called a p-weak upper gradient.

We say that a metric measure space X supports a (1, p)-Poincaré inequality if
there are constants C > 0 and τ ≥ 1 so that for each ball B ⊂ X and each function
u : X → R and every upper gradient % of u the following inequality holds:

 

B

|u− uB| ≤ C(diam(B))

( 

τB

%p

) 1
p

,

where uB denotes the mean value of u over B, that is uB =
ffl

B
u = 1

µ(B)

´
B

u. If
a metric space X supports (1, p)-Poincaré inequality, then X has plenty of rectifi-
able curves analogous to the Loewner property for the p-modulus. For instance the
Euclidean space Rn supports a Poincaré inequality for any 1 ≤ p < ∞, while the
snowflake spaces do not support such inequality for any p. A doubling space (see
below), supporting Poincaré inequality enables us to establish a first order calculus
(see e.g. [He, HK]).

Given a set Ω ⊂ X we will denote its complement in X by Ωc. For nonempty sets
E, F, K in X, Γ = ∆(E, F, K) will denote the family of rectifiable curves from E to
F in K. More precisely, ∆(E, F, K) consists of compact curves γ with one endpoint
in E, the other in F , and γ \ (E ∪ F ) ⊂ K. As in [Vä], the modulus of the curve
family Mp(∆(E, F, K)) is the number

Mp(∆(E, F, K)) = Mp({γ|K : γ ∈ ∆(E, F, K)}).
In what follows we will also appeal to the notion of p-capacity and its relation to
p-modulus. Let 1 < p < ∞ and let the triple (E, F,K) be as above. Consider the
family of functions u such that u|E ≥ 1 and u|F ≤ 0. Following [He] we define the
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p-capacity of the triple (E, F, K) as

Capp(E,F,K) = inf
%
‖%‖p

Lp(K),

where the infimum is taken over the set of non-negative Borel-measurable functions %
that are upper gradients (or weak upper gradients) of some function u as above. One
can obtain various capacities by considering different degrees of regularity for func-
tions u, e.g. by requiring u to be continuous, locally Lipshitz. With self-explanatory
notation it is immediate that

Mp(∆(E, F, K)) ≤ Capp(E, F, K) ≤ Cont-Capp(E,F,K) ≤ locLip-Capp(E, F, K).

As a matter of fact a stronger result is true. Namely, the following theorem provides
us with the sufficient conditions for equalities to hold above.

Theorem 1.1. (Theorem 1.1 in [KSh]) If X is a proper φ-convex metric measure
space equipped with a doubling measure and supporting (1, p)-Poincaré inequality
with 1 < p < ∞, and Ω is a domain in X, then for all disjoint non-empty subsets E
and F of Ω,

Mp(∆(E, F, Ω)) = Capp(E, F, Ω) = Cont-Capp(E, F, Ω) = locLip-Capp(E,F, Ω).

(The first equality holds for all compact metric spaces, [HK, Proposition 2.17]).

The assumption on φ-convexity can be easily bypassed by the observation that
a complete doubling metric measure space supporting (1, p)-Poincaré inequality is
quasiconvex (a result due to Semmes, see also [Ko] and references therein).

The sphere in Rn, of radius r > 0 and centered at x0, is denoted S = S(r) =
Sn−1(x0, r), and ωn = mn(S) denotes the Lebesgue measure of S(1). Suppose that
Γ is a curve family in S(r). Following Section 10.1 in [Vä] we denote by MS

p the p-
modulus of Γ with respect to the metric space S equipped with the (n−1)-dimensional
Lebesgue measure dmn−1. Let Γ be a family of curves in D ⊂ R

n and let f : D → Rn

be continuous. Then fΓ := {f ◦ γ : γ ∈ Γ}. Consider fk(x) = kx for k > 0 and
fk(∞) = ∞. In what follows we will appeal to

Proposition 1.2. (Theorem 8.2 in [Vä]) With kΓ := fkΓ, we have Mp(kΓ) =
kn−pMp(Γ).

Remark 1.3. Proposition 1.2 holds also for the spherical modulus MS
p with n

replaced by n − 1, the natural dimension of sphere S. More specifically, if Γ is a
family of curves in S and Fk = fk|S, then

MFk(S)
p (FkΓ) = kn−1−pMS

p (Γ).

In what follows we will need to know the p-modulus of the family of non-constant
rectifiable curves passing through a given point. The result stating that it is zero is
known for p = n (see [Vä, Section 7.9]). Below we discuss the counterpart of this
result for the general doubling metric measure spaces with p ≥ 1. We also provide
upper and lower estimates for Mp.

We say that a metric measure space is doubling if µ is a Borel regular measure
on the metric space (X, d) and there exists C > 0 such that for all x ∈ X and every
r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).
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As a consequence of the doubling property, if in addition X is path connected, then
there exist constants Q1 ≥ Q2 ≥ 1 and C ≥ 1 such that for all points x0 and
0 < r ≤ R < diam(X),

(?)
1

C

( r

R

)Q1 ≤ µ(B(x0, r))

µ(B(x0, R))
≤ C

( r

R

)Q2

.

Before we proceed, let us recall the following (Definition 6.3 in [Vä]).

Definition 1.4. Let Γ1 and Γ2 be curve families in X. We say that Γ2 is mi-
norized by Γ1 and denote Γ1 < Γ2 if every γ ∈ Γ2 has a subcurve in Γ1.

It can be seen directly from the definition of p-modulus that if Γ1 < Γ2, then
Mp(Γ2) ≤ Mp(Γ1). Let us also recall some other concepts and results from the metric
measure space theory that will be needed in further discussion. Given x and y in X
we denote by Γxy the family of compact rectifiable curves in X joining x and y. To
show the measurability of certain functions in Proposition 4.1 and Theorem 5.1 we
will appeal to the following result.

Proposition 1.5. (Corollary 1.10 in [JJRRS]) Let X be a complete separable
metric space equipped with a σ-finite Borel measure µ, and let % : X → [0,∞] be a
Borel function. Then for each x0 ∈ X, the function u : X → [0,∞], defined for all
x ∈ X by

u(x) = inf
{ ˆ

γ

% ds : γ ∈ Γx0x

}
,

is measurable with respect to the σ-algebra generated by analytic sets, and therefore,
it is µ-measurable.

2. p-Modulus estimates in Rn

The purpose of this section is to recall upper and lower (p-Loewner type) es-
timates in Rn. Our goal is also to present known results in Euclidean setting for
the purpose of comparing and contrasting with the situation in more general metric
measure spaces.

In order to obtain upper bounds for the p-modulus it suffices to consider one
choice of admissible function % ∈ F (Γ). Such estimates in R

n are nowadays classical
(see e.g. 2.11 in [HKM]). However, to get a lower bound one needs to consider all
admissible functions in F (Γ), and hence lower bounds are more difficult to obtain.

We recall the following result proved by Caraman.

Theorem 2.1 (Theorem 3 in [C1]). Let n ≥ 2, n − 1 < p and let E and F be
nonempty nonintersecting subsets of the sphere S = Sn−1(x0, r). Consider the curve
family Γ = ∆(E, F, S). Then

(2.1) MS
p (Γ) ≥ cn

p

rp−n+1
.

The equality holds when E = {a} and F = {b} with a and b antipodal points on S.

Before stating the next result let us recall the definition of a ring (see Section 11
in [Vä]).

Definition 2.2. A domain A in R
n is called a ring if Ac has exactly two com-

ponents.
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In what follows components of the complement of a ring will be denoted by C0, C1

and the ring by R(C0, C1). The next lemma is a direct consequence of Theorem 2.1
and is used to investigate the p-modulus on the ring domains.

Lemma 2.3. (Theorem 4 in [C1]) Suppose that 0 < a < b and that E and F
are disjoint sets in R

n such that every sphere Sn−1(t) for a < t < b meets both E
and F . If G contains the spherical ring A = Bn(b) \ B

n
(a) and if Γ = ∆(E,F, G),

then for n− 1 < p < n or p > n,

(2.2) Mp(Γ) ≥ cn
p

n− p

(
bn−p − an−p

)
,

where cn
p is the constant in Theorem 2.1. The equality holds if G = A and E and F

are the components of L ∩ A for L being a line through 0.

In order to further analyze the p-modulus of ring domains we introduce the
following family of rings (compare with Definition 11.6 in [Vä]). For positive r and
R, let

Φn(r, R) = {A = R(C0, C1) ⊂ R
n
: 0 ∈ C0, ∃a ∈ C0 with |a| = R,

∞ ∈ C1, ∃b ∈ C1 with |b| = r}.(2.3)

For a ring A = R(C0, C1) we set ΓA = ∆(C0 ∩A,C1 ∩A,A). We are in a position to
define

(2.4) Hp(r, R) := inf
A∈Φ(r,R)

Mp(ΓA).

Note that by Proposition 1.2, 1
Rn−p Hp(r, R) = Hp(

r
R
, 1). For this reason it suffices to

consider
Hp(r) := Hp(r, 1) and Φn(r) := Φn(r, 1).

Theorem 2.4. (Theorem 8 in [C2]) The function Hp(r) has the following prop-
erties.

(1) Hp is a decreasing function,

(2) lim
r→∞

Hp(r) = 0 for p ≥ n, while lim
r→∞

Hp(r) = ωn−1

(
|n−p|
p−1

)p−1

for p < n;
moreover Hp(r) < ∞ for all r > 0,

(3) lim
r→0

Hp(r) = ∞ for p ≥ n, while lim
r→0

Hp(r) ≥ cn
p

n−p
> 0 for n− 1 < p < n with

cn
p as in Theorem 2.1,

(4) Hp(r) > 0 for p > n− 1 and for all r > 0.

Remark 2.5. One may expect that in the general setting of metric measure
spaces the lower bound for Hp in (4) above follows from a (1, p)-Poincaré inequality.

The optimality in cases (2) and (3) for p < n is demonstrated by the following
examples.

Example 2.6. By Corollary 1 in [C3] we have that

lim
r→∞

Mp(ΓAG(r)) ≤ ωn−1

( |n− p|
p− 1

)p−1

,

where for r > 1, ΓAG(r) = ∆
(
B(0, 1), {x : r ≤ x1 < ∞, x2 = . . . = xn = 0},Rn

)
represents the path family corresponding to Grötzsch ring. The optimality of case
(2) for p < n now follows immediately from Hp(r) ≤ Mp(ΓAG(r)).
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A weak optimality in the case (3) for p < n, that is lim
r→0

Hp(r) < ∞, is a conse-
quence of the following example.

Example 2.7. Fix 0 < r < 1, n = 2, and let E = [−1, 0], F = [r,∞]. Then
R(E, F ) ∈ Φ2(r), and so Hp(r) ≤ Mp(∆(E, F,R2)). Let Γr be the collection of all
rectifiable curves connecting E to F in the disc B(0, 2), and Γ1 be the collection of
all rectifiable curves connecting the circle S(0, 1) to the circle S(0, 2). Then Γr ⊂
∆(E, F,R2), and Γ1 < ∆(E, F,R2) \ Γr. It follows that

Mp(∆(E, F,R2)) ≤ Mp(Γr) + Mp(Γ1).

Since the function ρ(z) = (π|z|)−1χB(0,2)(z) is in F (Γr), we have when p < 2,

Mp(Γr) ≤ 2π1−p

2− p

1− r2−p

(1− r)2−p
.

Since every curve in Γ1 has length at least 1, we also have

Mp(Γ1) ≤ |B(0, 2) \B(0, 1)| = 3π.

It follows that

Hp(r) ≤ 2π1−p

2− p

1− r2−p

(1− r)2−p
+ 3π.

Hence when p < 2 we have lim
r→0

Hp(r) ≤ 2π1−p

2−p
+ 3π < ∞.

In the next observation we express the lower bound for the p-modulus in terms
of Hp (compare to Theorem 11.9 in [Vä] for the case of n-modulus).

Proposition 2.8. (Theorem 9 in [C2]) Let A = R(C0, C1) be a ring such that
a, b ∈ C0 and c,∞ ∈ C1. Then

Mp(ΓA) ≥ Hp

( |c− a|
|b− a|

)
|b− a|n−p, for p > 1.

The above proposition together with Theorem 3.1 result in the following charac-
terization of rings with zero p-modulus (the proof in the Euclidean setting is similar
to the case p = n, Theorem 11.0 in [Vä]).

Proposition 2.9. Let A = R(C0, C1) be a ring. Then if n− 1 < p ≤ n,

Mp(ΓA) = 0 ⇐⇒ #C0 = 1 or #C1 = 1.

3. Upper p-modulus estimates in the abstract setting

Recall from Section 1 (see (?)) that one of the consequences of the doubling
property for path connected spaces X, is that there exist constants Q1 ≥ Q2 ≥ 1 and
C ≥ 1 such that for all points x0 and 0 < r ≤ R < diam(X),

(?)
1

C

( r

R

)Q1 ≤ µ(B(x0, r))

µ(B(x0, R))
≤ C

( r

R

)Q2

.

Theorem 3.1. Let X be a path connected doubling space with Q2 > 1. Let
x0 ∈ X and Γ be a collection of non-constant paths that pass through x0. If 1 ≤ p ≤
Q2, then Mp(Γ) = 0.

Let 0 < 2r < R and denote by

(3.1) Γ(r, R) = ∆(B(x0, r), X \B(x0, R), B(x0, R))
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the family of curves joining B(x0, r) and X \ B(x0, R). If 1 ≤ p < Q2, we have the
upper estimate

Mp(Γ) ≤ C(R0, Q1)
CR, r

4

Cp
R,2r

RQ1−Q2 ,

with CR,r =
1

2α − 2

(
1

rα−1 − 1

Rα−1

)
, α =

Q2 − 1

p− 1
and constant R0 > 0 such that

r < R0 < R. If p = Q2, the corresponding estimate reads

MQ2(Γ) ≤ C ′(R0, Q1)
RQ1−Q2

CQ2−1
R,r

, where CR,r = ln

(
R

r

)
.

In the Euclidean setting Q1 = Q2 = n and we retrieve the p-capacity estimates
for the Euclidean annuli (see for example [HKM, Lemma 2.11]).

Proof. We will first apply the telescoping argument to estimate the modulus of
Γ(r, R) and then obtain the first part of the lemma by letting r → 0. The proof is
divided into two cases. First, let p < Q2. Consider

(3.2) %(x) =
1

CR,2r

1

d(x0, x)α
, α =

Q2 − 1

p− 1
> 1,

where CR,2r = 1
2α−2

(
1

(2r)α−1 − 1
Rα−1

)
. Choose k0 to be the smallest positive integer

such that
2−k0R ≤ r < 21−k0R.

Divide the annulus into dyadic annular regions Ri = B(x0, 2
−iR) \ B(x0, 2

−i−1R)
with radii 2−i−1R < 2−iR, for i = 0, . . . , k0 − 1. Consider any curve γ ∈ Γ(r, R) and
denote by γi the part of γ in the i-th subring Ri (note that γi might be disconnected
consisting of a family of arcs). Let βi be a subarc of γi connecting the inner sphere of
Ri with its outer sphere. Next, we show that % is an admissible function for Γ(r, R).

ˆ

γ

% ds =

k0∑
i=0

ˆ

γi

% ds ≥
k0−1∑
i=0

ˆ

βi

% ds ≥
k0−1∑
i=0

l(βi)

CR,2r(2−iR)α

≥ 1

2

k0−1∑
i=0

1

CR,2r(2−iR)α−1
=

1

2CR,2rRα−1

k0−1∑
i=0

2i(α−1)

=
1

2CR,2rRα−1

2(α−1)(k0−1) − 1

2α−1 − 1
≥ 1

CR,2r(2α − 2)Rα−1

((
R

2r

)α−1

− 1

)

≥ 1

CR,2r(2α − 2)

(
1

(2r)α−1
− 1

Rα−1

)
= 1,

(3.3)

and hence % ∈ F (Γ(r, R)). Below the constant CR,r may change from line to line,
but always has the form CR,r = C( 1

rα−1 − 1
Rα−1 ), for C depending on α, p,Q2 and the

doubling constant in (?). The following chain of inequalities leads us to the upper
estimate for Mp(Γ(r, R)).

Mp(Γ(r, R)) ≤
ˆ

B(x0,R)\B(x0,r)

%p dµ =

k0−1∑
i=0

ˆ

B(x0,2−iR)\B(x0,2−i−1R)

%p dµ
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≤
k0−1∑
i=0

µ(B(x0, 2
−iR))

Cp
R,2r

1

(2−(i+1)R)αp

≤ 2αp

Cp
R,2r

µ(B(x0, R))

Rαp

k0−1∑
i=0

2−i(Q2−αp) (by (?))

≤ 1

Cp
R,2r

µ(B(x0, R))

Rαp

2(αp−Q2)(k0+1) − 1

2αp−Q2 − 1

≤ 1

Cp
R,2r

µ(B(x0, R))

Rαp

(
4αp−Q2

(
R

r

)αp−Q2

− 1

)

≤ 1

Cp
R,2r

µ(B(x0, R))

RQ2

((
4

r

)αp−Q2

− 1

Rαp−Q2

)

≤ CR, r
4

Cp
R,2r

µ(B(x0, R))

RQ2
, (as αp−Q2 = α− 1.)

(3.4)

By (?) again,

Mp(Γ(r, R)) ≤ CR, r
4

Cp
R,2r

µ(B(x0, R0))

RQ1

0

RQ1−Q2 .

Now let p = Q2 and hence α = 1. Computations similar to these at (3.3) result in

(3.5)
ˆ

γ

% ds ≥
k0∑
i=0

l(βi)

CR,r2−iR
≥

k0∑
i=0

1

CR,r

=
k0

CR,r

≥ 1,

for a suitable choice of constant C in CR,r = C ln(R
r
). By the reasoning analogous to

(3.4) we arrive at the following estimate:
ˆ

B(x0,R)\B(x0,r)

%p dµ ≤ µ(B(x0, R))

Cp
R,r

k0∑
i=0

2−iQ2

(2−iR)αp
(by doubling condition)

≤ µ(B(x0, R))

Cp
R,rR

αp

k0∑
i=0

2−i(Q2−αp) ≤ µ(B(x0, R))

Cp
R,rR

Q2
k0

≤ µ(B(x0, R))

RQ2

1

Cp
R,r

ln

(
R

r

)
≤ µ(B(x0, R0))

R0
Q1

RQ1−Q2

CQ2−1
R,r

.

(3.6)

Note that if Q1 = Q2 = p, then as R → ∞ the expression on the right hand side
approaches 0. On the other hand, if Q1 = Q2 > p, we can only conclude that

lim
R→∞

Mp(Γ(r, R)) ≤ C(R0, Q1)r
Q2−p.

Since our main goal is to estimate the modulus either for r → 0 (with r < R)
or for large values of R, we may assume without loss of generality that R > R0 for
some positive constant R0. The above estimates for 1 ≤ p < Q2 imply that

(3.7) Mp(Γ(r, R)) ≤ CR, r
4

Cp
R,2r

µ(B(x0, R0))

R0
Q1

RQ1−Q2 .
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Denote by Γ(R) =
⋂

0<r<R Γ(r, R). Then Γ >
⋃

n∈N Γ(1/n) (see Definition 1.4), that
is, every curve in Γ has a subcurve that belongs to

⋃
n∈N Γ(1/n). Hence Mp(Γ) ≤

Mp(
⋃

n∈N Γ(1/n)). Observe that

(3.8)
CR, r

4

Cp
R,2r

= C
(4

r
)α−1 − 1

Rα−1

( 1
(2r)α−1 − 1

Rα−1 )p
→ 0, for r → 0.

Therefore, if 1 ≤ p < Q2 the first part of the lemma follows immediately from the
fact that

Mp(Γ(R)) = lim
r→0

Mp(Γ(r, R)) = 0, and hence Mp(Γ) ≤
∞∑

n=0

Mp(Γ (1/n)) = 0.

Similar argument allows us to handle the case p = Q2. Namely, by (3.6) we have
that

1

Cp−1
R,r

= C
1

(ln R− ln r)p−1
→ 0, for r → 0.

This completes the argument in the case p = Q2. ¤

Remark 3.2. Another type of upper estimates have been recently obtained by
Garofalo and Marola, see Theorem 3.4 in [GM]. In our setting and notation this result
states that for a bounded open subset Ω ⊂ X and x0 ∈ Ω, if 0 < r < R < R0(Ω),
then

Capp(B(x0, r), B(x0, R)) ≤
{

C(p, Ω) µ(B(x0,r))
rp , 1 < p < Q2,

C(p, Ω) µ(B(x0,r))
rp

(
ln R

r

)1−Q2 , p = Q2.

These estimates are not equivalent to ours. For instance if p ≈ Q2, the above
inequalities give the upper bound for Mp ≈ C while we have the upper estimate for
Mp ≈ RQ1−Q2 . Similar discrepancies appear when p = Q2. For example, if space X
is Q2-Ahlfors regular, then for small R our estimate is stronger.

Remark 3.3. If Q1 = Q2, that is, if X is locally Ahlfors regular, then as a
byproduct of the computations (3.4), we get the upper bound for the p-modulus for
large values of R:

(3.9) Mp(Γ(r, R)) ≤ CR, r
4

Cp
R,2r

µ(B(x0, R0))

R0
Q1

→ C
4αp−Q2

r(αp−Q2)(p−1)
= C(p,Q2)r

Q2−p,

for R →∞.

Remark 3.4. The above arguments allow us to prove part (2) of Theorem 2.4
without appealing to Euclidean techniques. Namely, using the discussion of (3.8),
Remark 3.3 and estimate (3.6) with R0 = 1, R = 1 + r and r = 1 we arrive at the
following estimates:

p < Q2 = Q1 = n : Hp(r) ≤ Mp(Γ(1, 1 + r)) ≤
C1+r, 1

4

C1+r,2

≤ C
4α−1 − 1

(1+r)α−1

(1
2
− 1

(1+r)α−1 )p
→ C(p, n), for r →∞,

p = Q2 = Q1 = n : Hp(r) ≤ C(n)

(ln(1 + r))Q2−1
→ 0, for r →∞.
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However, in this general non-Euclidean setting, we do not have explicit sharp expres-
sions for the constants C(p, n), C(n).

4. Lower p-modulus estimates in the abstract setting

The purpose of this section is to discuss the counterparts of Theorem 2.1 and
Lemma 2.3 in the abstract setting. The essence of the calculations below reveals
that a viable theory of p-Loewner spaces can be successfully developed beyond the
Euclidean setting. The explicit expressions for the constants involved in the estimates
however are lacking in the metric setting. Our approach is very much in the spirit of
Heinonen–Koskela [HK].

Let X be a metric measure space supporting a (1, p)-Poincaré inequality (see e.g.
Chapter 4 in [He] for information on Poincaré inequality). Assume that the following
Ahlfors regularity type condition holds: for every ball BR in X of radius R < diam X,

(4.1)
1

C
RQ ≤ µ(B(R)) ≤ CRQ,

with Q ≥ 1 and C ≥ 1. Note that (4.1) implies the previously discussed condition (?).
For distinct points x, y ∈ X denote by Γxy the collection of all compact rectifiable
curves in X connecting x to y. For k ∈ N such that k > 2009

d(x,y)
let Γk

xy denote the
collection of curves in X connecting B(x, 1/k) to B(y, 1/k).

Proposition 4.1. With the above notation, if p > Q, the space X is Q-Ahlfors
regular and supports a (1, p)-Poincaré inequality, then

(4.2) Mp(Γxy) ≥ Cd(x, y)Q−p.

Proof. Let k > 2009/d(x, y) and %k ∈ F (Γk
xy). Define a function uk : X → R by

(4.3) uk(z) = min
{

inf
γ connecting
B(x,1/k) to z

ˆ

γ

%k ds, 1
}

.

The same argument as in [JJRRS, Corollary 1.10] gives us that uk is measurable and
since ρk ∈ Lp(X) is an upper gradient of uk, by the Poincaré inequality uk ∈ N1,p

loc (X).
Note that uk ≡ 1 on B(y, 1

k
), whereas uk ≡ 0 on B(x, 1

k
).

Let B0 = B(x, 2d(x, y)) and for i ∈ N consider the family of balls

Bi = B(x, 21−id(x, y)), B−i = B(y, 21−id(x, y)).

Since x and y are Lebesgue points of uk, we have by Ahlfors regularity and (1, p)-
Poincaré inequality,

1 = |uk(x)− uk(y)| ≤
∑
i∈Z

|(uk)Bi
− (uk)Bi+1

| ≤ C
∑
i∈Z

 

Bi

|uk − (uk)Bi
| dµ

≤ C
∑
i∈Z

d(x, y)2−|i|
( 

Bi

%p
k dµ

) 1
p

≤ C
∑
i∈Z

(
d(x, y) 2−|i|

)1−Q
p

(ˆ

X

%p
k dµ

) 1
p

≤ Cd(x, y)1−Q
p

(ˆ

X

%p
k dµ

) 1
p

.

(4.4)
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Therefore
´

X
%p

k dµ ≥ Cd(x, y)Q−p and therefore Mp(Γ
k
xy) ≥ Cd(x, y)Q−p. The as-

sumption that p > Q has been used to ensure the convergence of the geometric series
in (4.4). The proof is now completed by invoking Proposition 4.2 below. ¤

Note that Γxy =
⋂

k∈N Γk
xy. Since Γk+1

xy ⊆ Γk
xy, the subadditivity of modulus

implies that Mp(Γ
1
xy) ≥ Mp(Γ

2
xy) ≥ · · · ≥ Mp(Γ

k
xy) ≥ Mp(Γ

k+1
xy ) ≥ · · · . This together

with Proposition 4.1 give us that limk→∞ Mp(Γ
k
xy) exists and

(4.5) lim
k→∞

Mp(Γ
k
xy) ≥ Cd(x, y)Q−p.

Proposition 4.2. Let X be a locally compact doubling metric measure space.
Then

(4.6) lim
k→∞

Mp(Γ
k
xy) = Mp(Γxy).

Proof. First suppose that µ(X) < ∞. Since for every k we have Mp(Γ
k
xy) ≥

Mp(Γxy), it suffices to prove that Mp(Γxy) ≥ limk→∞ Mp(Γ
k
xy). To do so, let us

consider % ∈ F (Γxy) such that

(4.7)
ˆ

X

%p dµ ≤ Mp(Γxy) + η.

Since X is locally compact and % ∈ Lp(X), the Vitali–Carathéodory Theorem implies
that without loss of generality % can be assumed to be lower semicontinuous on X
(see page 57 in [Ru]). Fix ε > 0 such that with %ε = max{%, ε}, we have

´
X

%p
ε dµ ≤´

X
%p dµ + η. We will show that for all δ > 0, there exists kδ ∈ N such that for all

k ∈ N with k > kδ, we have that for all curves γ ∈ Γk
xy,

(4.8)
ˆ

γ

%ε ds ≥ 1− δ.

Suppose this is not true. Then there exists 0 < δ < 1 such that for all k ∈ N there
is nk > k, so that for some γnk

∈ Γnk
xy it holds that

(4.9)
ˆ

γnk

%ε ds < 1− δ.

Since %ε ≥ ε on X,

ε`(γnk
) ≤

ˆ

γnk

%ε ds < 1− δ, so l(γnk
) <

1− δ

ε
,

and so for all k, `(γnk
) < (1− δ)/ε. Note that γnk

connects a point in B(x, 1
nk

) to a
point in B(y, 1

nk
). The Arzela–Ascoli theorem implies that γnk

→ γ uniformly (on a
subsequence if necessary) so that `(γ) ≤ 1−δ

ε
and γ ∈ Γxy. Computations similar to

these on page 14 of [HK] gives us that by the lower semicontinuity of %ε,

lim
k→∞

ˆ

γnk

%ε ds ≥
ˆ

γ

%ε ds.

Therefore, for the above γ it holds thatˆ

γ

%ε ds ≤ lim
k→∞

ˆ

γnk

%ε ds ≤ 1− δ < 1,
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which contradicts with % ∈ F (Γxy). Hence condition (4.8) holds. From this we infer
that 1

1−δ
% ∈ F (Γk

xy) for k > kδ. Hence by (4.7)

Mp(Γ
k
xy) ≤

1

(1− δ)p

ˆ

X

%p
ε dµ ≤ 1

(1− δ)p
(Mp(Γxy) + 2η) , if k > kδ.

Hence

lim
k→∞

Mp(Γ
k
xy) ≤

1

(1− δ)p
(Mp(Γxy) + 2η) .

The assertion of Proposition 4.2 follows by letting δ → 0 and then η → 0.
When µ(X) = ∞, the above argument can be conducted on families of curves

restricted to balls in X. Fixing x0 ∈ X, for n ∈ N let Γxy,n be the family of curves in
Γxy that lie in the ball B(x0, n), and Γk

xy,n the family of curves in Γk
xy in B(x0, n); the

above argument yields that Mp(Γxy,n) = limk→∞ Mp(Γ
k
xy,n). Now an application of

the fact that whenever (ΓN)N is a sequence of curve families such that ΓN ⊂ ΓN+1,
then limN→∞ Mp(ΓN) = Mp(∪NΓN) gives the desired conclusion. ¤

Given a point x0 ∈ X and 0 < r < R, we consider the curve family

Γ(r, R) = ∆(B(x0, r), X \B(x0, R), B(x0, R)).

Theorem 4.3. Let X be a Q-Ahlfors regular metric measure space supporting
(1, p)-Poincaré inequality. Assume that p > Q. If X \B(x0, 2R) is non-empty, then

(4.10) Mp(Γ(r, R)) ≥ 1

C

µ(B(x0, R))

Rp
≥ 1

C
RQ−p,

with constant C depending quantitatively on space X.

Remark 4.4. Note that this result is false for p ≤ Q, since in such a case
Theorem 3.1 gives us that Mp(Γ(r, R)) → 0 for r → 0.

Remark 4.5. Note that Theorem 4.3 together with Proposition 4.1 imply that
Mp(Γ) = ∞ for p > Q, where Γ stands for the family of non-constant curves passing
through a given point in X.

Proof of Theorem 4.3. Let % ∈ F (Γ(r, R)). Analogously to Proposition 4.1 we
define u : X → R by

(4.11) u(z) = min
{

inf
γ connecting

z to X\B(x0,R)

ˆ

γ

% ds, 1
}

.

The proof splits into two cases.

Case 1. There exists x ∈ B(x0, r) and y ∈ B(x0, 2R) \B(x0, R) such that

(4.12) |u(x)− uB(x,R)| ≤ 1

4
and |u(y)− uB(y,R)| ≤ 1

4
.

Then

1 = |u(x)− u(y)| ≤ 1

4
+ |uB(x,R) − uB(y,R)|+ 1

4
,

and so
1

2
≤ |uB(x,R) − uB(y,R)|.



Non-conformal Loewner type estimates for modulus of curve families 621

Therefore, by the doubling property of the measure µ, and by the (1, p)-Poincaré
inequality,

1 ≤ C

 

B(x0,10R)

|u− uB(x0,10R)| ≤ CR

( 

B(x0,10R)

%p dµ

) 1
p

.

Hence

(4.13)
ˆ

X

%p dµ ≥
ˆ

B(x0,10R)

%p dµ ≥ 1

C

µ(B(x0, R))

Rp
.

By assumption, X \B(x0, 2R) is non-empty. Because of the Poincaré inequality,
X is path-connected. Therefore there is a point y ∈ B(x0, 2R) \ B(x0, R) such that
d(x0, y) = 3R/2. As u = 0 on X \B(x0, R), it follows that

|u(y)− uB(y,R)| = uB(y,R) < 1/4.

Hence the only remaining case is the following.

Case 2. For all x ∈ B(x0, r) we have |u(x) − uB(x,R)| > 1
4
. As x is a Lebesgue

point of u we have by the Poincaré inequality with Bi = B(x, 21−iR)

1

4
< |u(x)− uB(x,R)| ≤

∑
i∈N

|uBi
− uBi+1

| ≤ C
∑
i∈N

 

Bi

|u− uBi
| dµ

≤ C
∑
i∈N

2−iR

( 

Bi

%p dµ

) 1
p

≤ C
∑
i∈N

(
2−iR

)1−Q
p

(ˆ

Bi

%p dµ

) 1
p

≤ CR1−Q
p

∑
i∈N

2−i(1−Q
p

)

(ˆ

X

%p dµ

) 1
p

≤ CR1−Q
p

(ˆ

X

%p dµ

) 1
p

.

To ensure that the above sum is finite we need the assumption that p > Q. As
observed in Remark 4.4 this assumption is also necessary. The above estimate implies
that ˆ

X

%p dµ ≥ 1

C

RQ

Rp
≥ 1

C

µ(B(x0, R))

Rp
.

By the above two cases, for all % ∈ F (Γ(r, R)),ˆ

X

%p dµ ≥ 1

C

µ(B(x0, R))

Rp
.

Taking the infimum over all such %, we get

Mp(Γ(r, R)) ≥ 1

C

µ(B(x0, R))

Rp
. ¤

Our discussion of lower bounds for the p-modulus will be complete if we handle
the case Q−1 < p < Q. This will be obtained using the following result of Heinonen–
Koskela [HK].

Theorem 4.6. (Theorem 5.9 in [HK]) Suppose that (X, µ) is a doubling space
where the lower mass bound in (4.1) holds for some Q ≥ 1. Suppose further that X
admits a weak (1, p)-Poincaré inequality for some 1 ≤ p ≤ Q. Let E and F be two
compact subsets of a ball BR in X and assume that, for some Q ≥ s ≥ Q − p and
1 ≥ λ > 0, we have

(4.14) min{H s
∞(E),H s

∞(F )} ≥ λRs−Qµ(BR).
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Then there is a constant C ≥ 1, depending only on s and on the data associated
with X, so that

(4.15)
ˆ

BCR

%p dµ ≥ 1

C
λµ(BR)R−p,

whenever u is continuous function in the ball BCR with u|E ≤ 0 and u|F ≥ 1, and %
is a weak upper gradient of u in BCR.

Here H s
∞(E) denotes the Hausdorff s-content of a set E. Recall that if E is

connected, then H 1
∞(E) ≈ diam E.

Proposition 4.7. Let X be a Q-Ahlfors regular metric measure space that sup-
ports (1, p)-Poincaré inequality for some p > 1 such that Q− 1 ≤ p ≤ Q and Q ≥ 1.
Let E and F be continua contained in a ball BR ⊂ X. Then

(4.16) Mp(∆(E, F, X)) ≥ 1

C

min{diam E, diam F}
R1+p−Q

,

for C a constant in Theorem 4.6.

Proof. Take s = 1 and define

λ = min

{
1,

1

C

min{H 1
∞(E),H 1

∞(F )}
R1−Qµ(BR)

}

for given continua E and F . If λ = 1, then by the Ahlfors regularity,

1 ≤ 1

C

min{H 1
∞(E), H 1

∞(F )}
R1−Qµ(BR)

≤ 2C,

and so

λ ≈ 1

C

min{H 1
∞(E), H 1

∞(F )}
R1−Qµ(BR)

.

An application of Theorem 4.6 together with Ahlfors regularity yields

(4.17)
ˆ

BCR

%p dµ ≥ 1

C

min{diam E, diam F}
R1+p−Q

and the theorem now follows from the fact that Mp(∆(E, F, X))=Cont-Capp(E, F, X),
see Theorem 1.1 in Section 1. ¤

The immediate consequence is a p-Loewner type result for Q− 1 < p ≤ Q:

Corollary 4.8. Under the assumptions of Proposition 4.7 on X, let E and F be
continua with min{diam E, diam F} > 0. If Q− 1 < p ≤ Q, then

(4.18) Mp(∆(E, F, X)) > 0.

In order to have complete analogy with the case p > Q we would like to find a
lower bound for Mp(Γ(r, R)) when 1 ≤ p ≤ Q.

Theorem 4.9. Let X be Q-Ahlfors regular metric measure space supporting
(1, p)-Poincaré inequality. Assume also that 1 ≤ p ≤ Q. Then we have for 0 < r < R
such that X \B(x0, 2R) 6= ∅,

(4.19) Mp(Γ(r, R)) ≥ 1

C

rQp

RQp+p−Q
.
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Indeed, we can replace the condition that X \ B(x0, 2R) is non-empty with the
condition that there is a point y ∈ X with d(x0, y) = 3R/2.

Proof. Let x0 ∈ X and % ∈ F (Γ(r,R)) be such that % ≥ ε > 0 on B(x0, R) \
B(x0, r). Also assume that % is l.s.c. Let u : X → R be given by

(4.20) u(z) = min



 inf

γ connecting
X\B(x0,R) to z

ˆ

γ

% ds, 1



 .

Observe that as % ∈ F (Γ(r, R)), we have u ≡ 0 on X \ B(x0, R), u ≡ 1 on B(x0, r),
and 0 ≤ u ≤ 1.

Let B = B(x0, 2R). Note that

uB =
1

µ(B)

ˆ

B

u dµ ≥ µ(B(x0, r))

µ(B(x0, 2R))
.

Because X \B(x0, 2R) 6= ∅, by the path-connectedness of X (which follows from the
Poincaré inequality) there exists y ∈ B(x0, 2R) \ B(x0, R) such that d(x0, y) = 3

2
R,

B(y, R
2
) ⊂ B(x0, 2R) \B(x0, R) and

1

C
≤ µ(B(y, R

2
))

µ(B(x0, R))
≤ C.

The definition of u, the choice of y, and the Ahlfors regularity imply
 

B

|u− uB|p dµ ≥ 1

µ(B)

ˆ

B(y, R
2

)

up
B dµ ≥ µ(B(y, R

2
))µ(B(x0, r))

p

µ(B(x0, 2R))1+p
≥ 1

C

µ(B(x0, r))
p

µ(B(x0, R))p
.

Hence by the (1, p)-Poincaré inequality,

(4.21)
1

C

µ(B(x0, r))

µ(B(x0, R))
≤ CR

( 

B

%p dµ

) 1
p

≤ CR

µ(B(x0, R))
1
p

(ˆ

X

%p dµ

) 1
p

.

From this we get ˆ

X

%p dµ ≥ 1

CRp

µ(B(x0, r))
p

µ(B(x0, R))p−1
.

Inequality (4.19) now follows by taking infimum over all such % and by applying the
Ahlfors regularity condition. ¤

Remark 4.10. Following Remark 3.2 we compare the estimates obtained in
[GM] to estimates derived in Theorem 4.3 and in Theorem 4.9. In our setting and
notation Theorem 3.2 in [GM] states that with constant C = C(p,Q, Ω) if 0 < r <
R < R0(Ω), then

Capp(B(x0, r), B(x0, R)) ≥





C
(
1− r

R

)p(p−1) µ(B(x0,r))
rp , 1 < p < Q,

C µ(B(x0,r))
rp

(
1− r

R

)Q(Q−1) (
log R

r

)1−Q
, p = Q,

C µ(B(x0,r))
rp

(
1− r

R

)p(p−1)
∣∣∣(2R)

p−Q
p−1 − r

p−Q
p−1

∣∣∣
1−p

, p > Q.

However, note that if p > Q and r is comparable to R then (4.10) is stronger than
the corresponding estimate in [GM], since (4.10) does not involve r at all. Moreover,
if 1 ≤ p ≤ Q then inequality (4.19) for the cases r ≈ R or r/R ≈ 0 gives a more
delicate lower estimate than the corresponding part of Theorem 3.2 in [GM].
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5. p-Modulus of curves passing through the point and Riesz potentials

In Theorem 3.1 we showed that if X is a doubling metric measure space, then
Mp(Γ) = 0, for 1 ≤ p ≤ Q2, where Γ stands for the collection of all non-constant
curves passing through x0 ∈ X. If p > Q2, then Mp(Γ) = ∞, see Remark 4.5. The
purpose of this section is to show that for the weighted Riesz measure, the p-modulus
of Γ remains positive for p ≥ 1.

Another motivation for our studies comes from Theorem 2 in Keith’s paper [K].
Let (X, d, µ) be a complete doubling metric measure space. The property of X of
supporting a (1, p)-Poincaré inequality with respect to compactly supported Lipschitz
functions and their compactly supported Lipschitz upper gradients is equivalent to
the property of existing a constant C ≥ 1 such that

Mp(Γxy, µ
C
xy) ≥

1

C

1

d(x, y)p−1

for almost every pair of distinct points x, y ∈ X. Here µC
xy denotes the symmetric

Riesz kernel of µ (dµC
xy = dνx + dνy in the notation below).

Let (X, d, µ) be a doubling measure space. Consider the Riesz potential of a
nonnegative function f on X (see e.g. Chapter 9 in [He])

(5.1) I1,B(f)(x) =

ˆ

B

f(z) d(x, z)

µ(B(x, d(x, z)))
dµ(z).

For a given point x ∈ X define the measure νx(z) as follows:

(5.2) dνx(z) =
d(x, z)

µ(B(x, d(x, z)))
dµ(z).

By [He, Theorem 9.5] we know that if X supports a (1, p)-Poincaré inequality for
some 1 ≤ p < ∞, then for all balls B in X and all bounded continuous functions u
on B and for all upper gradients % of u,

(5.3) |u(x)− uB| ≤ C(diam B)p−1I1,B(%p)(x),

whenever x ∈ 1
2
B.

Theorem 5.1. Let (X, d, µ) be a doubling measure space supporting Poincaré
inequality for some 1 ≤ p < ∞. For a given point x0 ∈ X consider measure νx0(z)
defined as in (5.2). Then

(5.4) Mx0
p (Γ(r, R)) := inf

%∈F (Γ)

ˆ
%(z)p dνx0(z) > C,

where 0 < r < R such that X \ B(x0, 2R) is non-empty and the constant C de-
pends only on the constants associated with the doubling property and the Poincaré
inequality.

Proof. Take 0 < r < R and consider the family of curves Γ(r, R). As in Theo-
rem 4.3 we define u : X → R by

(5.5) u(z) = min
{

inf
γ connecting

z to X\B(x0,R)

ˆ

γ

% ds, 1
}

.

From [JJRRS, Corollary 1.10], the function u is measurable. Observe that as % ∈
F (Γ(r, R)), we have u ≡ 0 on X \ B(x0, R) and u ≡ 1 on B(x0, r). Consider
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y ∈ B(x0, 2R) \ B(x0, R) such that d(x0, y) = 3
2
R and consider a family of balls

defined inductively

B0 = B(x0, 2d(x0, y)), B1 = B(x0, d(x0, y)) = B(x0, 3R/2),

Bi =
1

2
Bi−1 for i > 1, B−1 = B(y, 3R/2), B−i =

1

2
B−i+1 for i > 1.

(5.6)

By construction uB−i
≡ 0, for i ≥ 3. Then by the doubling property of the measure

and the Poincaré inequality we get the following estimate.

1 = |u(x0)− u(y)| ≤
∑
i∈Z

|uBi
− uBi+1

|

≤ C

∞∑
i=0

 

Bi

|u(z)− uBi
| dz +

∑
i≤−1

|uBi
− uBi+1

|

= C

∞∑
i=0

 

Bi

|u(z)− uBi
| dz +

3∑
i=1

|uB−i
− uB−i+1

|

≤ C

∞∑
i=0

diam Bi

( 

Bi

%p dz

) 1
p

+ C

3∑
i=1

d(x0, y)2−i

( 

B−i

%p dz

) 1
p

.(5.7)

Next we apply the Ahlfors regularity and Definition 5.1 to the first term of (5.7).

C

∞∑
i=0

diam Biµ(Bi)
− 1

p

(ˆ

Bi

%pd(x0, z)

µ(B(x0, d(x0, z)))

µ(B(x0, d(x0, z)))

d(x0, z)
dz

) 1
p

≤ C

∞∑
i=0

diam Biµ(Bi)
− 1

p

(ˆ

Bi

%pd(x0, z)

µ(B(x0, d(x0, z)))
d(x0, z)Q2−1 dz

) 1
p

≤ C

∞∑
i=0

(3·2−i+1R)(3·2−i+1R)
−Q2

p (3·2−i+1R)
Q2−1

p

(ˆ

Bi

%pd(x0, z)

µ(B(x0, d(x0, z)))
dz

)1
p

≤ CR
p−1

p

∞∑
i=0

2−
p−1

p

(ˆ

X

%p dνx0

) 1
p

≤ CR
p−1

p

(ˆ

X

%p dνx0

) 1
p

.

(5.8)

Similar approach applied to the second term of (5.7) gives the following:

(5.9)
3∑

i=1

d(x0, y)2−i

( 

B−i

%p dz

) 1
p

≤ 3CR
p−1

p

(ˆ

X

%p dνx0

) 1
p

.

Therefore, (5.8) and (5.9) result in the inequality:

1

C
R1−p ≤

ˆ

X

%p dνx0 .

Take R = 1. The proof of Proposition 5.1 now follows from the fact that the modulus
is an outer measure on the space of all curves in X, and so for every 0 < r < 1 < R
we have:

Mx0
p (Γ(r, R)) ≥ Mx0

p (Γ(r, 1)) ≥ 1

C
. ¤
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