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Abstract. We consider elliptic problems with non standard growth conditions whose most
prominent model example is the p(x)-Laplacean equation

− div
(|Du|p(x)−2Du

)
= µ,

with a measure data right-hand side µ. We prove pointwise gradient estimates in terms of a non
standard version of the non-linear Wolff potential of the right-hand side measure, and moreover
a characterization for C1-regularity of the solution, also in terms of the Wolff potential. The C1-
regularity criterion is also related to the density of µ and the decay rate of its Ln-norm on small
balls. Moreover, from the pointwise gradient estimates the Calderón and Zygmund theory and
several types of local estimates follow as a consequence.

1. Introduction and results

In this paper we consider measure data problems under non standard growth
conditions. Thereby, the most prominent model problem we have in mind is the
p(x)-Laplacean equation

(1.1) − div
(|Du|p(x)−2Du

)
= µ,

with a measure data right-hand side µ. In this context we prove on the one hand
pointwise gradient estimates in terms of the non-linear Wolff potential of the right-
hand side measure, and on the other hand a sufficient criterion for the C1-regularity
of the solution, also in terms of the Wolff potential. Since the pointwise gradient
estimates provide a criterion for the solution to be Lipschitz continuous we are here in
fact dealing with the borderline case between Lipschitz continuity and C1-regularity.
The search for possibly sharp bounds on the solution to PDEs and their regularity
has an up to now long lasting tradition. Concerning the solution itself—not the
gradient—these problems were solved for the case of standard growth in the by
now classical works of Kilpeläinen and Malý [37, 38], and later extended with a
different technique by Trudinger and Wang [51]. Similar results for elliptic operators
with non standard growth conditions were achieved recently by Lukkari, Maeda and
Marola [41], see also [6]. More precisely, the authors obtained a pointwise bound
for the solutions to non-homogeneous partial differential equations of p-Laplacean,
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respectively p(x)-Laplacean type in terms of a natural Wolff potential of the right-
hand side measure together with a continuity criterion. Surprisingly these results
could recently be upgraded to the gradients of solutions. At first, a pointwise estimate
for the gradient of solutions to equations with linear growth, i.e., the case p = 2
was achieved by Mingione [45]. The full results dealing with the borderline case
between Lipschitz continuity and C1-regularity for solutions of general equations of
p-Laplacean type with p ≥ 2 were proved in fundamental papers by Duzaar and
Mingione [16, 17, 18]. Note that these papers also contain similar results for p-
Laplacean type systems with a diagonal structure.

Let us make some remarks concerning problems with p(x) growth in general.
Actually they are intensively studied in the literature for at least 15 years, attaining
the interest of an increasing number of mathematicians for a variety of reasons. On
one hand they represent the borderline case between standard p growth and so-called
(p, q) growth conditions introduced in [42], therefore involving delicate perturbation
arguments to treat the variable growth situation—of course assuming a certain reg-
ularity of the exponent function p(·). On the other hand a number of applications in
mathematical physics, such as for example the modeling of non newtonian fluids—the
most prominent example was given by Rajagopal and Růžička for electrorheological
fluids in [47]—or image processing models quite recently established in [12], involve
energies or systems of PDEs with non standard growth conditions. Typical structure
conditions imposed on equations, systems or functionals with p(x) growth in general
allow to prove the existence of a (unique) solution or minimizer in the generalized
Sobolev space W 1,p(·)(Ω), defined by

W 1,p(·)(Ω) :=

{
f : Ω → R :

ˆ

Ω

|f |p(x) dx < +∞ and
ˆ

Ω

|Df |p(x) dx < +∞
}

.

Properties of those spaces, dependent on suitable more or less strong regularity as-
sumptions on the exponent function p(·) have been intensively studied in the liter-
ature. The basic ones—such as reflexivity, separability, the availability of suitable
versions of Sobolev’s imbedding etc.—have been established in [19, 20, 34, 39]. The
field of studying properties of those generalized spaces and their consequences is
highly active and productive, just to mention recent contributions in [15, 30, 31, 32]
and also the references therein.

Regularity theory for problems with p(x) growth structure started with the es-
sential paper [52] of Zhikov, who showed higher integrability, i.e., the existence of a
quantity δ > 0 such that the solution belongs to the space W

1,p(·)(1+δ)
loc (Ω), provided

that the exponent function p(·) fulfills a weak logarithmic continuity condition, in
this paper expressed via (2.4). This turns out to be a starting point for any ‘freezing
procedure’ which in turn allows to prove higher regularity via suitable comparison
arguments. In [1, 2, 13], this result was used to prove—under optimal conditions
on the regularity of p(x)—(partial) Hölder continuity results for minimizers and also
their gradient. Note that in [24], Hölder continuity for solutions of equations was
shown by a generalization of DeGiorgi’s methods, under optimal assumptions on
the regularity of p(·). We remark at this point that in order to guarantee that the
solution u of an equation of p(x) growth type is Hölder continuous, i.e., to show C0,α-
regularity, it is necessary to impose logarithmic Hölder continuity of the exponent
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function p(·)—expressed in our notation in (2.3) resp. (2.4), whereas to prove C1,α-
regularity, i.e., Hölder continuity of the gradient of solutions, one needs to impose
Hölder continuity of the exponent function p(·) itself. The initial essential papers on
Hölder continuity were followed by a series of studies by a variety of authors, involv-
ing refinements covering also more general systems and functionals, inhomogeneities
and boundary regularity, see for example [21, 23, 26, 28]. On the other hand, in [11]
it was shown that a higher integrability result similar to the one of Zhikov also holds
below the natural integrability exponent, in the sense that there exists ε > 0 such
that every so called very weak solution u ∈ W 1,p(·)(1−ε)(Ω) already belongs to the
natural Sobolev space W

1,p(·)
loc (Ω) and then in turn is higher integrable by the result

of Zhikov. A second kind of regularity treatments has been started by Acerbi and
Mingione in [4], where they study quantified higher integrability statements for equa-
tions of p(x) growth and the p(x) Laplacean system. To prove results of that type,
a delicate combination of Calderón–Zygmund type arguments with suitable freezing
and comparison principles is needed. Also the techniques introduced there turn out
to be quite flexible to treat also systems of more general structure (see [27]). Taking
as a special case right hand sides ≡ 0, the results in [4] recover the C0,α-regularity,
initially proved in [24] and [1]. To have an extensive outline about the state of the
art concerning p(x) growth problems, we refer the reader to the recent overwiew in
[29].

In the present paper, we are actually dealing with a larger class of operators
than the p(x)-Laplace operator, which includes this easiest model example. More
precisely, we consider solutions to partial differential equations with non standard
growth and measure data right-hand sides of the form

(1.2) − div a(x,Du) = µ.

Here, µ denotes a Radon measure defined on a bounded domain Ω ⊂ Rn, n ≥ 2,
with finite total mass. The continuous vector field a : Ω ×Rn → Rn is assumed to
be C1-regular in the gradient variable z, with az(·) being Carathéodory regular and
satisfying the following non standard growth and ellipticity assumptions:



|a(x, z)|+ |az(x, z)|(|z|2 + s2

) 1
2 ≤ L

(|z|2 + s2
) p(x)−1

2 ,

ν
(|z|2 + s2

) p(x)−2
2 |λ|2 ≤ 〈az(x, z)λ, λ〉 ,

(1.3)

whenever x ∈ Ω and z, λ ∈ Rn, where 0 < ν ≤ L and s ∈ [0, 1] are fixed. Additionally,
we shall impose the following continuity assumption on a(·) with respect to x: There
exists L1 ≥ 1 such that

|a(x, z)− a(x0, z)|

≤ L1ω(|x−x0|)
[(|z|2+s2

) p(x)−1
2 +

(|z|2+s2
) p(x0)−1

2

][
1+

∣∣ log
(|z|2+s2

)∣∣
](1.4)

holds for all x, x0 ∈ Ω and z ∈ Rn. Moreover, the exponent function p : Ω → [2, +∞)
is assumed to be continuous with modulus of continuity ω : [0,∞) → [0, 1], i.e., there
holds

(1.5) 2 ≤ p(x) ≤ γ2 and |p(x)− p(y)| ≤ ω(|x− y|),
for all x, y ∈ Ω. Let us note at this stage that we can always find such an upper
bound γ2 of p(·) since Ω is bounded and p(·) is continuous with modulus of continuity
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ω. Moreover, since the results in this paper are of local nature, one may always
replace γ2 in (1.5) and also in (1.6) below by the maximal exponent in the considered
neighborhood of some point x0 ∈ Ω. Finally, for the modulus of continuity ω we
assume that it is a non-decreasing concave function such that ω(0) = 0 = lim%↓0 ω(%),
satisfying a certain asymptotic smallness condition when % ↓ 0 of the form: there
exists % > 0 such that

(1.6)
ˆ %

0

[
ω(r) log 1

r

]2/γ2 dr

r
=: d(%) < ∞

holds. This actually is the condition under which we shall prove continuity of the
gradient of the solution. The precise condition under which we shall achieve our
local gradient potential estimate is slightly weaker and takes the form (1.9). Note
that condition (1.9) on ω indeed depends on the particular point x0 ∈ Ω considered,
or more precisely on p(x0). Note also that (1.6) actually is implied by (1.9), and
therefore all results continue to hold under the assumption (1.6).

The estimates proved in this paper involve the following non-linear Wolff potential
for variable exponent functions

(1.7) Wµ
β(·),p(·)(x,R) :=

ˆ R

0

( |µ|(B%(x))

%n−β(x)p(x)

) 1
p(x)−1 d%

%
, β(x) ∈ (0, n/p(x)],

which is defined pointwise just as the usual constant exponentWolff potential. Within
the whole paper we shall assume that the total 1-energy of the solution u is bounded,
i.e.,

(1.8)
ˆ

Ω

|Du| dx =: M < +∞.

Note that we cannot use the p(·)-energy instead—as it is usually done for non stan-
dard growth problems—for the following reason: Although we prove the gradient
estimate in Theorem 1.1 as an a priori estimate and therefore assume that the so-
lution is of class C1 we shall later apply it to weak solutions and even to so called
SOLAs in Theorem 1.4, and for SOLAs we only know that Du ∈ Lp(·)−1. Therefore,
all constants in the estimates should be independent of the p(·)-energy of u.

1.1. Gradient estimates. The first main result of the paper is the following
gradient potential estimate which is stated as an a priori estimate.

Theorem 1.1. Let u ∈ C1(Ω) be a weak solution of (1.2) with µ ∈ L1(Ω) under
the assumptions (1.3) and (1.4). Then, there exists a constant c ≡ c(n, ν, L, γ2,M,
|µ|(Ω)) such that the following is true: for any x0 ∈ Ω satisfying

(1.9)
ˆ %

0

[
ω(r) log 1

r

]2/p(x0) dr

r
=: d(x0, %) < ∞ for some % > 0,

there exists a positive radius R0 ≡ R0(n, ν, L, L1, γ2,M, |µ|(Ω), ω(·), p(x0)) such that
the pointwise estimate

(1.10) |Du(x0)| ≤ c

 

BR(x0)

(|Du|+ s) dx + cWµ
1

p(·) ,p(·)(x0, 2R) + cR

holds whenever B2R(x0) ⊆ Ω with R ≤ R0. Moreover, under the stronger assumption
(1.6) instead of (1.9) the radius R0 is independent of p(x0).
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Remark 1.2. Note that the dependence of the constant c and the radius R0

upon |µ|(Ω) in Theorem 1.1 is not unavoidable. By a slightly more involved argu-
ment we could get rid of this dependence. Indeed, keeping the dependence |µ|(Ω)
in all estimates explicit it turns out that in Lemma 3.5 we would obtain a term
[|µ|(B2R)/Rn−1]

1
p0−1

+cω(4R) instead of [|µ|(B2R)/Rn−1]
1

p0−1 on the right-hand side,
where ω is the modulus of continuity of the exponent function p(·). Then, in the
proof of Theorem 1.1 we can modify (3.31) in the following way: 

BR/H

|Du− (Du)BR/H
| dx

=

[  

BR/H

|Du− (Du)BR/H
| dx

] cω(4R)
1+cω(4R)

[  

BR/H

|Du− (Du)BR/H
| dx

] 1
1+cω(4R)

≤ c(L, M)

[  

BR/H

|Du− (Du)BR/H
| dx

] 1
1+cω(4R)

,

by the localization argument (2.7) explained below. The remaining integral is then
similarly estimated as in (3.31). This procedure leads to a final constant independent
of |µ|(Ω). However, for the sake of readability we did not carry this out and stated
the dependence of the constants as in Theorem 1.1.

Although our gradient estimate in Theorem 1.1 is stated for C1-solutions it can be
carried over to general solutions of measure data problems with non standard growth
via an approximation procedure—see Chapter 4. In the particular case that µ ∈
W−1,p′(·)(Ω), where W−1,p′(·) denotes the dual space of W 1,p(·) we know that—under
suitable assumptions on the boundary data—there exists a unique weak solution
u ∈ W 1,p(·)(Ω) of Dirichlet problems associated to (1.2). In this case we have the
following

Theorem 1.3. Let u ∈W 1,p(·)(Ω) be a weak solution of (1.2) with µ ∈W−1,p′(·)(Ω)
under the assumptions (1.3) and (1.4). Then, the assertion of Theorem 1.1 holds,
for almost every x0 ∈ Ω. Moreover, under the stronger assumption (1.6) instead of
(1.9) we have

Wµ
1

p(·) ,p(·)(·, R) ∈ L∞(Ω0) for some R > 0, Ω0 ⊆ Ω =⇒ Du ∈ L∞loc(Ω0,R
n),

and there exists a constant c ≡ c(n, ν, L, L1, γ2,M, |µ|(Ω), ω(·)) such that

‖Du‖L∞(BR/2(x0)) ≤ c

 

BR(x0)

(|Du|+ s) dx + c
∥∥Wµ

1
p(·) ,p(·)(·, R)

∥∥
L∞(BR/2(x0))

+ cR.

In the more general case that the right-hand side µ is merely a Radon measure
with finite total mass, we shall consider Dirichlet problems of the type

(1.11)

{
− div a(x,Du) = µ in Ω,

u = 0 on ∂Ω.

In this case we cannot work with the notion of a weak solution in the sense of
Theorem 1.3 since they are in general not known to exist, even not for coefficients with
constant exponent growth. Therefore, the notion of a solution has to be weakened
and in the literature there have been introduced different approaches. We shall
follow the one in [9, 10, 14] of a so called SOLA (Solution Obtained by Limit of
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Approximations). These generalized solutions are very weak in the sense that they
do not necessarily lie in the natural Sobolev space W 1,p(·)(Ω) associated with the
problem. On the other hand, they do belong to W 1,p(·)−1(Ω) which gives a meaning
to the weak formulation of (1.11). Moreover, in the case that µ ∈ L1(Ω) the SOLA
is unique and when µ ∈ W−1,p′(·)(Ω) it coincides with the usual weak solution. For
more details we refer to Section 4.1. Nevertheless, our gradient estimate (1.10) also
extends to the most general case where µ is only a Radon measure and this is the
statement of the following

Theorem 1.4. Let u ∈ W 1,p(·)−1(Ω) be a SOLA of the Dirichlet problem (1.11)
with µ being a Radon measure defined on Ω with finite total mass, under the as-
sumptions (1.3) and (1.4). Then, the conclusions of Theorem 1.3 hold true.

In the case when µ ∈ Ln the pointwise gradient bound directly relies on the decay
rate of r 7→ ‖µ‖Ln(Br(x0)) when r ↓ 0. This is expressed in the following

Theorem 1.5. Let u ∈ W 1,p(·)(Ω) be a weak solution of (1.2) under the assump-
tions (1.3) and (1.4) and suppose that µ ∈ Ln(Ω). Then, there exists a constant c ≡
c(n, ν, L, γ2,M, |µ|(Ω)) such that the following is true: for almost every x0 ∈ Ω satis-
fying (1.9) there exists a positive radius R0 ≡ R0(n, ν, L, L1, γ2, M, |µ|(Ω), ω(·), p(x0))
such that the pointwise estimate

|Du(x0)| ≤ c

 

BR(x0)

(|Du|+ s) dx + c

ˆ 2R

0

‖µ‖
1

p(x0)−1

Ln(Br(x0))

dr

r
+ cR

holds whenever B2R(x0) ⊆ Ω with R ≤ R0.

The proof of the a priori estimate in Theorem 1.1 will be given in Chapter 3,
whereas the proofs of Theorems 1.3 and 1.4 can be found in Chapter 4 and the one
of Theorem 1.5 in Section 5.1.

1.2. Zero order estimates. Zero order pointwise estimates for solutions via
Wolff potentials have been widely investigated up to now. Starting from [37, 38]
which are dealing with the constant exponent case, the variable exponent case has
been considered in [41, Theorem 4.3], where the following estimate for superharmonic
functions and non-negative measures has been shown:

(1.12) |u(x0)| ≤ c

[  

BR(x0)

|u|γ dx

] 1
γ

+ cWµ
1,p(·)(x0, 2R) + c R,

for R small enough and γ large enough depending on n and p(·). Our results up-
grade such an estimate to the gradient of the solution, replacing Wµ

1,p(·)(x0, 2R) by
Wµ

1
p(·) ,p(·)(x0, 2R) which is natural by the scaling properties of the Wolff potential. On

the other hand, our method also produces a zero order estimate, similar to (1.12)—
even with γ = 1—and updates it for general signed measures. For more details we
refer to Section 5.3.

1.3. C1-regularity. For the pointwise gradient potential estimate in Theo-
rem 1.1 we only needed the boundedness of the Wolff potential in this point. But
the behavior of the Wolff potential also provides us with a sufficient criterion for
the gradient of the solution to be continuous. More precisely, if the Wolff potential
satisfies a certain uniform decay property, then we can show that the solution is of
class C1.
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Theorem 1.6. Let u ∈ W 1,p(·)(Ω) be a weak solution of (1.2) under the assump-
tions (1.3), (1.4) and (1.6). Assumed that the functions

(1.13) x 7→ Wµ
1

p(·) ,p(·)(x, %) converge locally uniformly to zero in Ω as % ↓ 0,

then Du is continuous in Ω.

Note that (1.13) satisfied on Ω implies by a variable exponent version of the
Hedberg–Wolff Theorem—see Theorem 2.1—that µ ∈ W−1,p(·)(Ω) ensuring the exis-
tence of a W 1,p(·) solution and therefore the assumption u ∈ W 1,p(·)(Ω) in the previous
theorem is not too restrictive. However, by the approximation argument in Sec-
tion 4.1 we could state Theorem 1.6 for a SOLA as well. An immediate consequence
of Theorem 1.6 concerns measures with a certain density property.

Theorem 1.7. Let u ∈ W 1,p(·)(Ω) be a weak solution of (1.2) under the assump-
tions (1.3), (1.4) and (1.6). Assumed that there exists a function h : [0,∞) → [0,∞)
satisfying

(1.14)
ˆ %

0

h(r)
dr

r
< ∞ for some % > 0,

and

(1.15) |µ(Br(x0))| ≤ rn−1h(r)
1

p(x0)−1 for every ball Br(x0) ⊆ Ω with r ≤ R,

then Du is continuous in Ω.

Moreover, when µ ∈ Ln, then the gradient continuity can be directly related to
the decay properties of % 7→ ‖µ‖Ln(B%(x0)), in a similar way as we did for the gradient
potential estimate in Theorem 1.5.

Theorem 1.8. Let u ∈ W 1,p(·)(Ω) be a weak solution of (1.2) under the as-
sumptions (1.3), (1.4) and (1.6) and suppose that µ ∈ Ln(Ω). Assumed that the
functions

(1.16) x 7→
ˆ %

0

‖µ‖
1

p(x)−1

Ln(Br(x))

dr

r
converge locally uniformly to zero in Ω as % ↓ 0,

then Du is continuous in Ω.

Acknowledgements. This research is supported by the ERC grant 207573 “Vec-
torial Problems”.

2. Preliminaries

2.1. Monotonicity of the vectorfield a(·). At this point we recall that
assumption (1.3)2 implies the following monotonicity property of the vector field
z 7→ a(·, z): There exists a constant c ≡ c(γ2) ≥ 1 such that

(2.1) c−1ν
(|z1|2 + |z2|2 + s2

) p(x)−2
2 |z2 − z1|2 ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉 ,

whenever x ∈ Ω and z1, z2 ∈ Rn. In particular, since p(x) ≥ 2, the previous inequality
directly implies

(2.2) c−1ν|z2 − z1|p(x) ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉 .
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2.2. The exponent function p(·). We note that assumptions (1.6), respec-
tively (1.9) prescribe some kind of logarithmic Dini continuity of the exponent func-
tion p(·). Of course this condition implies the strong logarithmic continuity of p(·),
i.e., for its modulus of continuity ω holds

(2.3) lim sup
%↓0

ω(%) log
(1

%

)
= 0,

and therefore certainly also the weak logarithmic continuity

(2.4) lim sup
%↓0

ω(%) log
(1

%

)
< +∞,

which is an essential condition in many regularity proofs for problems with non stan-
dard growth structure in the literature, especially for gaining higher integrability in
the spirit of Lemma 3.2, which is a starting point for any freezing procedure. We note
at this point that very recently, Zhikov and Pastukhova [53] proved certain logarith-
mic type higher integrability results under slightly weaker conditions on the modulus
of continuity of p(·). By virtue of (2.3), respectively (2.4)—eventually enlarging the
upper bound L in the structure conditions (1.3)1 of the vector field a(·)—we may
assume that there exists R0 = R0(L, ω(·)) such that

(2.5) ω(R) log
( 1

R

)
≤ L,

for all R ∈ (0, R0]. For a fixed ball BR(x0) ⊂ Ω we define

p1 := inf
x∈BR(x0)

p(x) and p2 := sup
x∈BR(x0)

p(x).

Then, assumption (1.5) directly gives

(2.6) p2 − p1 ≤ ω(2R) and
p2

p1

≤ 1 + ω(2R).

Furthermore, an elementary computation shows that (2.5) and (2.6) imply

(2.7) R−ω(R) ≤ c(L) and R−(p2−p1) ≤ c(L).

Finally, we infer an auxiliary estimate that we shall use several times in the course
of the paper. For any α, σ > 0, R ∈ (0, R0] and ω̃ ∈ [0, ω(R)] we have

(2.8) Aσ ≤ c(L, α) (A + Rα)σ+ω̃ for all A ≥ 0.

This inequality is a consequence of the following chain of inequalities using (2.7)1
and the fact that ω̃ ≤ ω(R):

Aσ ≤ (A + Rα)σ = (A + Rα)−ω̃(A + Rα)σ+ω̃

≤ R−αω̃(A + Rα)σ+ω̃ ≤ c(L, α) (A + Rα)σ+ω̃.

2.3. Non-linear potentials. The following variable exponent version of the
Hedberg–Wolff theorem from [41, Theorem 5.3] provides a characterization of the
space W−1,p(·) in terms of the Wolff potential.

Theorem 2.1. Let Ω be a bounded set in Rn and µ a compactly supported
Radon measure in Ω. Then µ ∈ W

−1,p(·)
0 (Ω) if and only ifˆ

Ω

Wµ
1,p(·)(x, %) dµ(x) < ∞ for some % > 0.
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2.4. A decay estimate below the natural growth exponent for a refer-
ence problem. The proof of the main theorem will be done via suitable comparisons
to a “frozen” reference problem. For a sub-domain A ⊆ Ω and x0 ∈ Ω we consider a
solution w ∈ W 1,p(x0)(A) to the homogeneous equation

(2.9) − div a(x0, Dw) = 0 in A.

Note that the considered vector field is frozen in the point x0 and therefore satisfies
growth and ellipticity conditions (1.3) with a fixed exponent p(x0) instead of p(x).
Therefore, [16, Theorem 3.1] applies to weak solutions of (2.9) and reads as follows:

Theorem 2.2. Let w ∈ W 1,p(x0)(A) be a weak solution to (2.9) under the as-
sumptions (1.3) with p(x) ≡ p(x0) ≡ const. Then, there exist β ∈ (0, 1] and c ≥ 1,
both depending on n, ν, L, p(x0), such that the estimate

 

B%

|Dw − (Dw)B% | dx ≤ c
( %

R

)β
 

BR

|Dw − (Dw)BR
| dx

holds whenever B% ⊆ BR are concentric balls contained in A.

Remark 2.3. Note that the constants β and c in Theorem 2.2 depend on p(x0).
However, since the dependence upon p(x0) is continuous and recalling that p(x0) ∈
[2, γ2], by possibly enlarging the constants we can choose them in such a way that
they depend on γ2 rather than on p(x0). At this stage we remark that the constants
in [16, Theorem 3.1] are stable when p ↓ 2 since they are relying on estimates for a
linearized elliptic equation as considered in [16, Lemma 3.2].

3. Proof of the gradient estimate

The proof of the gradient potential estimate from Theorem 1.1 is done via com-
parison to a suitable homogeneous frozen problem, which provides good reference
estimates. This comparison will be performed within two steps. First we shall com-
pare the original inhomogeneous problem to the associated homogeneous problem and
subsequently this homogeneous problem shall be compared to a homogeneous frozen
coefficient problem. Within this procedure we shall consider the following Dirichlet
problems. By u ∈ C1(Ω) we shall denote a solution of the original problem (1.2) on Ω
with a vector field a(·) satisfing (1.3) and (1.4) and with bounded 1-energy, i.e., (1.8)
as considered in Theorem 1.1. Now, for a fixed ball B2R ≡ B2R(x0) ⊆ Ω with suitably
small radius 2R—to be specified later—we consider the solution v ∈ W 1,p(·)(Ω) of
the Dirichlet problem

(3.1)

{
− div a(x,Dv) = 0 on B2R,

v = u on ∂B2R,

and the solution w ∈ W 1,p0(Ω), where p0 ≡ p(x0) of the Dirichlet problem

(3.2)

{
− div a(x0, Dw) = 0 on BR,

w = v on ∂BR.

Existence and uniqueness of u and v are guaranteed by standard monotonicity ar-
guments, which can be done also in the generalized Sobolev space W 1,p(·)(Ω). As
mentioned above the first step is the
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3.1. Comparing to a homogeneous problem. Here, we shall derive a com-
parison estimate between the solutions u of the original inhomogeneous problem (1.2)
and the solution and v of the associated homogeneous problem (3.1).

Lemma 3.1. Under the assumptions (1.3)2, (1.5) and (2.4), let u ∈ W 1,p(·)(Ω)

be as in Theorem 1.1 and v ∈ u + W
1,p(·)
0 (B2R) as in (3.1), with B2R ≡ B2R(x0) ⊆ Ω,

0 < R ≤ R0, where R0 ≡ R0(L, ω(·)). Then, setting p0 ≡ p(x0) there exists a
constant c ≡ c(n, ν, L, γ2, |µ|(Ω)) such that the following inequalities hold true:

(3.3)
 

B2R

|Du−Dv| dx ≤ c

[ |µ|(B2R)

Rn−1

] 1
p0−1

+ cR,

and

(3.4)
 

B2R

|u− v| dx ≤ c

[ |µ|(B2R)

Rn−p0

] 1
p0−1

+ c R2.

Proof. The proof is divided into three steps. We first assume without loss of
generality that x0 = 0 and 2R = 1, i.e., B2R = B1 and also |µ|(B1) = 1. The scaling
technique allowing us to reduce to such a situation will be explained in the second
step. Since this procedure shall lead us to a wrong exponent, i.e., p2 = supx∈B2R

p(x)
instead of p0, we adjust the exponent in the final step.

Step 1: Dimensionless estimate. Here, we show that in the case B2R = B1 and
|µ|(B1) = 1 we have

(3.5)
ˆ

B1

|Du−Dv| dx ≤ c(n, ν, γ2).

For k ∈ N we define the following truncation operators

Tk(t) := max{−k, min{t, k}} and Φk(t) := T1(t− Tk(t)),

for t ∈ R. We subtract the weak formulations of (1.2) and (3.1) and test the resulting
equation

(3.6)
ˆ

B1

〈a(x,Du)− a(x,Dv), Dϕ〉 dx =

ˆ

B1

ϕdµ,

with ϕ := Tk(u − v). Setting Dk = {x ∈ B1 : |u(x) − v(x)| ≤ k} we observe that
Dϕ = Du−Dv on Dk, whereas Dϕ = 0 on B1 \Dk. Therefore, using (2.2) and the
fact that |ϕ| ≤ k we infer that

ˆ

Dk

|Du−Dv|p(x) dx ≤ c(ν, γ2) k.

Since k ≥ 1, this certainly implies
ˆ

Dk

|Du−Dv| dx ≤
ˆ

Dk

(|Du−Dv|+ 1
)p(x)

dx ≤ c(n, ν, γ2) k.(3.7)

Similarly, testing (3.6) with ϕ = Φk(u− v) yields
ˆ

Ck

|Du−Dv|p(x) dx ≤ c(ν, γ2),
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where we have denoted Ck := {x ∈ B1 : k < |u(x) − v(x)| ≤ k + 1}. This time we
have used that Dϕ = Du − Dv on Ck, and Dϕ = 0 on B1 \ Ck and that |ϕ| ≤ 1.
Together with Hölder’s inequality this implies

ˆ

Ck

|Du−Dv| dx ≤ |Ck| 12
[ ˆ

Ck

|Du−Dv|2 dx

] 1
2

≤ |Ck| 12
[ ˆ

Ck

(|Du−Dv|+ 1
)p(x)

dx

] 1
2

≤ c(n, ν, γ2) |Ck| 12 .

From the very definition of Ck we find

|Ck| ≤ k−
n

n−1

ˆ

Ck

|u− v| n
n−1 dx

and hence
ˆ

Ck

|Du−Dv| dx ≤ c(n, ν, γ2) k−
n

2(n−1)

[ ˆ

Ck

|u− v| n
n−1 dx

] 1
2

.(3.8)

Using (3.7) and (3.8) with k0 being a fixed positive integer, and also Hölder’s in-
equality for sequences and Sobolev’s inequality we obtain

ˆ

B1

|Du−Dv| dx =

ˆ

Dk0

|Du−Dv| dx +
∞∑

k=k0

ˆ

Ck

|Du−Dv| dx

≤ c k0 + c

∞∑

k=k0

k−
n

2(n−1)

[ ˆ

Ck

|u− v| n
n−1 dx

] 1
2

≤ c k0 + c

[ ∞∑

k=k0

k−
n

n−1

] 1
2
[ ˆ

B1

|u− v| n
n−1 dx

] 1
2

≤ c k0 + cH(k0)

[ ˆ

B1

|Du−Dv| dx

] n
2(n−1)

,(3.9)

where c(n, ν, γ2) and in the last line we have set

H(k0) :=

[ ∞∑

k=k0

k−
n

n−1

] 1
2

.

Note that n
n−1

> 1 and therefore H(k0) is finite and satisfies H(k0) → 0 as k0 →∞.
Now, if n > 2, we take k0 = 1 in (3.9) and apply Young’s inequality to absorb the
integral of the right-hand side into the left to end up with (3.5). On the other hand,
if n = 2, we choose k0 = k0(n, ν, γ2) in (3.9) large enough such that cH(k0) ≤ 1/2
and again absorb the integral of the right-hand side into the left to deduce (3.5) also
in this case.

Step 2: Scaling procedures. Here, we set

p2 := sup
x∈B2R

p(x),
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and show that there exists a constant c ≡ c(n, ν, γ2, |µ|(Ω)) such that

(3.10)
 

B2R

|Du−Dv| dx ≤ c

[ |µ|(B2R)

Rn−1

] 1
p2−1

.

The assertion will follow from Step 1 where we assumed B2R = B1 and |µ|(B1) = 1
by two subsequent scaling procedures. We first reduce (3.10) to the case B2R = B1

by a scaling argument. For y ∈ B1 we let{
ũ(y) := (2R)−1u(x0 + 2Ry), ṽ(y) := (2R)−1v(x0 + 2Ry),

ã(y, z) := a(x0 + 2Ry, z), µ̃(y) := 2R µ(x0 + 2Ry).

Then, − div ã(y, Dũ) = µ̃ and − div ã(y, Dṽ) = 0, such that we can use estimate
(3.10) for ũ and ṽ on B1 and then scale back to B2R.

In order to further reduce to the case |µ|(B1) = 1 we adopt the following scaling.
We define A := [|µ̃|(B1)]

1
p2−1 and note that we may assume A > 0, since otherwise

ũ ≡ ṽ and hence u ≡ v and (3.10) holds trivially. Next, we set{
ū(y) := A−1ũ(y), v̄(y) := A−1ṽ(y),

ā(y, z) := A1−p2 ã(y, Az), µ̄(y) := A1−p2µ̃(y),

such that ū and v̄ are solutions of − div ā(y,Dū) = µ̄ and − div ā(y, Dv̄) = 0 on B1.
At this point we still have to ensure that we can apply (3.5) from Step 1 to ū and
v̄. From the definition of A we see that |µ̄|(B1) = 1. Therefore, it remains to ensure
that ā(·) still satisfies (1.3)2 (note that this is the only assumption on the vector field
we used in Step 1). Due to the definition of ā(·) and the hypothesis (1.3)2 on a(·) we
have

〈ā(x, z)λ, λ〉 = A1−p2〈ã(x, Az)λ, λ〉 ≥ νA1−p2
(|Az|2 + s2

) p(x)−2
2 |λ|2

= νAp(x)−p2
(|z|2 + (s/A)2

) p(x)−2
2 |λ|2.

From the definition of µ̃ and (2.7)—assuming that R ≤ R0 with R0 ≡ R0(L, ω(·))
from (2.5)—we have

Ap(x)−p2 = |µ̃|(B1)
− p2−p(x)

p2−1 = (2R)
(n−1)(p2−p(x))

p2−1 |µ|(B2R)
− p2−p(x)

p2−1

≥ c(L)
− n−1

p2−1
(|µ|(Ω) + 1

)− p2−p(x)
p2−1 ≥ c(n, L)−1

(|µ|(Ω) + 1
)−1

,

and therefore in turn

〈ā(x, z)λ, λ〉 ≥ ν

c(n, L)(|µ|(Ω) + 1)

(|z|2 + (s/A)2
) p(x)−2

2 |λ|2,

meaning that ā(·) satisfies (1.3)2 with (ν, s) replaced by (ν/[c(|µ|(Ω) + 1)], s/A).
Therefore, we can apply (3.5) to ū and v̄ to haveˆ

B1

|Dū−Dv̄| dx ≤ c(n, ν, L, γ2, |µ|(Ω)).

Note that the constant in the preceding estimate indeed is independent of A since
the one in (3.5) does not depend on s. Recalling the definitions of ū and v̄ and A we
deduce estimate (3.10) for u and v from the previous one.

Step 3: Adjusting the exponent. In the final step we want to replace p2 by p0

in (3.10). Note that this causes difficulties only in the case |µ|(B2R)/Rn−1 ≤ 1 since
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1
p2−1

≤ 1
p0−1

. To this aim we use the auxiliary estimate (2.8) with the choices A =

[|µ|(B2R)/Rn−1]
1

p0−1 , α = 1, σ = p0−1
p2−1

and ω̃ = p2−p0

p2−1
(note that ω̃ ≤ p2− p0 ≤ ω(4R)

by (1.5) and σ + ω̃ = 1) to infer the following estimate for the right-hand side of
(3.10):

(3.11)
[ |µ|(B2R)

Rn−1

] 1
p2−1

≤ c

[ |µ|(B2R)

Rn−1

] 1
p0−1

+ cR,

with a constant c ≡ c(L). Using this estimate to further bound the right-hand side
of (3.10) we deduce (3.3), i.e., the first assertion of the lemma. The second one, i.e.,
(3.4) follows from (3.3) via Poincaré’s inequality since

 

B2R

|u− v| dx ≤ cR

 

B2R

|Du−Dv| dx ≤ c

[ |µ|(B2R)

Rn−p0

] 1
p0−1

+ cR2.

This completes the proof of the lemma. ¤
3.2. Higher integrability and energy bounds. In this section we shall es-

tablish suitable energy bounds for the solutions v and w of (3.1) and (3.2), which
will be used later in the proof. Note that we do not have higher integrability for the
solution u of the original problem due to the missing regularity of the inhomogeneity
µ, being just an L1-function. Nevertheless, the solution v of the homogeneous prob-
lem shows at least local higher integrability properties, and so does the solution w of
the frozen homogeneous problem. This allows to establish energy bounds for v and
w. Let us start with a well known higher integrability result for the homogeneous
problem, which goes back to Zhikov [52]. For the dependence of the constant we
refer to Remark 3.3 below.

Lemma 3.2. Under the assumptions (1.3), (1.5) and (2.4), let u ∈ W 1,p(·)(Ω)
be as in Theorem 1.1. Then, there exists a radius R0 ≡ R0(n, L, γ2, ω(·)) such that
the following holds: let v ∈ u + W

1,p(·)
0 (B2R) be the function defined in (3.1), with

B2R ≡ B2R(x0) ⊆ Ω, 0 < R ≤ R0. Then, there exists δ1 ≡ δ1(n, L/ν, γ2) ∈ (0, 1] such
that |Dv|p(·) ∈ L1+δ1

loc (B2R) and for any θ ∈ (0, 1) and δ ∈ [0, δ1] the estimate

(3.12)
[  

Bθ%

(|Dv|+ s)p(x)(1+δ) dx

] 1
1+δ

≤ c

 

B%

(|Dv|+ s + %)p(x) dx

holds true whenever B% ⊆ B3R/2. Note that c ≡ c(n, L/ν, γ2, θ, M, |µ|(Ω)), where M
was defined in (1.8), and c →∞ as θ ↑ 1.

Remark 3.3. Here, we have to make two remarks concerning Lemma 3.2. Firstly,
although s might be zero we can achieve on the right-hand side an additive constant
“%” instead of “1” by using an estimate of the type of (2.8) whenever switching to a
larger radius. Secondly, the constant in the usual higher integrability lemma (see for
instance [52] and also the comments in [13]) initially depends on

´
B%
|Dv|p(x) dx rather

than on M and |µ|(Ω). To be precise, the constant depends on (
´

B%
|Dv|p(x) dx)ω(2%).

In order to avoid this dependency we shall first explain how to estimate
´

B%
|Dv|p(x) dx

in terms of
´

B2R
|Dv| dx. For this aim we start with a reverse Hölder inequality for Dv

which can be achieved by testing the equation (3.1) with v multiplied by a suitable
cut-off function, as it is usually done in the proof of higher integrability (see [52]).
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More precisely, there exists a constant c ≡ c(n, ν, L, γ2) such that
ˆ

Bt1

(|Dv|+s+R)p(x) dx ≤ c

(t2−t1)α

[ ˆ

Bt2

(|Dv|+s+R)
p1
ϑ dx

]ϑp2
p1

, where ϑ =

√
n + 1

n
,

holds for concentric balls Bt1 ⊂ Bt2 contained in B2R and where we have set

(3.13) p1 := inf
x∈B2R

p(x), p2 := sup
x∈B2R

p(x), α := n
(ϑp2

p1

− 1
)
.

Applying Hölder’s inequality to the right-hand side of the preceding inequality we
obtain
ˆ

Bt1

(|Dv|+s+R)p(x) dx ≤ c

(t2−t1)α

[ ˆ

Bt2

(|Dv|+s+R)p1 dx

]β[ ˆ

Bt2

(|Dv|+s+R) dx

]γ

,

where we have set

(3.14) β :=
p2

p1

·
1− ϑ

p1

1− 1
p1

and γ :=
p2

p1

· ϑ− 1

1− 1
p1

.

Note that (1 − ϑ
p1

)/(1 − 1
p1

) ≤ (1 − ϑ
γ2

)/(1 − 1
γ2

) = c(n, γ2) < 1 and therefore we
can always choose R0 in dependence on n, γ2 and ω(·) small enough in order to have
β ≤ c(n, γ2) < 1. Using (2.8) and applying Young’s inequality we obtain
ˆ

Bt1

(|Dv|+s+R)p(x) dx ≤ c

(t2−t1)α

[ ˆ

Bt2

(|Dv|+s+R)p(x) dx

]β[ ˆ

B2R

(|Dv|+s+R) dx

]γ

≤ 1

2

ˆ

Bt2

(|Dv|+s+R)p(x) dx +
c

(t2−t1)
α

1−β

[ ˆ

B2R

(|Dv|+s+R) dx

] γ
1−β

,

where c depends on n, ν, L and γ2. Note that the preceding estimate particularly
holds when B% ⊆ Bt1 ⊂ Bt2 ⊆ B2R are concentric balls with % ≤ t1 < t2 ≤ 2R. At
this stage we apply the iteration Lemma in [25, Lemma 6.1] to infer that

ˆ

B%

(|Dv|+s+R)p(x) dx ≤ c (2R− %)−
α

1−β

[ ˆ

B2R

(|Dv|+s+R) dx

] γ
1−β

,

where c ≡ c(n, ν, L, γ2). Next, we use the comparison estimate (3.3) from Lemma 3.1
and the fact that % ≤ 3R/2 to infer

ˆ

B%

(|Dv|+ s)p(x) dx

≤ cR− α
1−β

[ˆ

B2R

(|Du|+ s + R) dx + Rn

[ |µ|(B2R)

Rn−1

] 1
p0−1

] γ
1−β

.

(3.15)

Note that R ≤ 1 and therefore also R
n− n−1

p0−1 ≤ 1, γ ≤ c(n, γ2) and since β ≤
c(n, γ2) < 1 we have γ

1−β
≤ c(n, γ2). Therefore, we can bound the bracket [. . . ]

γ
1−β on

the right-hand side of the preceding inequality by a constant depending on n, γ2,M
and |µ|(Ω), such that it remains to consider the factor %−

α
1−β . First, we recall that

β ≤ c(n, γ2) < 1 and hence α
1−β

≤ c(n, γ2) by the definition of α. Therefore, taking
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the preceding inequality to the power ω̃ with some 0 < ω̃ ≤ ω(4R) we can use (2.7)
in order to conclude with

(3.16)
[ ˆ

B%

(|Dv|+ s)p(x) dx

]ω̃

≤ c(n, ν, L, γ2,M, ω(·), |µ|(Ω)),

for any % ≤ 3R/2 such that B% ⊆ B3R/2. By the argument at the beginning of the
remark this allows us to choose the constant as indicated in the statement of the
lemma.

In the following we suppose that the assumptions (1.3), (1.5) and (2.4) are in
force and let u ∈ C1(Ω) be be a weak solution of (1.2) as in Theorem 1.1. Moreover,
let B2R ≡ B2R(x0) ⊆ Ω and v be the function defined in (3.1). In the sequel we will
derive a suitable energy estimate for v. Thereby, initially R is some arbitrary radius
such that 0 < R ≤ 1 and shall be successively be restricted to some smaller values
R0 within the proof of the energy estimate for v.

To derive the energy estimate for the solution v to the Dirichlet problem (3.1) we
first let δ1 ≡ δ1(n, L/ν, γ2) ∈ (0, 1] denote the corresponding exponent from Lemma
3.2 and choose R0 ∈ (0, 1] such that ω(4R0) ≤ δ1/2; then R0 ≡ R0(n, L/ν, γ2, ω(·)).
From now on we consider R ≤ R0 and set

(3.17) p1 := inf
x∈B2R

p(x) and p2 := sup
x∈B2R

p(x).

By the choice of R0 we find that

(3.18) p2

(
1 + δ1

2

) ≤ (
p1 + ω(4R)

)(
1 + δ1

2

) ≤ (
p1 + δ1

2

)(
1 + δ1

2

) ≤ p1

(
1 + δ1),

and hence p2(1 + δ1
2
) ≤ p(x)(1 + δ1) for all x ∈ B2R. This implies under the assump-

tions of Lemma 3.2 that

(3.19) |Dv| ∈ Lp2(1+
δ1
2

)(BR).

Moreover, from (2.8), applied with (Dv(x)+s,2,1,(p(x)−p1)/p1) instead of (A,α, σ, ω̃),
we infer for any x ∈ BR the pointwise estimate

|Dv(x)|+ s ≤ c(L)
(|Dv(x)|+ s + R2

) p(x)
p1 ≤ 2c(L)

[(|Dv(x)|+ s
) p(x)

p1 + R2
]
.

Now, let σ ∈ [p1, p2(1 + δ1/2)]. Taking the preceding inequality to the power σ
and applying Lemma 3.2 with δ = σ/p1 − 1 which is allowed by (3.18) (and after
eventually further reducing the value of R0) we infer for any p̃ ∈ [p1, p2 +ω(4R)] that
[  

BR

(|Dv|+ s)σ dx

] p̃
σ

≤ c

[  

BR

(
(|Dv|+ s)

σp(x)
p1 + R2σ

)
dx

] p̃
σ

≤ c

[  

B3/2R

(|Dv|+ s + R)p(x) dx

] p̃
p1

+ cR2p̃

≤ c

 

B3/2R

(|Dv|+ s)p(x) dx

[  

B3/2R

(|Dv|+ s)p(x) dx

] p̃−p1
p1

+ cR2p̃,

with c ≡ c(n, ν, L, γ2,M, |µ|(Ω)). At this stage we use (3.16) and (2.7) in order
to bound the term [. . . ]

p̃−p1
p1 by a constant depending on n, ν, L, γ2,M and |µ|(Ω).
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Therefore, we deduce that for any σ ∈ [p1, p2(1+δ1/2)] and p̃ ∈ [p1, p2 +ω(4R)] there
holds the following energy estimate for v:

(3.20)
[ 

BR

(|Dv|+ s)σ dx

] p̃
σ

≤ c

 

B3/2R

(|Dv|+ s)p(x) dx + cR2p̃,

where c ≡ c(n, ν, L, γ2,M, |µ|(Ω)) and whenever 0 < R ≤ R0 ≡ R0(n, L/ν, γ2, ω(·)).
3.3. Freezing the coefficients. At this stage we establish a comparison esti-

mate between the solution v of the homogeneous problem (3.1), and the solution w
of the frozen homogeneous one (3.2). More precisely, we will prove the following

Lemma 3.4. Under the assumptions of Theorem 1.1, let B2R ≡ B2R(x0) ⊆ Ω,
p0 ≡ p(x0), and denote v the solution of (3.1) on B2R and by w the solution of
(3.2) on BR. Then, there exists a constant c ≡ c(n, ν, L, γ2,M, |µ|(Ω)) and a radius
R0 ≡ R0(n, L/ν, γ2, ω(·)) ∈ (0, 1] such that whenever 0 < R ≤ R0 the following
estimate holds:

 

BR

|Dv −Dw|p0 dx ≤ c L2
1ω

2(R)

[
log2

( 1

R

)  

B3/2R

(|Dv|+ s)p(x) dx + Rp0

]
.

Proof. By δ1 ≡ δ1(n, L/ν, γ2) ∈ (0, 1] we denote the constant from Lemma 3.2. In
a first step, we let R0 ≡ R0(n, L/ν, γ2, ω(·)) be the radius chosen in such a way that
ω(4R0) ≤ δ1/4. This ensures that (3.20) is applicable whenever R ≤ R0; note that we
shall reduce the value of R0 in the remainder of the proof. Finally, by p1 and p2 we go
on denoting the minimal and maximal value of p(·) on B2R as defined in (3.17). Now,
using the monotonicity (2.2) of the frozen vector field a(x0, ·), the weak formulation of
equations (3.1) and (3.2), the continuity assumption (1.4) of the maping x 7→ a(x, ·),
Young’s inequality and noting that | log(|Du|2 + s2)| ≤ log 2 + 2| log(|Du| + s)| we
deduce

ν

c(γ2)

 

BR

(|Dv|2 + |Dw|2 + s2
) p0−2

2 |Dv −Dw|2 dx

≤
 

BR

〈a(x0, Dw)− a(x0, Dv), Dw −Dv〉 dx

=

 

BR

〈a(x,Dv)− a(x0, Dv), Dw −Dv〉 dx

≤ L1ω(R)

 

BR

[(|Dv|2+s2
) p(x)−1

2 +
(|Dv|2+s2

) p0−1
2

]

·
[
1 +

∣∣ log
(|Dv|2+s2

)∣∣
]
|Dw−Dv| dx

≤ ν

2c(γ2)

 

BR

(|Dv|2 + s2
) p0−2

2 |Dv −Dw|2 dx +
c(γ2)L

2
1ω(R)2

ν

·
 

BR

[(|Dv|2+s2
) 2p(x)−p0

4 +
(|Dv|2+s2

) p0
4

]2 [
1 +

∣∣ log
(|Dv|+s

)∣∣
]2

dx.

Since p0 ≥ 2 we can absorb the first term of the right-hand side into the left, and
moreover, we can bound the integral on the left-hand side from below by

ffl
BR
|Dv −



Gradient estimates via non standard potentials and continuity 657

Dw|p0 . Proceeding in this way and rearranging terms leads us to 

BR

|Dv −Dw|p0 dx

≤ c L2
1ω(R)2

[  

BR

(|Dv|+ s)2p(x)−p0

[
1 +

∣∣ log
(|Dv|+ s

)∣∣
]2

dx

+

 

BR

(|Dv|+ s)p0

[
1 +

∣∣ log
(|Dv|+ s

)∣∣
]2

dx

]
,

(3.21)

where c ≡ c(ν, γ2). In order to estimate the integrals on the right-hand side of (3.21)
we shall first deduce a pointwise bound of the expression

Vp̃(x) := (|Dv(x)|+ s)p̃
[
1 + | log(|Dv(x)|+ s)|

]2

for p̃ ∈ [p1 − ω(4R), p2 + ω(4R)].

Note that p̃ = 2p(x) − p0 and p̃ = p0 both lie in the admissible range and then
V2p(x)−p0 is just the integrand in the first integral on the right-hand side of (3.21),
while Vp0 is the integrand in the second one. For the pointwise estimate of Vp̃ we
now distinguish three cases: In the case |Dv(x)|+ s ≥ 1, we have

Vp̃(x) ≤ 4 (|Dv(x)|+ s)p2+ω(4R) log2
(
e + (|Dv|+ s)p2+ω(4R)

)
.

When |Dv(x)| + s ∈ (R4, 1) we have | log(|Dv(x)| + s)| ≤ log R−2 = 4 log( 1
R
).

Moreover, by reducing R0 such that R0 ≤ 1/e we find that log 1/R ≥ 1 such that
1 + | log(|Dv(x)| + s)| ≤ 5 log( 1

R
). Subsequently using that (|Dv(x)| + s)p̃−p(x) ≤ 1

when p̃ ≥ p(x), while (|Dv(x)| + s)p̃−p(x) ≤ R−4(p(x)−p̃) ≤ R−4(p(x)+ω(4R)−p1) ≤ c(L)
when p̃ < p(x) by (2.7), we get

Vp̃(x) ≤ 25 log2
( 1

R

)
(|Dv(x)|+ s)p̃ ≤ c(L) log2

( 1

R

)
(|Dv(x)|+ s)p(x).

Finally, in the case |Dv(x)|+s ≤ R4 we have 1+ | log(|Dv(x)|+s)| ≤ 2| log(|Dv(x)|+
s)| since R ≤ R0 ≤ 1/e. In turn using the fact that the mapping [0, 1] 3 ξ 7→ ξ

1
2 log2 ξ

attains its absolute maximum value 16e−2 in the point ξ = e−4, we conclude that
(|Dv(x)|+ s) log2(|Dv(x)|+ s) ≤ 16e−2 and therefore

Vp̃(x) ≤ 4 (|Dv(x)|+ s)p̃ log2(|Dv(x)|+ s) ≤ 64e−2(|Dv(x)|+ s)p̃− 1
2

≤ 16 R4(p̃− 1
2
) ≤ 16 Rp0 ,

where we have also taken into account that R ≤ 1 and p̃ − 1
2
≥ p1 − ω(4R) − 1

2
≥

p1 − 1 ≥ p1/2 ≥ p2/4 ≥ p0/4 by (2.6). At this point we can proceed the estimate
of (3.21). More precisely, decomposing in the integrals on the right-hand side the
domain of integration BR into the three disjoint sets where |Dv(x)|+ s takes a value
in [1,∞), respectively in (R4, 1) or in [0, R4] and using the according estimates from
above with p̃ = 2p(x)− p0 and p̃ = p0, we obtain

(3.22)

 

BR

|Dv −Dw|p0 dx

≤ c L2
1ω(R)2

[  

BR

(|Dv|+ s)p2+ω(4R) log2
(
e + (|Dv|+ s)p2+ω(4R)

)
dx

+ log2
( 1

R

)  

BR

(|Dv|+ s)p(x) dx + Rp0

]
,
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where c ≡ c(ν, L, γ2). Next, we use estimates in Orlicz spaces in order to bound the
first integral on the right-hand side of the preceding inequality. First, we define av-
eraged L1-norm for f ∈ L1(Ω) by ‖f‖1 :=

ffl
Ω
|f | dx. Using the elementary inequality

log2(e + ab) ≤ 2(log2(e + a) + log2(e + b)) for any a, b ≥ 0 (cf. (32) in [4]) we get
 

BR

(|Dv|+ s)p2+ω(4R) log2
(
e + (|Dv|+ s)p2+ω(4R)

)
dx

≤ 2

 

BR

(|Dv|+ s)p2+ω(4R) log2

(
e +

(|Dv|+ s)p2+ω(4R)

‖(|Dv|+ s)p2+ω(4R)‖1

)
dx

+ 2

 

BR

(|Dv|+ s)p2+ω(4R) log2
(
e + ‖(|Dv|+ s)p2+ω(4R)‖1

)
dx

=: 2 (I1 + I2),

(3.23)

with the obvious meaning of I1 and I2. For the estimate of I1 we first use the
inequality

 

Ω

|f | log2

(
e +

|f |
‖f‖1

)
dx ≤ c(q)

( 

Ω

|f |q dx

)1/q

, ∀ q > 1, f ∈ L log2 L(Ω),

with the choice q := q(n, L/ν, γ2) := (4+2δ1)/(4+δ1) > 1. Note that this estimate is a
consequence of the bound of the Luxemburg norm in the L log L-space in terms of the
Lq norm (cf. [7, 35, 36], or [4, inequality (28)]). Furthermore, since q(p2 + ω(4R)) ≤
q · p2(1 + δ1/4) = p2(1 + δ1/2)—recall that ω(4R) ≤ δ1/4—we can subsequently use
(3.20) to infer that

I1 ≤ c

[ 

BR

(|Dv|+ s)
(p2+ω(4R))· 4+2δ1

4+δ1 dx

] 4+δ1
4+2δ1 ≤ c

[  

B3/2R

(|Dv|+ s)p(x) dx + Rp2+ω(4R)

]
,

where c ≡ c(n, ν, L, γ2,M, |µ|(Ω)). For the estimate of I2 we first observe from (3.20)
(note that R2(p2+ω(4R)) ≤ R2p2) and (3.15) that

 

BR

(|Dv|+ s)p2+ω(4R) dx ≤ c

 

B3R/2

|Dv|p(x) dx + cR2p2 ≤ cR−n− α
1−β ,

where α, β were defined in (3.13) and (3.14) and c ≡ c(n, ν, L, γ2, M, |µ|(Ω)). Here,
we have also used R2p2 ≤ R− α

1−β , since R ≤ 1. Using the preceding estimate twice
(note that ‖ · ‖1 denotes the averaged L1 norm) we obtain the following estimate for
I2:

I2 ≤ c log2
(
e + cR−n− α

1−β
)[  

B3R/2

|Dv|p(x) dx + R2p2

]

≤ c

[(
n + α

1−β

)
log

( 1

R

)
+ log(c + e)

]2[  

B3R/2

|Dv|p(x) dx + R2p2

]

≤ c

[
log2

( 1

R

)
+ 1

][  

B3R/2

|Dv|p(x) dx + R2p2

]
.

At this stage we recall that α
1−β

≤ c(n, γ2) by the definition of α, β and therefore the
constant c depends on n, ν, L, γ2,M, |µ|(Ω). Furthermore, we have log2( 1

R
)Rp2 ≤ e−1
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and log 1/R ≥ 1 whenever R ≤ 1/e, which can always be attained by eventually
reducing R0 such that R0 ≤ 1/e. This leads us to

I2 ≤ c log2
( 1

R

)  

B3/2R

(|Dv|+ s)p(x) dx + cRp0 ,

with a constant that depends on n, ν, L, γ2,M, |µ|(Ω). Inserting the preceding esti-
mates for I1 and I2 into (3.23) we deduce the desired estimate for the first term on
the right-hand side of (3.22), i.e., we arrive at

 

BR

|Dv −Dw|p0 dx ≤ c L2
1ω(R)2

[
log2

( 1

R

)  

B3R/2

(|Dv|+ s)p(x) dx + Rp0

]
,

where c ≡ c(n, ν, L, γ2,M, |µ|(Ω)). This proves the assertion of the lemma. ¤
In the next lemma we combine the comparison estimates from Lemma 3.1 and

3.4 in order to deduce directly a comparison estimate between the original solution
u and the solution of the frozen homogeneous problem (3.2) w.

Lemma 3.5. Under the assumptions of Theorem 1.1, let B2R ≡ B2R(x0) ⊆ Ω
and p0 ≡ p(x0) and denote by v the solution of (3.1) on B2R and by w the solution of
(3.2) on BR. Then there exists a constant c ≡ c(n, ν, L, γ2,M, |µ|(Ω)) and a radius
R0 ≡ R0(n, L/ν, L1, γ2, ω(·)) ∈ (0, 1] such that whenever 0 < R ≤ R0 the following
estimate holds:

 

BR

|Du−Dw| dx ≤ c

[ |µ|(B2R)

Rn−1

] 1
p0−1

+ c
[
L1ω(R) log

(
1
R

)] 2
p0

 

B2R

(|Du|+ s) dx + cR.

Proof. The proof consists in matching together the two comparison estimates of
Lemma 3.1 and 3.4. Thereby it will be necessary to be extremely careful with appear-
ing exponents. In a first step we split the integrand, then use the already available
comparison estimates from Lemma 3.1 and 3.4 and finally adapt the appearing expo-
nents. Since at one point we have to pass from the p(x)-energy of v to the 1-energy
of u, we will take advantage of the reverse-type inequality (3.15). In order to adapt
the exponents of the radius, we will frequently exploit the localization techniques via
the logarithmic continuity of the exponent function p(·) as for instance provided in
(2.7). Initially, we let R0 ≡ R0(n, L/ν, γ2, ω(·)) ∈ (0, 1] be the corresponding radius
in Lemma 3.4. Within the proof we shall possibly further reduce this value. Let us
start by simply observing that

 

BR

|Du−Dw| dx ≤
 

BR

|Du−Dv| dx +

 

BR

|Dv −Dw| dx =: I1 + I2,

with the obvious labeling of I1 and I2.
Applying Lemma 3.1, the expression I1 is estimated by

(3.24) I1 ≤ c

[ |µ|(B2R)

Rn−1

] 1
p0−1

+ cR,
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with a constant c ≡ c(n, ν, L, γ2,M, |µ|(Ω)). To treat I2, we in turn use Hölder’s
inequality and Lemma 3.4 to find that

I2 ≤
[ 

BR

|Dv −Dw|p0

] 1
p0

≤ c
[
L1ω(R) log 1

R

] 2
p0

[  

B3/2R

(|Dv|+ s)p(x) dx

] 1
p0

+ c [L1ω(R)]
2

p0 R,

(3.25)

where c ≡ c(n, ν, L, γ2, |µ|(Ω)). Now, using inequality (3.15) and taking mean values
we find that  

B3/2R

(|Dv|+s)p(x) dx

≤ cR−n− α
1−β

+n γ
1−β

[ 

B2R

(|Du|+s+R) dx +

[ |µ|(B2R)

Rn−1

] 1
p0−1

] γ
1−β

.

(3.26)

Recalling the definitions of α, β and γ in (3.13) and (3.14), a straight forward com-
putation shows that

−n− α

1− β
+ n

γ

1− β
= 0,

which in turn means that the first radius on the right hand side of the preceding
inequality cancels. Our aim is now to “reduce” the exponent γ

1−β
in (3.26) to p0,

which means to estimate the quantity

J :=

[ 

B2R

(|Du|+ s + R) dx +

[ |µ|(B2R)

Rn−1

] 1
p0−1

] γ
1−β

−p0

.

Therefore, we need to have a closer look at the exponent γ
1−β

. For this aim we first
consider the reciprocal value 1−β

γ
. Recalling again the definitions of β and γ, we first

see that
1− β

γ
=

p1 − p2 + ϑp2

p1
− 1

p2(ϑ− 1)
=

1

p2

[
1−

(p2 − p1)(1− ϑ
p1

)

ϑ− 1

]
.

Exploiting (2.6), noting that 1 < ϑ < 2 and hence ϑ
p1

< 1 we deduce

1

p2

[
1− ω(4R)

ϑ− 1

]
≤ 1− β

γ
≤ 1

p2

.

Reducing R0 in such a way that we have

ω(4R0) ≤ ϑ− 1

2
= c(n),

we therefore conclude
[
1− ω(4R)

ϑ− 1

]−1

=
1

1− ω(4R)
ϑ−1

= 1 +
ω(4R)

ϑ− 1
·
∞∑

k=0

[
ω(4R)

ϑ− 1

]k

≤ 1 + 2
ω(4R)

ϑ− 1
,

and therefore arrive at

p2 ≤ γ

1− β
≤ p2

[
1 + 2

ω(4R)

ϑ− 1

]
.
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This shows us that

(3.27) 0 ≤ γ

1− β
− p0 ≤ ω(4R)

[
1 +

2γ2

ϑ− 1

]
≤ c(n, γ2).

With this information we can bound J as follows:

J ≤ c(n, γ2,M, |µ|(Ω)) R−n( γ
1−β

−p0)

≤ c(n, γ2,M, |µ|(Ω)) R−ω(4R)·n(1+
2γ2
ϑ−1

) ≤ c(n, L, γ2,M, |µ|(Ω)),

where we have used (2.7) in the final estimate. Joining the preceding estimate with
(3.26) we arrive at

 

B3/2R

(|Dv|+ s)p(x) dx ≤ c

[ 

B2R

(|Du|+ s) dx +

[ |µ|(B2R)

Rn−1

] 1
p0−1

+ R

]p0

,

which in combination with (3.25) yields that

I2 ≤ c
[
L1ω(R) log 1

R

] 2
p0

[ 

B2R

(|Du|+ s) dx +

[ |µ|(B2R)

Rn−1

] 1
p0−1

+ R

]
,

where c ≡ c(n, ν, L, γ2,M, |µ|(Ω)). We now combine the preceding estimate for I2

with the one for I1 in (3.24) and reduce R0 in such a way that L1ω(R0) log 1
R0
≤ 1

holds, which is possible thanks to (1.9). Then R0 additionally depends on L1. This
finally yields the desired comparison estimate. ¤

3.4. Decay below the natural growth exponent. Here, we shall merge
together our comparison estimate from Lemma 3.5 with the decay estimate from
Theorem 2.2 which is satisfied by the solution w of the frozen coefficient equation.
This will lead us to the following L1-decay estimate for the solution u of the original
problem:

Lemma 3.6. Under the assumptions of Theorem 1.1, there exist constants β ≡
β(n, L/ν, L1, γ2) ∈ (0, 1] and c1 ≡ c1(n, ν, L, γ2,M, |µ|(Ω))) ≥ 1 and a radius R0 ≡
R0(n, L/ν, L1, γ2, ω(·)) ∈ (0, 1] such that the following holds: whenever B% ⊆ BR ⊂
B2R ≡ B2R(x0) ⊆ Ω are concentric balls with R ≤ R0 and p0 ≡ p(x0), then the
following estimate holds: 

B%

|Du− (Du)B% | dx

≤ c1

[( %

R

)β

+
(R

%

)n[
L1ω(R) log 1

R

] 2
p0

]  

B2R

|Du− (Du)B2R
| dx

+ c1

(R

%

)n
[[ |µ|(B2R)

Rn−1

] 1
p0−1

+
[
L1ω(R) log 1

R

] 2
p0

(|(Du)B2R
|+ s

)
+ R

]
.

(3.28)

Proof. For a ball B2R as in the statement of the lemma we define the comparison
function w on BR according to (3.2). Since the function w solves a homogeneous
equation with frozen coefficients of the form (3.2), we may apply Theorem 2.2 to
conclude that there exist constants β ∈ (0, 1] and c ≥ 1, both depending only on
n, ν, L, γ2–see Remark 2.3—such that the decay estimate 

B%

|Dw − (Dw)B% | dx ≤ c
( %

R

)β
 

BR

|Dw − (Dw)BR
| dx
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holds for any % < R. Carrying this estimate over to u yields
 

B%

|Du− (Du)B%| dx ≤
 

B%

|Dw − (Dw)B% | dx + 2

 

B%

|Du−Dw| dx

≤ c
( %

R

)β
 

BR

|Dw − (Dw)BR
| dx + 2

(R

%

)n
 

BR

|Du−Dw| dx

≤ c
( %

R

)β
 

BR

|Du− (Du)BR
| dx + c

(R

%

)n
 

BR

|Du−Dw| dx,

where c ≡ c(n, ν, L, γ). The first integral appearing on the right-hand side of the
preceding inequality is further estimated as follows:
 

BR

|Du− (Du)BR
| dx ≤ 2

 

BR

|Du− (Du)B2R
| dx ≤ 2n+1

 

B2R

|Du− (Du)B2R
| dx,

whereas for the second one we shall apply Lemma 3.5. At this stage we let R0 ≡
R0(n, L/ν, L1, γ2, ω(·)) denote the radius from Lemma 3.5 and suppose that R ≤ R0.
Then, the application of the lemma yields
 

BR

|Du−Dw| dx ≤ c
[
L1ω(R) log 1

R

] 2
p0

 

B2R

(|Du|+ s) dx + c

[ |µ|(B2R)

Rn−1

] 1
p0−1

+ cR,

where c ≡ c(n, ν, L, γ2,M, |µ|(Ω)). Finally, we estimate the first integral of the right-
hand side by

 

B2R

(|Du|+ s) dx ≤
 

B2R

|Du− (Du)B2R
| dx + |(Du)B2R

|+ s.

Merging together the preceding estimates yields the assertion of the lemma. ¤
3.5. Proof of Theorem 1.1. We now have the prerequisites to prove the first

main theorem of the paper which will be accomplished in four steps.

Step 1: Decay estimate. Let β ≡ β(n, L/ν, L1, γ2) ∈ (0, 1] and c1 ≡ c1(n, ν, L, γ2,
M, |µ|(Ω)) ≥ 1 be the corresponding constants from Lemma 3.6 and R0 ≡ R0(n, L/ν,
L1, γ2, ω(·)) ∈ (0, 1] the corresponding radius. Note that in the course of the proof
we shall possibly further reduce R0. Next, we define H ∈ R by

(3.29) c1

( 1

H

)β

=
1

4
.

Note that this implies H ≥ 2 depending only on n, ν, L, γ2, M, |µ|(Ω)). With this
choice we start reducing the value of R0 in order to have

(3.30) c1 Hn
[
L1ω(R0) log 1

R0

] 2
γ2 ≤ 1

4
,

which is possible due to (1.9). Note that R0 now depends on n, ν, L, L1, γ2,M, |µ|(Ω),
ω(·). Moreover, note that condition (3.30) together with L1ω(R̃) log 1

R̃
≤ 1 and

p0 ≤ γ2 particularly implies

c1 Hn
[
L1ω(R0) log 1

R0

] 2
p0 ≤ 1

4
.
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Applying Lemma 3.6 on the concentric balls BR/H ⊆ BR/2 ⊂ BR ⊆ Ω with
R ≤ R0 and keeping in mind the previous choices and the fact that ω(·) is non-
decreasing yields 

BR/H

|Du− (Du)BR/H
| dx ≤ 1

2

 

BR

|Du− (Du)BR
| dx

+ c1 Hn

[[ |µ|(BR)

Rn−1

] 1
p0−1

+
[
L1ω(R) log 1

R

] 2
p0

(|(Du)BR
|+ s

)
+ R

]
.

(3.31)

Step 2: Dyadic sequences. We now fix a ball B2R(x0) ⊆ Ω as in the statement of
Theorem 1.1. For i ∈ N0 we define

(3.32) Bi := BRi
(x0), where Ri := R/H i

and

(3.33) ki := |(Du)Bi
|.

Then, for any ` ∈ N we have

k`+1 =
∑̀
i=0

(ki+1 − ki) + k0 ≤
∑̀
i=0

 

Bi+1

|Du− (Du)Bi
| dx + k0

≤
∑̀
i=0

Hn

 

Bi

|Du− (Du)Bi
| dx + k0.

Setting

Ai :=

 

Bi

|Du− (Du)Bi
| dx,(3.34)

the preceding inequality can be rewritten as

k`+1 ≤ Hn
∑̀
i=0

Ai + k0.(3.35)

Now, we observe that we can use (3.31) with R = Ri−1 for any i ≥ 1 which, with the
previous notations, reads as

Ai ≤ 1
2
Ai−1 + c

[ |µ|(Bi−1)

Rn−1
i−1

] 1
p0−1

+ c
[
L1ω(Ri−1) log 1

Ri−1

] 2
p0

(
ki−1 + s

)
+ cRi−1,(3.36)

with c ≡ c(n, ν, L, γ2,M, |µ|(Ω))), where we have taken into account that H only
depends on n, ν, L, γ2. Summing up the preceding inequality for i = 1, . . . , ` we
obtain

∑̀
i=1

Ai ≤ 1
2

`−1∑
i=1

Ai−1 + c

`−1∑
i=0

[[ |µ|(Bi)

Rn−1
i

] 1
p0−1

+
[
L1ω(Ri) log 1

Ri

] 2
p0

(
ki + s

)
+ Ri

]
,

which after absorbing 1
2

∑`−1
i=1 Ai−1 on the left-hand side yields

∑̀
i=1

Ai ≤ A0 + c

`−1∑
i=0

[[ |µ|(Bi)

Rn−1
i

] 1
p0−1

+
[
L1ω(Ri) log 1

Ri

] 2
p0

(
ki + s

)
+ Ri

]
.
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We now use the preceding inequality to estimate the right-hand side of (3.35) yielding
for any ` ≥ 1 that

k`+1 ≤ k0 + cA0 + c

`−1∑
i=0

[[ |µ|(Bi)

Rn−1
i

] 1
p0−1

+
[
L1ω(Ri) log 1

Ri

] 2
p0

(
ki + s

)
+ Ri

]
.(3.37)

where c ≡ c(n, ν, L, γ2,M, |µ|(Ω)) and we again have taken into account that H
depends on n, ν, L, γ2.

Step 3: Uniform bounds and Wolff potentials. Here, we shall find bounds inde-
pendent of ` for the sums on the right-hand side of (3.37). Let us start with the first
one involving the measure µ. Here, we proceed as in the proof of estimate (3.56) in
[16] to infer that

`−1∑
i=0

[ |µ|(Bi)

Rn−1
i

] 1
p0−1

≤ cWµ
1

p(·) ,p(·)(x0, 2R), for any ` ≥ 1,(3.38)

where c ≡ 2n−1

log 2
+ Hn−1

log H
and therefore c depends on n, ν, L, γ2,M, |µ|(Ω). Next, we

shall consider the sum in (3.37) involving the modulus ω(·) and we will show that
`−1∑
i=0

[
ω(Ri) log 1

Ri

] 2
p0 ≤ 2 d(x0, 2R) ,(3.39)

where d(·) has been defined in (1.9). Proceeding similarly to the last estimate, also
using that ω(·) is non-decreasing, we obtain
`−1∑
i=0

[
ω(Ri) log 1

Ri

] 2
p0 ≤

∞∑
i=0

[
ω(Ri) log 1

Ri

] 2
p0

≤ [
ω(R) log 1

R

] 2
p0 +

∞∑
i=0

[
ω(Ri+1) log 1

Ri+1

] 2
p0

≤ 1

log 2

ˆ 2R

R

[
ω(%) log 1

%

] 2
p0

d%

%
+

1

log H

∞∑
i=0

ˆ Ri

Ri+1

[
ω(%) log 1

%

] 2
p0

d%

%

≤ 1

log 2

ˆ 2R

0

[
ω(%) log 1

%

] 2
p0

d%

%
,

where in the last line we have taken into account that (log H)−1 ≤ (log 2)−1 since
H ≥ 2. At this stage (3.39) follows from the very definition of d(·) in (1.9) and the
fact that log 2 ≥ 1/2. For later use we further restrict R0 in order to have

(3.40) d(x0, 2R0) ≤ 1

L1

≤ 1

L
2/p0

1

,

which is possible thanks to (1.9) and the facts that L1 ≥ 1 and p0 ≥ 2. Note that R0

now additionally depends on p0, i.e., it is of the form R0 ≡ R0(n, ν, L, L1, γ2,M, |µ|(Ω),
ω(·), p0). Finally, we estimate the third sum in (3.37) as follows:

`−1∑
i=0

Ri = R

`−1∑
i=0

H−i ≤ 2R,(3.41)
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where we have taken into account that H ≥ 2. Joining (3.38)–(3.41) with (3.37) and
taking into account that

k0 + A0 + s ≤ c

 

BR(x0)

(|Du|+ s) dx,

we arrive at

k`+1 ≤ c2 M + c3 L
2

p0
1

`−1∑
i=0

[
ω(Ri) log 1

Ri

] 2
p0 ki, for every ` ≥ 1,(3.42)

where c2, c3 ≥ 1 depend on n, ν, L, γ2,M, |µ|(Ω) and we have set

M :=

 

BR(x0)

(|Du|+ s) dx + Wµ
1

p(·) ,p(·)(x0, 2R) + R.(3.43)

Finally, to complete (3.42) also for ` = −1, 0 we estimate

(3.44) k0 + k1 ≤ (1 + Hn)

 

BR(x0)

|Du| dx ≤ c2M ,

which can be obtained by eventually enlarging the constant c2 without changing the
dependencies.

Step 4: Induction and final conclusion. Here, we restrict the value of R0 for the
last time in such a way that

(3.45) d(x0, 2R0) ≤ 1

4c3L1

,

holds, where c3 denotes the corresponding constant appearing in (3.42). This finally
determines R0 as a positive constant satisfying (3.30), (3.40) and (3.45) and therefore
depending on n, ν, L, L1, γ2,M, |µ|(Ω), ω(·) and p0. We will now prove by induction
that

k` ≤ 2c2 M for any ` ∈ N0,(3.46)

where c2 and M have been defined in (3.42) and (3.43). For ` = 0, 1 our assertion
(3.46) has already been shown in (3.44). Now, we assume (3.46) holds for any ` ≤ m,
with some m ≥ 1 and prove it for m + 1. Using (3.42), (3.46), (3.39), (3.45) and

L
2

p0
1 ≤ L1 we get

km+1 ≤ c2M + c3L
2

p0
1

m−1∑
i=0

[
ω(Ri) log 1

Ri

] 2
p0 ki

≤ c2M + 2c3c2ML1

m−1∑
i=0

[
ω(Ri) log 1

Ri

] 2
p0

≤ c2M + 4c3c2ML1d(x0, 2R)

≤ c2M + c2M = 2c2M ,

proving our assertion (3.46).
At this stage we recall that we assumed Du to be continuous and therefore we

may conclude that for any x0 ∈ Ω there holds

(3.47) |Du(x0)| = lim
`→∞

k` ≤ 2c2M .
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Together with the definition of M in (3.43) we now conclude the desired estimate
(1.10). Finally, we observe that (3.40) and (3.45) were the only conditions on R0

causing its dependence upon p(x0). Therefore, assuming (1.6) instead of (1.9) and
replacing d(x0, 2R0) by d(2R0) leads us to a constant R0 independent of p(x0). This
completes the proof of Theorem 1.1.

Remark 3.7. Note that the only point in the proof where we needed the as-
sumption u ∈ C1(Ω) is the passage to the limit in (3.47). For the rest of the proof it
we could also have worked with a solution u ∈ W

1,p(·)
loc (Ω). Indeed, we can repeat the

proof line by line for such a solution, but taking into account that the convergence
in (3.47) eventually only takes place in Lebesgue points of Du. Therefore, we end up
with (1.10) for almost every x0 ∈ Ω.

4. Gradient estimate for general solutions

In this Chapter we consider Dirichlet problems involving a right-hand side mea-
sure µ and thereby prove the applications of our a priori estimate from Theorem 1.1
provided in Theorems 1.3 and 1.4.

4.1. SOLAs and proof of Theorem 1.4. In the case where µ does not belong
to W−1,p′(·)(Ω) the general existence theory of weak solutions does not apply and
therefore one has to consider a more general notion of solution. In the literature
there are different approaches, see [8, 40, 49]. We shall follow the one introduced in
[9, 10, 14] for the constant exponent case. More precisely, we shall consider a SOLA
(Solution Obtained by Limit of Approximations) which is a function u ∈ W 1,q(·)(Ω),
with q(·) < q̄(·) := min{n(p(·)− 1)/(n− 1), p(·)} satisfying (1.11) in the weak sense
and which is found by means of approximations, i.e., it is obtainable as pointwise
limit of weak solutions (W 1,p(·)

0 (Ω)-solutions). Note that u ∈ W 1,q(·)(Ω) for any
q(·) < q̄(·) implies u ∈ W 1,p(·)−1(Ω) and therefore the weak formulation of (1.11)
makes sense for a SOLA. Moreover, in the case that µ ∈ L1(Ω) the SOLA is unique,
in the class of such solutions. Note that there is in general no uniqueness in W 1,q(·);
see the counterexamples already found for the constant coefficient case in [50, 46].
Concerning the existence of a SOLA we note that, since we are assuming p(·) ≥ 2,
in particular cases (for instance when n ≤ 10, or p(·) ≡ const) the entropy solution
constructed in [49, Theorem 1.3] or [8, Theorem 2.1] coincides with the SOLA (see
[49, Remark 5.7]), and hence we can infer existence from there. However, in our case
of exponents p(·) ≥ 2 lying above the critical exponent 2− 1/n the existence theory
is essentially easier and we can infer existence—and uniqueness when µ ∈ L1(Ω)—of
a SOLA in the case of coefficients with non standard growth in the spirit of [9, 10, 14]
via the methods of [8, 40, 49]. For the sake of briefness we shall not give the whole
proof here, but only the main steps and the approximation procedure leading to the
gradient estimate (1.10) for a SOLA.

We consider a Radon measure µ defined on Ω with finite total mass. Extending
µ on Rn \ Ω by zero we may assume that µ is defined on Rn. Now, let φ ∈ C∞

0 (B1)
be a standard symmetric and non-negative mollifier with ‖φ‖L1(Rn) = 1. For any
h ∈ N we define φh(x) := hnφ(hx), for x ∈ Rn and

(4.1) µh(x) := (µ ∗ φh)(x), x ∈ Ω.
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Then, by standard properties of convolutions we know that the function µh : Rn → R
is smooth, particularly µh ∈ W−1,p′(·)(Ω) and therefore there exists a unique weak
solution uh ∈ W

1,p(·)
0 (Ω) of the Dirichlet problem

(4.2)

{
− div a(x,Duh) = µh in Ω,

uh = 0 on ∂Ω.

By the construction of µh we know that µh ⇀ µ weakly in the sense of measures as
h →∞ and ‖µh‖L1(Rn) ≤ |µ|(Ω). The following lemma will provide a uniform bound
for uh in a suitable Sobolev space.

Lemma 4.1. Let h ∈ N and uh ∈ W
1,p(·)
0 (Ω) be a weak solution to (4.2) as

above, particularly with µh ∈ L1(Ω) ∩W−1,p′(·)(Ω) and let

(4.3) 1 ≤ q(·) < q̄(·) ≡ min

{
n(p(·)− 1)

n− 1
, p(·)

}
.

Then, there exists a constant c ≡ c(n, ν, γ2, Ω, |µ|(Ω), q(·))—independent of h—such
that ˆ

Ω

|Duh|q(x) dx ≤ c.

Proof. For k ∈ N we set Dk := {x ∈ Ω: |uh(x)| ≤ k}. Similarly to the proof
of Lemma 3.1, i.e., by testing the weak formulation of (4.2) with the truncation
ϕ := Tk(uh) we can show that

ˆ

Dk

|Duh|p(x) dx ≤ c(ν, γ2) k‖µh‖L1(Ω) ≤ c(ν, γ2) k|µ|(Ω),

and similarly, testing with ϕ := Φk(uh) yields
ˆ

Ck

|Duh|p(x) dx ≤ c(ν, γ2) ‖µh‖L1(Ω) ≤ c(ν, γ2) |µ|(Ω),

where we have set Ck := {x ∈ Ω: k < |uh(x)| ≤ k + 1}. At this stage the assertion
of the lemma follows from [8, Lemma 2.1]. Note that the restriction p(·) < n can be
avoided by a suitable choice of the exponents in the Sobolev inequality: when p− ≥ n
(with the notation from [8]) one replaces q+∗ by α, where α is taken in such a way
that q+

p−−q+ < α < p−q+

p−−q+ . ¤

From Lemma 4.1 we infer that (uh)h∈N is uniformly bounded in W
1,q(·)
0 (Ω) for

any q(·) as in (4.3). Therefore, we can find a—not relabeled—subsequence and a
function u ∈ W

1,q(·)
0 (Ω) such that





uh ⇀ u weakly in W
1,q(·)
0 (Ω),

uh → u strongly in Lq(·)(Ω),

uh → u a.e. in Ω.

Note that this is not yet sufficient in order to pass to the limit in (4.2). However,
with similar arguments as in [9] we can show that—up to a further not relabeled
subsequence—we have the strong convergence

(4.4) Duh → Du strongly in Lq(·)(Ω) for every q(·) ≤ q̄(·) and a.e. in Ω.
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This allows to pass to the limit in (4.2) and to infer that u is a SOLA of (1.11).
Thereby, the notion of a SOLA is justified since u indeed is a pointwise limit of
the more regular solutions (uh). Moreover, by arguments similar to [14] one can
show that the SOLA is unique when µ ∈ L1(Ω), i.e., u is the only solution to (1.11)
obtainable as a pointwise limit of W

1,p(·)
0 -solutions. Now, we come to the

Proof of Theorem 1.4. We let µh and uh, with h ∈ N be as in (4.1) and (4.2).
Then, since uh ∈ W

1,p(·)
0 (Ω), by Remark 3.7 we can apply estimate (3.37) to uh, which

then reads as follows:

k
(h)
`+1 ≤ k

(h)
0 + c A

(h)
0 + c

`−1∑
i=0

[[ |µh|(Bi)

Rn−1
i

] 1
p0−1

+ c
[
L1ω(Ri) log 1

Ri

] 2
p0

(
k

(h)
i + s

)
+ cRi

]
,

where we have set (in accordance with (3.33) and (3.34)):

k
(h)
i := |(Duh)Bi

| and A
(h)
0 :=

 

BR

|Duh − (Duh)BR
| dx.

Note that under condition (1.6) it is possible to prove that Du ∈ C0(Ω,Rn). Passing
to the limit h → ∞ in the preceding inequality—which is justified by (4.4) and the
fact that µh ⇀ µ weakly in measure—yields

k`+1 ≤ k0 + cA0 + c

`−1∑
i=0

[[ |µ|(Bi)

Rn−1
i

] 1
p0−1

+ c
[
L1ω(Ri) log 1

Ri

] 2
p0

(
ki + s

)
+ cRi

]
,

with the notation from (3.33) and (3.34). At this stage the proof is essentially the
same as the one of Theorem 1.1 after (3.37), but taking into account that the con-
vergence now only takes place in the Lebesgue points of Du, and therefore almost
everywhere. Moreover, in order to deal with the presence of |µ|(Bi) rather than
|µ|(Bi) in the previous estimate, the balls have to be slightly enlarged when esti-
mating the sum in terms of the Wolff potential Wµ

1
p(·) ,p(·)(x0, 2R) in the analogue

of (3.38). But this is always possible without difficulties since we already took the
Wolff potential on the larger ball B2R. Finally, the asserted L∞ estimate follows from
(1.10) by a covering argument and taking into account the remark in Theorem 1.1
stating that under the hypothesis (1.6) instead of (1.9) the radius R0 is independent
of p(x0). This finishes the proof of Theorem 1.4 ¤

4.2. Weak solutions and proof of Theorem 1.3. Here, we are dealing within
the setting of Theorem 1.3 where µ already belongs to the dual space W−1,p′(·)(Ω)
and therefore the solution is a weak one in the usual sense.

Proof of Theorem 1.3. The present proof, where we may assume µ ∈ W−1,p′(·)(Ω),
is essentially easier as the one of Theorem 1.4 since now u ∈ W 1,p(·)(Ω) is a weak
solution of (1.2) in the usual sense. Here, we define the local approximations uh ∈
W 1,p(·)(Ω′) by

(4.5)

{
− div a(x,Duh) = µh in Ω′,
uh = u on ∂Ω′,

whenever Ω′ b Ω and where the mollification µh ≡ µ ∗ φh for h ∈ N is defined as in
(4.1); particularly we now have µh → µ in W−1,p′(·)(Ω′). Let us now show that

(4.6) uh → u strongly in W 1,p(·)(Ω′).
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From the weak formulations of (1.2) and (4.5)—where we use the test function uh −
u—and the monotonicity (2.2) of the vector field a(·) we infer

ν

c(γ2)

ˆ

Ω′
|Duh −Du|p(x) dx ≤

ˆ

Ω′
〈a(x,Duh)− a(x,Du), Duh −Du〉 dx

=

ˆ

Ω′
〈µh − µ, uh − u〉W−1,p′(·)×W 1,p(·) dx.

where 〈·, ·〉 denotes the duality pairing between W−1,p′(·) and W 1,p(·). From the pre-
vious inequality we conclude thatˆ

Ω′
|Duh −Du|p(x) dx ≤ c(γ2)

ν
‖uh − u‖W 1,p(·)(Ω′)‖µh − µ‖W−1,p′(·)(Ω′),

which together with the fact thatˆ

Ω′
|Duh −Du|p(x) dx ≥ min{‖Duh −Du‖2

Lp(·)(Ω′), ‖Duh −Du‖γ2

Lp(·)(Ω′)}.

Note that 2 ≤ p(·) ≤ γ2 and Poincaré’s inequality yields that

min
{
‖uh − u‖2

W 1,p(·)(Ω′), ‖uh − u‖γ2

W 1,p(·)(Ω′)

}

≤ c(γ2)

ν
‖uh − u‖W 1,p(·)(Ω′)‖µh − µ‖W−1,p′(·)(Ω′).

Now, we divide by ‖uh − u‖W 1,p(·)(Ω′) and since µh → µ in W−1,p′(·)(Ω′) we observe
that indeed (4.6) holds. From here on we can proceed as in the proof of Theorem 1.4.
Finally, we note that the approximation procedure is not necessary at all when µ ∈
L1(Ω), since then the proof of Theorem 1.1 works directly—again taking into account
that the convergence just takes place in the Lebesgue points. This completes the proof
of Theorem 1.3. ¤

5. Applications and related estimates

In this chapter we shall provide some applications of the gradient potential esti-
mate (1.10).

5.1. Ln-decay. We start with an application that has already been stated in
Theorem 1.5 for the case that µ ∈ Ln. Then, the pointwise gradient bound can
be directly related to the decay properties of r 7→ ‖µ‖Ln(Br(x0)) instead of the Wolff
potential. Here, we give the

Proof of Theorem 1.5. By Hölder’s inequality we can estimate
( |µ|(B%(x0))

%n−1

) 1
p(x0)−1

≤ α
1

p(x0)−1
n %

1
p(x0)−1

(  

B%(x0)

|µ|n dx

) 1
n(p(x0)−1)

≤ α
n−1

n(p(x0)−1)
n ‖µ‖

1
p(x0)−1

Ln(B%(x0)),

so that

(5.1) Wµ
1

p(·) ,p(·)(x0, %) ≤ c(n, γ2)

ˆ %

0

‖µ‖
1

p(x0)−1

Ln(Br(x0))

dr

r
.

Combining the preceding estimate with (1.10) we infer the desired gradient bound in
terms of the Ln-norm of µ. ¤
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5.2. Calderón and Zygmund type estimates. Our gradient estimate (1.10)
allows us to deduce several types of local estimates starting with the Riesz potential—
or more precisely a variable exponent version of the Riesz potential:

Iβ(·)(µ)(x) :=

ˆ

Rn

dµ(y)

|x− y|n−β(y)
, β(·) : Rn → (0, n],

The key is the following variable exponent version of the so called Havin–Maz’ja
potential

V 1
p(·) ,p(·)(|µ|)(x) := I 1

p(·)

[(
I 1

p(·)
(|µ|))

1
p(·)−1

]
(x),

which is the usual potential taken pointwise—as for the Wolff potential. Then, the
Wolff potential can be pointwise bounded in terms of the Havin–Maz’ja potential;
see [5, Theorem 3.1], or [33]. Since the bound is pointwise it directly applies to our
non standard potentials and reads as:

(5.2) Wµ
1

p(·) ,p(·)(|µ|)(x0) ≤ c(n, γ2)V 1
p(·) ,p(·)(|µ|)(x0).

For the constant we note that due to the continuous dependence on p—in the con-
stant exponent version—we can choose it in such a way that it only depends on the
lower, and upper bound of p(·), hence on γ2 (recall that p(·) ≥ 2), rather than on
p(·). Therefore, we can deduce from (1.10) gradient estimates in all function spaces
where the non standard Riesz potential is a bounded operator. We shall provide two
particular applications here. By slight modifications of [15, Theorem 3.8] or [48] we
infer that the Riesz potential Iβ(·) : Lq(·)(Rn) → L

nq(·)
n−β(·)q(·) (Rn) is a bounded operator.

More precisely, supposed that q : Rn → (γ1, γ2) ⊆ (1,∞), β : Rn → (β0, β1) ⊆ (0, n)
have a modulus of continuity satisfying (2.5) and are constant outside some ball BR

and ‖µ‖Lq(·)(Rn) ≤ 1, then we have

‖Iβ(·)(µ)‖
L

nq(·)
n−β(·)q(·) (Rn)

≤ c(q, β, R) ‖µ‖Lq(·)(Rn), provided that q(x)β(x) ≤ ñ < n.

Note that [15, Theorem 3.8] is for Riesz potentials Iβ, with β ≡ const. Nevertheless,
since the proof is based on a pointwise estimate for the Riesz potential—see [15,
Theorem 3.7]—we can use this estimate also for variable exponent Riesz potentials
and then proceed similarly to the proof of [15, Theorem 3.8]. From the preceding
estimate—which is applicable in our situation since we are working on a bounded
domain Ω; then the constant depends on diam Ω instead of R—and (5.2) we infer
that

µ ∈ Lq(·) =⇒ Wµ
1

p(·) ,p(·)(·, %) ∈ L
nq(·)(p(·)−1)

n−q(·) , 1 < q1 ≤ q ≤ q2 < n.

Using this in combination with our gradient estimate (1.10) we deduce the following
property of solutions as considered in Theorems 1.3 and 1.4:

µ ∈ Lq(·) =⇒ Du ∈ L
nq(·)(p(·)−1)

n−q(·)
loc , 1 < q1 ≤ q ≤ q2 < n,

together with the related estimate. This allows us to recover the Calderón and
Zygmund theory from [4] by a completely different approach and are moreover able
to treat non divergence form right hand sides.

5.3. Zero order estimate. A similar technique as we used for our gradient
estimate (1.10) provides an alternative proof of the zero order estimate (1.12) from
[41] and updates it for general signed measures. Here, we can slightly weaken the
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hypothesis on the coefficients a : Ω ×Rn → Rn, assuming now instead of (1.3) and
(1.4) that

{
|a(x, z)| ≤ L (|z|2 + s2)

p(x)−1
2 ,

ν |z1 − z2|p(x) ≤ 〈a(x, z2)− a(x, z1), z2 − z1〉 ,
(5.3)

for any x ∈ Ω and z, z1, z2 ∈ Rn. Moreover, we still assume (1.4), but for the modulus
of continuity ω of the exponent function p(·) it now will be enough to suppose that
the weaker condition (2.4) holds, rather than (1.6). Under these assumptions we
come up with the following pointwise estimate:

(5.4) |u(x0)| ≤ c

 

B%(x0)

|u| dx + cWµ
1,p(·)(x0, 2%) + c %2,

where c ≡ c(n, ν, L, γ2, |µ|(Ω)).
For the sake of brevity we shall only sketch the proof. The main difference with

respect to the proof of Theorem 1.1 is that now we can directly compare to solutions
of the homogeneous non frozen problem (3.1), since we have a suitable zero order
decay-estimate at hand. More precisely, we choose B2R ≡ B2R(x0) ⊆ Ω and let
v ∈ W 1,p(·)(B2R) be the unique weak solution to (3.1) under the assumptions (1.3),
(1.4), (1.5) and (2.4). Then, there exists β ∈ (0, 1] and c ≥ 1, both depending on
n, ν, L, γ2, such that the estimate

(5.5)
 

B%

|v − (v)B%| dx ≤ c
( %

R

)β
 

BR

|v − (v)BR
| dx + cR

holds whenever B% ⊆ B2R. The preceding estimate can be deduced from [24] and [16]
as follows. First, we note that the assumptions of [24, Theorem 4.2] are a consequence
of (1.3) and (1.4). Therefore, we can apply [24, Lemma 2.8] which after iterating the
resulting estimate yields that

osc
B%

v ≤ c
( %

R/2

)β

osc
BR/2

v + cR.

Note that β ∈ (0, 1] and c ≥ 1 only depend on n, ν, L, γ2. At this stage we can
proceed as in the proof of [16, Proposition 4.1] and come up with (5.5).

Now, we combine (5.5) with the comparison estimate (3.4) from Lemma 3.1 to
infer that  

B%

|u− (u)B%| dx

≤ c1

( %

R

)β
 

B2R

|v − (v)B2R
| dx + c1

(
R

%

)n
[[ |µ|(B2R)

Rn−p0

] 1
p0−1

+ R2

]
,

(5.6)

with c, c1 ≥ 1 depending only on n, ν, L, γ2, |µ|(Ω) and we have set p0 = p(x0) as
usual. The preceding inequality holds whenever B% ⊆ B2R ⊆ Ω and is our zero order
analogue of Lemma 3.6.

Next, we choose H in such a way that c1/H
β = 1/2; then H ≥ 2 depends only on

n, ν, L, γ2, |µ|(Ω). Let us consider a ball BR ≡ BR(x0) ⊆ Ω. Then, we can use (5.6)
with (B%, B2R) replaced by (BR/H , BR) to arrive at the following zero order analogue
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of (3.31):

(5.7)
 

BR/H

|u− (u)BR/H
| dx ≤ 1

2

 

BR

|v − (v)BR
| dx + cHn

[[ |µ|(BR)

Rn−p0

] 1
p0−1

+ R2

]
.

Now, we define the balls Bi, i ∈ N0 according to (3.32) and set ki := |(u)Bi
| and

Ai :=
ffl

Bi
|u − (u)Bi

| dx and observe that we can apply (5.7) with BR = Bi. From
this point on we can iterate as in the proof of Theorem 1.1—but taking into account
that the term involving the modulus of continuity ω(·) does not appear—to conclude
the proof of (5.4).

6. Gradient continuity

The proof of the gradient continuity result from Theorem 1.6 will heavily rely
on the gradient estimate from Theorem 1.3 and the decay estimate from Lemma 3.6.
Let us observe that in the present setting Theorem 1.3 directly applies, since (1.13)
implies via Theorem 2.1 that µ lies in W−1,p(·)(Ω0). Concerning Lemma 3.6 which is
stated for C1-solutions we can prove the following analogue for W 1,p(·)-solutions.

Lemma 6.1. Let u ∈ W 1,p(·)(Ω) be as in Theorem 1.6, then the assertion of
Lemma 3.6 holds for u, whenever B2R ⊆ Ω0 such that R ≤ R0.

Proof. In order to extend the result of Lemma 3.6 to the setting of Theorem
1.6 we need an approximation argument similar to the one in Section 4.2. Observe
that in the case where µ is an L1-function rather than just a measure the proof of
the lemma would directly apply. Now, let B2R ⊆ Ω0 be a ball as in the statement of
Lemma 3.6, particularly R ≤ R0. For h ∈ N we define the mollifications µh ≡ µ ∗ φh

according to (4.1) and local approximations uh ∈ W 1,p(·)(BR1) according to (4.5) with
Ω′ = BR1 and R1 < R. Then, from (4.6) we know that uh → u in W 1,p(·)(BR1) and
hence also in W 1,1(BR1). Moreover, Lemma 3.6 applies to uh for any h ∈ N, meaning
that (3.28) holds for uh and R1 instead of u and R, respectively. Moreover, since
µh ⇀ µ weakly in the sense of measures we have

lim sup
h→∞

|µh|(B2R1) ≤ |µ|(B2R1) ≤ |µ|(B2R),

and therefore 

B%

|Duh − (Duh)B% | dx

≤ c1

[( %

R1

)β

+
(R

%

)n[
L1ω(R1) log 1

R1

] 2
γ2

]  

B2R1

|Duh − (Duh)B2R1
| dx

+ c1

(R

%

)n
[[ |µ|(B2R)

Rn−1
1

] 1
p0−1

+
[
L1ω(R1) log 1

R1

] 2
γ2

(|(Duh)B2R1
|+ s

)
+ R

]
,

with constants β ∈ (0, 1) and c1 as in Lemma 3.6, independent of h. At this point
we deduce (3.28) for u by first letting h → ∞—which is allowed since uh → u in
W 1,1(BR1)—and then R1 ↑ R. This finishes the proof of the lemma. ¤

We now come to the

Proof of Theorem 1.6. We select an arbitrary subdomain Ω′ b Ω0 and shall
prove that Du is continuous in Ω′. Furthermore, we select an intermediate domain
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Ω′′ such that Ω′ b Ω′′ b Ω0 and a positive radius

(6.1) R̃ ≤ min{R1, dist(Ω′′, 1
2
∂Ω0),

1
2
dist(Ω′, ∂Ω′′)},

where R0 ≡ R0(n, L/ν, L1, γ2, ω(·)) denotes the radius from Lemma 6.1, which is in
turn the one from Lemma 3.6. Then, the previous choice implies whenever a ball
B2R(x0), with R ≤ R̃ has center x0 in Ω′′, it is contained in Ω0, whereas when x0 ∈ Ω′

then the ball is contained in Ω′′. Moreover, let us observe that our hypothesis (1.13)
implies

(6.2) lim
r↓0

H(R) = 0, where H(R) := sup
x∈Ω′′

Wµ
1

p(·) ,p(·)(x,R).

Step 1: Du is locally bounded. This is an immediate consequence of the gradient
estimates proved in the first part of the paper. More precisely, from Theorem 1.4,
we know that (1.10) holds for a.e. x0 ∈ Ω and hence by a covering argument we find
that

(6.3) |Du(x)| ≤ Υ for a.e. x ∈ Ω′′,

where Υ is a constant depending on n, ν, L, γ2,M, |µ|(Ω) and dist(Ω′′, ∂Ω0).

Step 2: Du has vanishing mean oscillation. Here, we show that Du ∈ VMO(Ω′),
meaning that

(6.4) lim
R↓0

Λ(R) = 0, where Λ(R) := sup
x0∈Ω′,r≤R

 

Br(x0)

|Du− (Du)Br(x0)| dx.

For this aim let us consider an arbitrary point x0 ∈ Ω′ and 0 < R ≤ R̃. Then, by our
choice of R̃ in (6.1) we have B2R(x0) ⊆ Ω′′ and moreover we can apply Lemma 6.1
on BR(x0) and also on any ball contained in BR(x0). In the following all considered
balls shall be centered in x0 and therefore we may omit the center in the notation,
writing BR = BR(x0). We start as in Step 1 of the proof of Theorem 1.1, i.e.,
we choose H ≡ H(n, ν, L, γ2,M, |µ|(Ω)) ≥ 2 as in (3.29) and further restrict R̃ in
such a way that additionally to (6.1) also (3.30) with R̃ instead of R0 holds. Then,
applying Lemma 6.1 instead of Lemma 3.6 we infer that (3.31) also holds in our
present situation. Proceeding exactly as in the proof of Theorem 1.1 and adopting
the definitions (3.32), (3.33) and (3.34) from there we again arrive at (3.36). Then,
taking also into account that s ≤ 1 and ki = |(Du)Bi

| ≤ Υ for any i ∈ N0 by (6.3)
and [ω(Ri−1) log 1

Ri−1
]

2
p0 ≤ [ω(Ri−1) log 1

Ri−1
]

2
γ2 since ω(Ri) log 1

Ri
≤ 1 by (3.30), we

find that for any i ≥ 1 there holds

Ai ≤ 1
2
Ai−1 + c

[ |µ|(Bi−1)

Rn−1
i−1

] 1
p0−1

+ c
[
ω(Ri−1) log 1

Ri−1

] 2
γ2 + cRi−1,(6.5)

where c ≡ c(n, ν, L, L1γ2,M, |µ|(Ω)). By induction we infer from the preceding in-
equality that for any ` ≥ 1 there holds

A` ≤
(

1
2

)`
A0 + c

`−1∑
i=0

(
1
2

)`−i−1

[[ |µ|(Bi)

Rn−1
i

] 1
p0−1

+
[
ω(Ri) log 1

Ri

] 2
γ2 + Ri

]
.
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Using A0 ≤ 2Υ (which follows from (6.3)), (3.38), the following variant of (3.39):
`−1∑
i=0

[
ω(Ri) log 1

Ri

] 2
γ2 ≤ 2d(2R),(6.6)

where d(2R) is defined in (1.6) and which can be obtained by the similar arguments
as those leading to (3.39) and (3.41) (note that

(
1
2

)`−i−1 ≤ 1) we deduce from the
previous inequality that

A` ≤ M

2`−2
+ cWµ

1
p(·) ,p(·)(x0, 2R) + cd(2R) + cR.

Recalling (6.2) we end up with

A`(x0) ≡ A` ≤ Υ

2`−2
+ c̃H(2R) + c̃d(2R) + c̃R,

valid for any x0 ∈ Ω′ and with a constant c̃ depending only on n, ν, L, L1, γ2,M, |µ|(Ω).
Now, let ε > 0. We choose δ1 ≤ R̃ in such a way that

c̃ H(2R) + c̃ d(2R) + c̃ R ≤ ε

4nHn
whenever R ≤ δ1

holds. This is possible thanks to (1.6) and (6.2). Then, δ1 depends on n, ν, L, L1, γ2,
M, µ(·), ω(·) and ε. Next, we select k ∈ N, depending on n, ν, L, γ2,M, |µ|(Ω), ε such
that

Υ

2k−2
≤ ε

4nHn
.

Then, taking R ≤ δ1 and ` ≥ k we have

A`(x0) ≤ ε

2nHn
for all x0 ∈ Ω′ and ` ≥ k.(6.7)

Now, we fix

δ =
δ1

Hk
,

and show that

Λ(r) < ε for any 0 < r < δ.(6.8)

Let 0 < r < δ, then there exists ` ≥ k such that R/H`+1 ≤ r < R/H` and r ≤ δ1

and from (6.7) we infer 

Br(x0)

|Du− (Du)Br(x0)| dx ≤ 2

 

Br(x0)

|Du− (Du)B`
| dx ≤ 2HnA`(x0) < ε.

Since the previous estimate is independent of the particular point x0 ∈ Ω′ we have
shown (6.8) and hence the assertion (6.4).

Step 3: Du is continuous. Here, we finally proof the continuity of Du on Ω′ which
in turn will be a consequence of the fact that the maps ai : Ω′ → Rn, with i ∈ N

ai(x) :=

 

Bi(x)

Du dy, where Bi(x) := BR̃/Hi(x)

converge uniformly in Ω′ as i →∞. Note that R̃ is chosen according to Step 2, still
satisfying (6.1) and (3.30). More precisely, from Lebesgue’s theorem we know that

(6.9) ai(x) → Du(x) as i →∞, for a.e. x ∈ Ω′,
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and moreover, the function x 7→ ai(x) is clearly continuous. Therefore, if we show
that the convergence in (6.9) is uniform in Ω′, we can conclude that Du—or more
precisely its Lebesgue representative—is continuous in Ω′. The remainder of the
proof will be devoted to showing that the convergence in (6.9) indeed is uniform.

For this aim we choose m ∈ N and estimate

|Du(x)− am(x)| =
∣∣∣∣
∞∑

i=m

(
ai+1(x)− ai(x)

)∣∣∣∣

≤
∞∑

i=m

 

Bi+1

|Du− (Du)Bi
| dy ≤ Hn

∞∑
i=m

Ai(x).

(6.10)

In order to show that the sum on the right-hand side of the preceding inequality is
uniformly small, we once again take (6.5) as a starting point. Summing (6.5)i over
i = k, . . . , `, for 1 ≤ k < ` we get
∞∑

i=k

Ai(x) ≡
∑̀

i=k

Ai ≤ 1

2

`−1∑

i=k−1

Ai + c

`−1∑

i=k−1

[[ |µ|(Bi)

Rn−1
i

] 1
p0−1

+
[
ω(Ri) log 1

Ri

] 2
γ2 + Ri

]
,

where c ≡ c(n, ν, L, γ2, L1,M) and which yields after reabsorbing 1
2

∑`−1
i=k−1 Ai on the

left-hand side and passing to the limit ` →∞
∞∑

i=k

Ai ≤ Ak−1 + 2c
∞∑

i=k−1

[[ |µ|(Bi)

Rn−1
i

] 1
p0−1

+
[
ω(Ri) log 1

Ri

] 2
γ2 + Ri

]

= Ak−1 + 2c
∞∑
i=0

[[ |µ|(Bi+k−1)

Rn−1
i+k−1

] 1
p0−1

+
[
ω(Ri+k−1) log 1

Ri+k−1

] 2
γ2 + Ri+k−1

]
,

where we have denoted for the moment Bi ≡ Bi(x). Using (3.38), (6.6) and (3.41) for
Bk−1(x) ≡ BR̃/Hk−1(x) instead of BR in the preceding inequality and then recalling
the notation from (6.4) and (6.2) we find that

∞∑

i=k

Ai(x) ≤ Ak−1(x) + cWµ
1

p(·) ,p(·)

(
x,

R̃

Hk−2

)
+ cd

( R̃

Hk−2

)
+

cR̃

Hk−2

≤ Λ
( R̃

Hk−1

)
+ cH

( R̃

Hk−2

)
+ cd

( R̃

Hk−2

)
+

cR̃

Hk−2
,

where c ≡ c(n, ν, L, L1, γ2,M, |µ|(Ω)). Note that the previous inequality holds uni-
formly in x ∈ Ω′ and therefore due to (6.4), (6.2) and (1.6), for any ε > 0 we
can find k ∈ N large enough—depending on n, ν, L, L1, γ2,M, H, |µ|(Ω), ε and since
H ≡ H(n, ν, L, γ2,M, |µ|(Ω)) ultimately on n, ν, L, γ2, L1,M, |µ|(Ω), ε—to ensure
that

∞∑

i=k

Ai(x) <
ε

Hn
for any x ∈ Ω′,

which in turn by (6.10) implies

|Du(x)− am(x)| ≤ Hn

∞∑
i=m

Ai(x) ≤ Hn

∞∑

i=k

Ai(x) < ε, for every m ≥ k.
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This finally shows that the convergence in (6.9) indeed is uniform and therefore the
desired continuity of Du, completing the proof of the theorem. ¤

Proof of Theorem 1.7. From (1.15) we infer that

sup
x∈Ω

Wµ
1

p(·) ,p(·)(x, %) ≤
ˆ %

0

h(r)
dr

r
.

Now, the assumption (1.14) ensures that (1.13) is satisfied and therefore the asserted
gradient continuity immediately follows from Theorem 1.6. ¤

Proof of Theorem 1.8. This follows from Theorem 1.6, since (5.1) together with
(1.16) ensures us that the hypothesis (1.13) of Theorem 1.6 is in force. ¤
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