
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 36, 2011, 47–70

DIFFERENTIAL POLYNOMIALS AND SHARED VALUES

Jürgen Grahl and Shahar Nevo

University of Würzburg, Department of Mathematics
Am Hubland, 97074 Würzburg, Germany; grahl@mathematik.uni-wuerzburg.de

Bar-Ilan University, Department of Mathematics
Ramat-Gan 52900, Israel; nevosh@macs.biu.ac.il

Abstract. Let f and g be non-constant meromorphic functions in C, a and b non-zero complex
numbers and let n and k be natural numbers satisfying n ≥ 5k+17. We show that if the differential
polynomials fn + af (k) and gn + ag(k) share the value b CM, then f and g are either equal or at
least closely related.

1. Introduction and statement of results

Inspired by the seminal work of Hayman [6], in recent decades lots of Picard type
results on exceptional values of differential polynomials have been proved. In several
subsequent papers, essentially from the last 15 years, it has been shown that to some
of these results there are also corresponding uniqueness results, involving the concept
of shared values. Here, if f and g are two non-constant meromorphic functions in a
domain D ⊆ C and if a ∈ C := C ∪ {∞}, we say that f and g share the value a IM
(ignoring multiplicities) if f and g assume the value a at the same points. If f and g
assume the value a at the same points and with the same multiplicities, then we say
that f and g share a CM (counting multiplicities).

Using this concept, the uniqueness problems mentioned above usually have the
following form: Assume that f and g are non-constant meromorphic functions in
C and P is a certain differential polynomial such that P [f ] and P [g] share one or
possibly several values. Then the question arises under which assumptions (on P , on
the number of shared values and so on) we can conclude that f ≡ g or that f and
g are closely related in some other way. One of the first and, in our opinion, most
important results in this direction is due to Yang and Hua [8].

Theorem A. Let f and g be non-constant meromorphic functions in C and
n ≥ 11 be an integer. Assume that fnf ′ and gng′ share a non-zero value CM. Then
f = cg for some c ∈ C satisfying cn+1 = 1 or fg is constant and f(z) = eaz+b for
certain a, b ∈ C. If f and g are entire, this also holds for n ≥ 7.

Similar uniqueness results for entire and meromorphic functions involving differ-
ential polynomials like P [u] := (un)(k), P [u] := (un(u− 1))(k) and P [u] := un(u−1)2u′

(where n is sufficiently large) have been proved by Fang [2], Lin and Yi [7], among
others.

In this paper, we consider another special case of the above problem which, to our
best knowledge, hasn’t been studied so far: the question whether there hold unique-
ness theorems for meromorphic (or entire) functions and the differential polynomial
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P [f ] := fn + af (k). This is motivated by the well-known result of Hayman [6] which
says that each function f meromorphic in C and satisfying fn(z) + af ′(z) 6= b for all
z ∈ C (where n ≥ 5 and a, b ∈ C with a 6= 0) is constant; if f is entire, this holds
also for n ≥ 3 and for n = 2, b = 0. As Döringer [1] has shown, this remains valid
for fn + af (k) instead of fn + af ′ provided that n ≥ k + 4; if f is entire, it suffices to
assume n ≥ 3 independently of k.

Our main result for meromorphic functions is the following.

Theorem 1. Let f and g be non-constant meromorphic functions in C, a, b ∈
C \ {0} and let n and k be natural numbers satisfying n ≥ 5k +17. Assume that the
functions

(1.1) ψf := fn + af (k) and ψg := gn + ag(k)

share the value b CM. Then

(1.2)
ψf − b

ψg − b
=

fn

gn
=

af (k) − b

ag(k) − b

or

(1.3)
ψf − b

ψg − b
=

fn

ag(k) − b
=

af (k) − b

gn

or f = g, f (k) = g(k) ≡ b
a
.

In fact, we believe that the case (1.3) cannot occur at all, but we were not able
to prove this.

If we restrict ourselves to entire functions, we can weaken the assumption on n a
bit, and we can exclude the case (1.3).

Theorem 2. Let f and g be non-constant entire functions, a, b ∈ C \ {0} and
let n and k be natural numbers satisfying n ≥ 11 and n ≥ k + 2. Assume that the
functions ψf and ψg defined as in (1.1) share the value b CM. Then

(1.4)
ψf − b

ψg − b
=

fn

gn
=

af (k) − b

ag(k) − b

or f = g, f (k) = g(k) ≡ b
a
.

Here, if we impose the further assumption k = 1 we can conclude that f and g
are identical.

Theorem 3. Let f and g be non-constant entire functions, a, b ∈ C \ {0} and
let n ≥ 11 be a natural number. Assume that the functions

ψf := fn + af ′ and ψg := gn + ag′

share the value b CM. Then f ≡ g or f and g are polynomials of degree 1 with the
same zero.

We do not know whether in the situation of (1.4) we can conclude that f ≡ g
(provided that f and g are transcendental) also for k ≥ 2. But if we assume that
two values are shared CM or that g = f ′, we can deduce f ≡ g as the following
Corollaries show.

Corollary 4. Let f and g be non-constant meromorphic functions in C, a, b1, b2 ∈
C \ {0}, b1 6= b2 and let n and k be natural numbers satisfying n ≥ 5k + 17. If the



Differential polynomials and shared values 49

functions ψf and ψg defined as in (1.1) share the values b1 and b2 CM, then f ≡ g,
or f and g are polynomials of degree at most k−1 and f = e2πij/ng for some j ∈ N0.
If f and g are entire, the same holds even for n ≥ max {11; k + 2}.

Corollary 5. Let f be a non-constant meromorphic function in C, a, b ∈ C\{0}
and let k and n be natural numbers satisfying n ≥ 5k + 17. If the functions ψf and
ψf ′ defined as in (1.1) share the value b CM, then f ≡ f ′. If f is entire, this holds
also for n ≥ max {11; k + 2}.

Since f ′ ≡ f implies that f is entire, we can reformulate the “meromorphic case”
of Corollary 5 also in the following way: If f is a meromorphic function in C with
poles and n ≥ 5k + 17, then ψf and ψf ′ do not share any non-zero value CM.

We do not know whether the restrictions on n and k in our results are best
possible.

2. Lemmas

Besides the standard notations and results of Nevanlinna theory [5], we use the
following notations: By Np)(r, f) we denote the counting function of those poles of
f which have multiplicity at most p, each pole counted with its multiplicity. In the
same way, N(p(r, f) will denote the counting function of those poles of f which have
multiplicity at least p, each pole counted with its multiplicity. The corresponding
reduced counting functions where each pole is counted only once are denoted by
Np)(r, f) and N (p(r, f). Furthermore, by N(r, f | g 6= c) we denote the counting
function for those poles of f which are not zeros of g − c. Similar notations like
N(r, f | g = c) or N(r, f | g 6= c) which should be self-explanatory now are also used.
By S(r, f) we denote an arbitrary term of the form o(T (r, f)) for r →∞, r outside
some set of finite measure.

The following famous estimate [5, Theorem 3.2] plays an important role in the
proof of our main results.

Lemma 6. (Milloux’s inequality) If f is a meromorphic function in the complex
plane and k ∈ N, c 6= 0, then

T (r, f) ≤ N(r, f) + N

(
r,

1

f

)
+ N

(
r,

1

f (k) − c

)
−N

(
r,

1

f (k+1)

∣∣∣∣ f (k) 6= c

)
+ S(r, f)

provided that f (k) 6≡ c.

Additionally, we need the following extension of the famous Tumura Clunie The-
orem due to Yi [9].

Lemma 7. Let n ≥ 2 be a natural number and P be a differential polynomial1
of degree deg(P ) ≤ n − 1 and weight w(P ) with constant coefficients. Let f be a

1For the convenience of the reader, we recall the definition of a differential polynomial and its
degree and weight: By M (C) we denote the space of all functions meromorphic in C. A mapping
M : M (C) −→ M (C) given by

M [u] = a ·
d∏

ν=1

u(kν) for all u ∈ M (C)

with d ∈ N0, k1, . . . , kd ∈ N0 and a function a ∈ M (C), a 6≡ 0 is called a differential monomial of
degree deg(M) := d and weight w(M) :=

∑d
ν=1(1 + kν). If a ≡ 1, we say that M is normalized.
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non-constant meromorphic function and

ψ := fn + P [f ].

If P [f ] 6≡ 0, then

(n− deg(P )) · T (r, f) ≤ (1 + w(P )− deg(P )) ·N(r, f) + N

(
r,

1

f

)

+ N

(
r,

1

ψ

)
+ S(r, f).

The following extension of the lemma on the logarithmic derivative goes back to
Döringer [1, Lemma 1 (i)] (see also [3, Lemma 5]).

Lemma 8. Let Q be a differential polynomial with meromorphic coefficients cj

(j = 1, . . . , p). Then

m(r,Q[f ]) ≤ deg(Q) ·m(r, f) +

p∑
j=1

m(r, cj) + S(r, f)

holds for all meromorphic functions f and all r > 0.

Finally, the following result from [4, Theorem 9] is useful in the proof of Corol-
lary 5.

Lemma 9. Let

H =
t∑

j=1

ajMj

be a homogeneous differential polynomial with normalized differential monomials Mj

and constant coefficients aj. Assume that

w(M1) = · · · = w(Ms) > w(Mj) for all j = s + 1, . . . , t

with an s ∈ {1, . . . , t} and that c :=
∑s

j=1 aj 6= 0. If f is an entire function without
zeros in C and with H[f ] ≡ 0, then f has the form f(z) = eaz+b with certain a, b ∈ C.

3. Proof of Theorem 1 and Theorem 2

We prove Theorems 1 and 2 simultaneously. So we assume that f and g are
meromorphic functions such that ψf and ψg share the value b 6= 0 CM and that n ≥
max {11; k + 2}. Furthermore, we assume that f and g are entire or that n ≥ 5k+17.

Since the proof is rather long, we first give a brief sketch of the main ideas.

Sketch of the proof. W.l.o.g. we may assume a = 1. We consider the functions

ϕf :=
fn

ψf − b
and ϕg :=

gn

ψg − b

A sum P := M1 + · · ·+ Mp of differential monomials M1, . . . , Mp which are linearly independent
over M (C) is called a differential polynomial of degree deg(P ) := max {deg(M1), . . . , deg(Mp)} and
weight w(P ) := max {w(M1), . . . , w(Mp)}. Obviously, we have deg(P ) ≤ w(P ).

If deg(M1) = · · · = deg(Mp) =: d, we call P homogeneous (of degree d).
For every differential polynomial P there exists a differential polynomial P ′ such that P ′[u](z) =

(P [u])′(z) for all u ∈ M (C) and all z ∈ C. It is easy to see that deg(P ′) = deg(P ) and w(P ′) ≥
w(P ).
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where ψf and ψg are defined as in (1.1). It is easy to see that T (r, ϕf ) behaves more
or less like (n± (k + 1)) · T (r, f); in particular, we have

T (r, ϕf ) ≥ (n− k − 1) · T (r, f) + S(r, f).

We want to apply the Second Fundamental Theorem to ϕf to deduce some estimate
of the kind

(3.1) T (r, ϕf ) ≤ c · T (r, f) + S(r, f)

where c > 0 is some constant independent of n. From (3.1) we would obtain

T (r, f) ≤ c

n− k − 1
· T (r, f) + S(r, f)

which is a contradiction if n is large enough. (As stated in the Theorem, n ≥ 5k +17
in the meromorphic case resp. n ≥ max {11; k + 2} in the entire case suffices.)

To get an estimate as in (3.1), we study the reduced (!) counting functions for
the zeros and poles of ϕf and for the zeros of ϕf −1. The zeros of ϕf are the zeros of
f while the zeros of ϕf −1 are the zeros of f (k)−b and the poles of f . So by the First
Fundamental Theorem the reduced counting functions N

(
r, 1

ϕf

)
and N

(
r, 1

ϕf−1

)

can be estimated by T (r, f) + S(r, f) and by (k + 2) · T (r, f) + S(r, f), resp.
The poles of ϕf are the zeros of ψf − b. It is the main difficulty in the proof to

get some estimate for the corresponding counting function N
(
r, 1

ψf−b

)
.

Here, multiple zeros of ψf − b are easy to control; their counting function turns
out to be at most (3 + k) · T (r, f) + S(r, f) (resp. at most (2T (r, f) + S(r, f) in the
entire case). So we can restrict our considerations to simple zeros of ψf − b.

Now it’s helpful to introduce the auxiliary function

D :=
ψ′f

ψf − b
− ψ′g

ψg − b

which has several nice properties: By the lemma on the logarithmic derivative,
m(r,D) is small, and since ψf − b and ψg − b share 0 CM, D has no other poles
than possibly the poles of f and g, and all poles of D are simple (since D consists
of logarithmic derivatives). If z0 is a simple zero of ψf − b and hence of ψg − b, then
one can calculate

D(z0) =
1

2
·
(

ψ′′f
ψ′f

− ψ′′g
ψ′g

)
(z0),

so z0 is a zero of

D − 1

2
·
(

ψ′′f
ψ′f

− ψ′′g
ψ′g

)
=: H̃.

This means that we could estimate our counting function N1)

(
r, 1

ψf−b

)
by T

(
r, H̃

)
.

But here, one major problem occurs: m(r, H̃) is small once more, but it seems that
N(r, H̃) cannot be controlled in the required way.

The solution to this problem is the following: If z0 is a simple zero of ψf − b,
then we use the equation fn(z0) = b − f (k)(z0) to replace those terms in ψ′f which
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are “large” in the sense of Nevanlinna theory (i.e. with characteristic n · T (r, f)) by
smaller ones (with characteristic ∼ c ·T (r, f) where c is independent of n); we obtain

ψ′′f
ψ′f

(z0) =
n(n− 1)fnf ′2 + nfn+1f ′′ + f 2f (k+2)

nfn+1f ′ + f 2f (k+1)
(z0)

=
n(n− 1)f ′2

(
b− f (k)

)
+ nff ′′

(
b− f (k)

)
+ f 2f (k+2)

nff ′ (b− f (k)) + f 2f (k+1)
(z0).

Therefore, instead of H̃ we introduce the more complicated auxiliary function

H := D −Q[f ] + Q[g]

where

Q[f ] :=
1

2
· n(n− 1)f ′2

(
b− f (k)

)
+ nff ′′

(
b− f (k)

)
+ f 2f (k+2)

f 2f (k+1) + nff ′ (b− f (k))
.

Then every simple zero of ψf − b is a zero of H. The main advantage of H is that it
does not contain any terms involving fn any more.

We assume that H 6≡ 0. Then we obtain

N1)

(
r,

1

ψf − b

)
≤ N

(
r,

1

H

)
≤ T (r,H) + O(1).

Here, as already mentioned, D has no other poles than possibly the poles of f and
g, and it consists of logarithmic derivatives, so m(r,D) is small and N(r,D) ≤
N(r, f) + N(r, g) is “not too large”.

Therefore, it remains to consider Q[f ] and Q[g]. Using the First Fundamental
Theorem, the counting function for the poles of Q[f ] (which are the zeros of the
denominator of Q[f ] and the poles of f) can be estimated by (k+5) ·T (r, f)+S(r, f).
But what can we say about m(r,Q[f ]) (and m(r,Q[g]))? Now something marvellous
happens: It turns out that

Q[f ] = n · f ′

f
+

f (k+1)

f (k) − b
+

(V [f ])′

V [f ]
where V [f ] := n · f ′

f
− f (k+1)

f (k) − b
,

i.e. Q[f ] and Q[g] are combinations of logarithmic derivatives once more, so their
proximity functions are small.

This gives us the desired estimate (3.1), hence a contradiction. (In fact, the whole
truth is a bit more complicated. To be precise, instead of T (r, f) we have to deal
with max {T (r, f); T (r, g)} in some of the fore-going considerations, and sometimes
we use more intricate and refined estimates than in this outline.)

So we have shown H ≡ 0, i.e. we have deduced one first identity linking f and
g. In the remaining parts of the proof, we gradually obtain stronger and stronger
identities: First, we show that V [f ] ≡ c · V [g] for some constant c ∈ C \ {0}. Then
we deduce that c is rational, i.e. c = p

q
for some p, q ∈ Z. Integrating the identity

V [f ] ≡ c · V [g] and combining this with H ≡ 0 gives
(

ψf − b

ψg − b

)2q

= α ·
(
f (k) − b

)2q

gn(q−p) (g(k) − b)
q+p

for some α ∈ C and two further identities of this kind. Here, by our assumption, the
function on the left-hand side has no other zeros and poles than possibly the poles
of f and g. This gives us certain connections between the zeros of f , g, f (k) − b and
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g(k)−b. A careful analysis of these connections yields a contradiction for c 6∈ {−1; 1};
here, the case c > 0, c 6= 1 proves to be the most recalcitrant. The main tool in this
part of the proof is a repeated application of Milloux’s inequality. So we end up with
c = ±1, i.e.

fn

f (k) − b
= d · gn

g(k) − b
or

fn

f (k) − b
= d · g(k) − b

gn

for some d ∈ C, and now it’s easy to show that d = 1 which gives the assertion.
Additionally, for entire functions the case c = −1 can be excluded.

After this outline we turn to the details of the proof.

Proof of Theorems 1 and 2. W.l.o.g. we may assume a = 1. (Otherwise we
replace f and g by cf and cg and b by bcn where c is an appropriate constant satisfying
c1−n = a.)

Of course, ψf is non-constant since otherwise from the lemma on the logarithmic
derivative we would obtain

n · T (r, f) = T (r, fn) = T
(
r, f (k)

)
+ O(1)

≤ T (r, f) + m

(
r,

f (k)

f

)
+ k ·N(r, f) + O(1)

≤ (k + 1) · T (r, f) + S(r, f),

(3.2)

which in view of n ≥ k + 2 would give T (r, f) = S(r, f), a contradiction. For the
same reason, ψg is non-constant, too.

The value sharing assumption implies that ψf−b

ψg−b
has no zeros and poles, with the

possible exception of the poles of f and of g. In view of n ≥ k + 2, a pole of f of
order p is a pole of ψf of order np, and the same holds for ψg. These facts will be
used repeatedly in the following considerations.

(1) First, we consider the case that f (k) ≡ b. Then f is a polynomial of degree
k, and the functions

ψ̃f := ψf − b = fn and ψ̃g := ψg − b = gn + g(k) − b

share the value 0 CM. Since in this case f is a polynomial, ψ̃g has only finitely many
zeros, and all zeros of ψ̃g have multiplicity at least n (since every such zero is a zero
of fn of the same multiplicity).

We assume by negation g(k) 6≡ b. If we apply Yi’s extension of the Tumura–Clunie
Theorem (Lemma 7) with P [u] = u(k) − b and Döringer’s Lemma (Lemma 8), we
obtain

(n− 1) · T (r, g) ≤ N

(
r,

1

g

)
+ N

(
r,

1

ψg − b

)
+ (k + 1) ·N(r, g) + S(r, g)

≤ T (r, g) +
1

n
·N

(
r,

1

ψg − b

)
+ (k + 1) ·N(r, g) + S(r, g)

≤ T (r, g) +
1

n
· T (r, ψg − b) + (k + 1) ·N(r, g) + S(r, g)

≤ T (r, g) +
1

n
· n · T (r, g) + (k + 1) ·N(r, g) + S(r, g)

= 2 · T (r, g) + (k + 1) ·N(r, g) + S(r, g),



54 Jürgen Grahl and Shahar Nevo

hence
(n− 3) · T (r, g) ≤ (k + 1) ·N(r, g) + S(r, g).

This gives a contradiction both in the meromorphic case (where n− 3 > k + 1) and
in the entire case (where N(r, g) = 0). So g(k) ≡ b.

Since ψ̃f = fn and ψ̃g = gn share the value 0 CM and since f and g have turned
out to be polynomials, there exists some α ∈ C such that f = αg. From this and
f (k) ≡ b ≡ g(k) 6= 0 we see that even f ≡ g. So the assertion of the theorem holds in
this case.

The case that g(k) ≡ b can be treated in the same way.
(2) From now on, we assume f (k) 6≡ b and g(k) 6≡ b. We define

ϕf :=
fn

ψf − b
and ϕg :=

gn

ψg − b
.

If ϕf would be constant, ϕf ≡ c, then we would have

(3.3) fn(1− c) ≡ c · (f (k) − b
)
;

here c 6= 1 in view of our assumption that f (k) 6≡ b, so as in (3.2) we would obtain

n · T (r, f) = T
(
r, f (k)

)
+ O(1) ≤ (k + 1) · T (r, f) + S(r, f),

i.e. T (r, f) = S(r, f), a contradiction. Therefore ϕf is not constant, and neither is
ϕg. Since ϕf is analytic at the poles of f , we have

(3.4) N (r, ϕf ) ≤ N

(
r,

1

ψf − b

)
,

and from
1

ϕf

= 1 +
f (k) − b

fn
and

1

ϕf − 1
=

ψf − b

b− f (k)
= −1− fn

f (k) − b

we obtain

(3.5) N

(
r,

1

ϕf

)
= N

(
r,

f (k) − b

fn

)
and N

(
r,

1

ϕf − 1

)
= N

(
r,

fn

f (k) − b

)
.

Furthermore, we note that each zero of f which is not a zero of f (k) − b is a zero of
ϕf of order at least n, i.e.

(3.6) N

(
r,

1

f

∣∣∣ f (k) 6= b

)
≤ 1

n
·N

(
r,

1

ϕf

)
.

We apply the Second Fundamental Theorem and use (3.4), (3.5) and (3.6) to obtain

T (r, ϕf ) ≤ N (r, ϕf ) + N

(
r,

1

ϕf

)
+ N

(
r,

1

ϕf − 1

)
+ S(r, ϕf )

≤ N

(
r,

1

ψf − b

)
+ N

(
r,

f (k) − b

fn

)
+ N

(
r,

fn

f (k) − b

)
+ S(r, f)

≤ N

(
r,

1

ψf − b

)
+ N

(
r,

1

f

∣∣∣ f (k) 6= b

)
+ N

(
r,

1

f (k) − b

)

+ N(r, f) + S(r, f)

≤ N

(
r,

1

ψf − b

)
+

1

n
·N

(
r,

1

ϕf

)
+ N

(
r,

1

f (k) − b

)
+ N(r, f) + S(r, f);

(3.7)
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here in the third estimate we have used the fact that a common zero of f and f (k)− b

can be a pole of at most one of the functions f (k)−b
fn and fn

f (k)−b
(since these two

functions have no common poles at all).
As mentioned in the sketch of proof on p. 51, the main difficulty in the following

will be to obtain an estimate for N
(
r, 1

ψf−b

)
.

For meromorphic w we define

P [w] := 2w2w(k+1) + 2nww′ (b− w(k)
)
.

We want to show that P [f ] 6≡ 0. Assume that P [f ] ≡ 0. Then in view of f (k)− b 6≡ 0
we have

f (k+1)

f (k) − b
≡ n · f ′

f
,

and integration gives
fn = c · (f (k) − b

)

for an appropriate constant c 6= 0. In the same way as with (3.3) this leads to a
contradiction.

So P [f ] 6≡ 0, and by the same reasoning we obtain P [g] 6≡ 0.
For meromorphic w we set

Q[w] :=
1

P [w]
· (n(n− 1)w′2 (

b− w(k)
)

+ nww′′ (b− w(k)
)

+ w2w(k+2)
)

=
n(n− 1)w′2 (

b− w(k)
)

+ nww′′ (b− w(k)
)

+ w2w(k+2)

2w2w(k+1) + 2nww′ (b− w(k))
.

Furthermore, we define

D :=
ψ′f

ψf − b
− ψ′g

ψg − b
and H := D −Q[f ] + Q[g].

(3) We consider the case H 6≡ 0.
(3.1) At first, we deduce an estimate for the counting function of the simple

zeros of ψf − b.
(a) Let z0 be a simple zero of ψf − b and hence of ψg − b. Then

ψ′f
ψf−b

has the
Laurent expansion

ψ′f
ψf − b

(z) =
ψ′f (z0) + ψ′′f (z0)(z − z0) + . . .

ψ′f (z0)(z − z0) + 1
2
ψ′′f (z0)(z − z0)2 + . . .

=
1

z − z0

+
1

2
· ψ′′f
ψ′f

(z0) + . . . .

Since an analogous expansion holds for ψ′g
ψg−b

, we obtain

(3.8) D(z0) =
1

2
· ψ′′f
ψ′f

(z0)− 1

2
· ψ′′g
ψ′g

(z0).

We insert
b = ψf (z0) = fn(z0) + f (k)(z0)

into
ψ′′f
ψ′f

=
n(n− 1)fn−2f ′2 + nfn−1f ′′ + f (k+2)

nfn−1f ′ + f (k+1)
=

n(n− 1)fnf ′2 + nfn+1f ′′ + f 2f (k+2)

nfn+1f ′ + f 2f (k+1)
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and deduce
ψ′′f
ψ′f

(z0) =
n(n− 1)f ′2

(
b− f (k)

)
+ nff ′′

(
b− f (k)

)
+ f 2f (k+2)

nff ′ (b− f (k)) + f 2f (k+1)
(z0) = 2Q[f ](z0).

In the same way we get ψ′′g
ψ′g

(z0) = 2Q[g](z0). Inserting this into (3.8), we see

D(z0) = Q[f ](z0)−Q[g](z0),

hence H(z0) = 0. This consideration shows

(3.9) N1)

(
r,

1

ψf − b

)
= N1)

(
r,

1

ψg − b

)
≤ N

(
r,

1

H

)
≤ T (r,H) + O(1).

We discuss m(r,H) and N(r,H) separately, keeping in mind that H = D − Q[f ] +
Q[g].

(b) By the lemma on the logarithmic derivative we have

(3.10) m(r,D) ≤ S(r, ψf ) + S(r, ψg) ≤ S(r, f) + S(r, g).

The estimate for m(r,Q[f ]) and m(r,Q[g]) is more complicated. We set

L[w] :=
w(k+1)

w(k) − b
, L̃[w] :=

w(k+2)

w(k) − b
and V [w] := n · w′

w
− L[w].

Then we have
(L[w])′ = L̃[w]− (L[w])2

for all non-constant meromorphic functions w with w(k) 6≡ b, hence

2Q[w] =
n(n− 1)w′2 + nww′′ − w2L̃[w]

nww′ − w2L[w]

= n · w′

w
+

nww′′ − w2(L[w])′ − w2(L[w])2 − nw′2 + nww′L[w]

nww′ − w2L[w]

= n · w′

w
+ L[w] +

nw′′
w
− nw′2

w2 − (L[w])′

nw′
w
− L[w]

= n · w′

w
+ L[w] +

(V [w])′

V [w]
,

(3.11)

provided that P [w] 6≡ 0 and therefore V [w] 6≡ 0. In particular, this holds for w = f
and w = g. By the lemma on the logarithmic derivative and the First Fundamental
Theorem we easily obtain

T (r, V [f ]) ≤ C · T (r, f) + S(r, f),

for some C > 0. (In fact, one can choose C = k + 3, but this exact value of C is not
needed in the following.) Therefore we deduce S(r, V [f ]) ≤ S(r, f). Now from (3.11)
we conclude that

m(r,Q[f ]) = S(r, f) + S
(
r, f (k)

)
+ S(r, V [f ]) = S(r, f).

Similarly, we have m(r,Q[g]) = S(r, g). Combining this with (3.10) gives

(3.12) m(r,H) = S(r, f) + S(r, g).
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(c) Since ψf and ψg share b CM, the only possible poles of D are the poles of f
and g, and of course all poles of D are simple. But, as we can see from (3.11), the
poles of f resp. g are poles of Q[f ] resp. Q[g]. Therefore we have

(3.13) N(r,H) ≤ N(r,Q[f ]) + N(r,Q[g]).

To estimate the counting function for the poles of Q[f ], let’s take a look at a simple
zero z0 of f (k)− b which is not a zero of f . Then z0 is a simple pole of L[f ] and hence
of V [f ] and (V [f ])′

V [f ]
, and so the residues are

Res(L[f ]; z0) = 1, Res

(
(V [f ])′

V [f ]
; z0

)
= −1.

Thus, in view of (3.11), we conclude that Q[f ] is analytic at z0.
Therefore, each pole of Q[f ] is a zero or pole of f , a multiple zero of f (k)− b or a

zero or pole of V [f ]. But the poles of V [f ] are zeros or poles of f or zeros of f (k)− b
again. Furthermore, all poles of Q[f ] are simple. So we deduce

N(r,Q[f ]) = N(r,Q[f ]) ≤ N(r, f) + N

(
r,

1

f

)
+ N (2

(
r,

1

f (k) − b

)
+ N

(
r,

1

V [f ]

)
.

Here, by the First Fundamental Theorem,

N (2

(
r,

1

f (k) − b

)
+ N

(
r,

1

V [f ]

)

≤ N (2

(
r,

1

f (k) − b

)
+ T

(
r, n · f ′

f
− f (k+1)

f (k) − b

)
+ O(1)

≤ N (2

(
r,

1

f (k) − b

)
+ N(r, f) + N

(
r,

1

f

)
+ N

(
r,

1

f (k) − b

)

+ S(r, f) + S
(
r, f (k)

)

≤ N(r, f) + N

(
r,

1

f

)
+ N

(
r,

1

f (k) − b

)
+ S(r, f),

(3.14)

and we arrive at

N(r,Q[f ]) ≤ 2N(r, f) + 2N

(
r,

1

f

)
+ N

(
r,

1

f (k) − b

)
+ S(r, f).

An analogous estimate holds for Q[g], too:

N(r,Q[g]) ≤ 2N(r, g) + 2N

(
r,

1

g

)
+ N

(
r,

1

g(k) − b

)
+ S(r, g).

(d) Now from (3.9), (3.12), (3.13) and the latter two estimates we obtain

N1)

(
r,

1

ψf − b

)
≤ T (r,H) + O(1)

≤ N(r,Q[f ]) + N(r,Q[g]) + S(r, f) + S(r, g)

≤ 2N(r, f) + 2N(r, g) + 2N

(
r,

1

f

)
+ 2N

(
r,

1

g

)

+ N

(
r,

1

f (k) − b

)
+ N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g).

(3.15)
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(3.2) Now we turn to the multiple zeros of ψf − b. Assume that z0 is such a zero.
Then ψ′f (z0) = 0, hence

fn(z0) + f (k)(z0) = b and nfn−1f ′(z0) + f (k+1)(z0) = 0,

and we conclude that either

f(z0) = 0 = f (k)(z0)− b = f (k+1)(z0)

(i.e. z0 is a multiple zero of f (k) − b) or f(z0) 6= 0, f (k)(z0) 6= b and

0 = n · f ′

f
(z0)− f (k+1)

f (k) − b
(z0) = V [f ](z0).

Together with (3.14) this shows

N (2

(
r,

1

ψf − b

)
≤ N (2

(
r,

1

f (k) − b

)
+ N

(
r,

1

V [f ]

)

≤ N(r, f) + N

(
r,

1

f

)
+ N

(
r,

1

f (k) − b

)
+ S(r, f).

(3.16)

(3.3) If we combine (3.16) with (3.15) we obtain the desired estimate for the
counting function of the zeros of ψf − b:

N

(
r,

1

ψf − b

)
= N1)

(
r,

1

ψf − b

)
+ N (2

(
r,

1

ψf − b

)

≤ 3N(r, f) + 2N(r, g) + 3N

(
r,

1

f

)
+ 2N

(
r,

1

g

)

+ 2N

(
r,

1

f (k) − b

)
+ N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g).

(3.17)

Inserting this into (3.7) gives

T (r, ϕf ) ≤ 1

n
·N

(
r,

1

ϕf

)
+ 4N(r, f) + 2N(r, g) + 3N

(
r,

1

f

)
+ 2N

(
r,

1

g

)

+ 3N

(
r,

1

f (k) − b

)
+ N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g)

≤ 1

n
· T (r, ϕf ) + 6T (r, f) + 3T (r, g)

+ (3k + 4) ·N(r, f) + (k + 2) ·N(r, g) + S(r, f) + S(r, g).

Setting
T (r) := max {T (r, f); T (r, g)}

and denoting by S(r) any term of the form S(r) = o(T (r)) for r →∞ outside a set
of finite Lebesgue measure, we conclude that

(3.18)
(

1− 1

n

)
· T (r, ϕf ) ≤ 9T (r) + (3k + 4) ·N(r, f) + (k + 2) ·N(r, g) + S(r).

From
ϕf =

1

1 + f (k)−b
fn
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we get

n · T (r, f) ≤ T

(
r,

f (k) − b

fn

)
+ T

(
r,

1

f (k) − b

)
+ O(1)

= T (r, ϕf ) + T
(
r, f (k)

)
+ O(1)

≤ T (r, ϕf ) + T (r, f) + k ·N(r, f) + S(r, f),

hence

(3.19) T (r, f) ≤ 1

n− k − 1
· T (r, ϕf ) + S(r, f).

We insert this estimate this into (3.18). This yields

(n− k − 1)(n− 1) · T (r, f)

≤ (n− 1) · T (r, ϕf ) + S(r, f)

≤ 9n · T (r) + n(3k + 4) ·N(r, f) + n(k + 2) ·N(r, g) + S(r).

If we combine this with the analogous estimate for T (r, g), we obtain

(3.20) (n− k − 1)(n− 1) · T (r) ≤ (15 + 4k)n · T (r) + S(r).

Here, by our assumption we have

(n− k − 1)(n− 1)− (15 + 4k)n = n2 − (5k + 17)n + k + 1 ≥ k + 1 > 0,

and we arrive at T (r) = S(r), a contradiction.
If f and g are entire, i.e. if all terms N(r, f) and N(r, g) vanish, then instead of

(3.19) we even have

T (r, f) ≤ 1

n− 1
· T (r, ϕf ) + S(r, f)

(and a similar estimate for T (r, g)), and instead of (3.20) we obtain

(n− 1)2 · T (r) ≤ 9n · T (r) + S(r),

so the weaker assumption n ≥ 11 of Theorem 2 (which implies (n−1)2 > 9n) suffices
to generate a contradiction.

So both in the meromorphic and in the entire case H 6≡ 0 is impossible.
(4) Now, we turn to the case H ≡ 0. From (3.11) and

0 = 2H = 2 · ψ′f
ψf − b

− 2 · ψ′g
ψg − b

− 2Q[f ] + 2Q[g],

by integration we deduce the existence of a constant c ∈ C \ {0} such that

(3.21)
(

ψf − b

ψg − b

)2

= c · fn

gn
· f (k) − b

g(k) − b
· V [f ]

V [g]
.

We discuss the cases V [f ] ≡ c · V [g] and V [f ] 6≡ c · V [g] separately.
(4.1) Assume first that V [f ] 6≡ c · V [g]. Let z0 be a simple zero of ψf − b (and

hence of ψg − b), but not a zero of f or g. Then in view of fn(z0) = b− f (k)(z0) and
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gn(z0) = b − g(k)(z0), z0 isn’t a zero of f (k) − b or of g(k) − b, and clearly it isn’t a
pole of f or g. So we compute

ψf − b

ψg − b
(z0) =

ψ′f
ψ′g

(z0) =
nfn−1f ′ + f (k+1)

ngn−1g′ + g(k+1)
(z0)

=
fn

gn
(z0) ·

n · f ′
f
− f (k+1)

f (k)−b

n · g′
g
− g(k+1)

g(k)−b

(z0) =
fn

gn
(z0) · V [f ]

V [g]
(z0).

Inserting this into (3.21) gives

f 2n

g2n
(z0) ·

(
V [f ]

V [g]

)2

(z0) = c · fn

gn
(z0) · f (k) − b

g(k) − b
(z0) · V [f ]

V [g]
(z0) = c · f 2n

g2n
(z0) · V [f ]

V [g]
(z0).

Using the fact that z0 is neither a zero or pole of fn

gn nor a zero or pole of ψf−b

ψg−b
, it is

easy to see from (3.21) that V [f ]
V [g]

has no zero or pole at z0. Furthermore, from the
definition of V we see that neither V [f ] nor V [g] has a pole at z0. Therefore we can
conclude that

V [f ]

V [g]
(z0) = c and V [f ](z0)− c · V [g](z0) = 0.

If z0 is a multiple zero of ψf − b (and hence of ψg− b), then the consideration leading
to (3.16) shows that z0 is a zero of f or g or a common zero of V [f ] and V [g], and
hence a zero of V [f ]− c · V [g] as well. Therefore, we arrive at

N

(
r,

1

ψf − b

)
≤ N

(
r,

1

f

)
+ N

(
r,

1

g

)
+ N

(
r,

1

V [f ]− cV [g]

)

≤ N

(
r,

1

f

)
+ N

(
r,

1

g

)
+ T (r, V [f ]) + T (r, V [g]) + O(1)

≤ N(r, f) + N(r, g) + 2N

(
r,

1

f

)
+ 2N

(
r,

1

g

)

+ N

(
r,

1

f (k) − b

)
+ N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g),

hence at an even better estimate than in (3.17). Now we can use the same argument
as in part (3.3) of the proof to deduce a contradiction.

(4.2) Finally, we assume V [f ] ≡ c · V [g], i.e.

(3.22) n · f ′

f
− f (k+1)

f (k) − b
≡ c ·

(
n · g′

g
− g(k+1)

g(k) − b

)
.

Since V [g] 6≡ 0, we can simplify (3.21) to obtain

(3.23)
(

ψf − b

ψg − b

)2

= c2 · fn

gn
· f (k) − b

g(k) − b
.

Now we distinguish several cases according to the nature of c.
(a) If c is not rational, comparing the residues of the left hand side and of

the right hand side of (3.22) and keeping in mind that the residues of logarithmic
derivatives are integers, we deduce that n · f ′

f
− f (k+1)

f (k)−b
has no poles at all, so fn

f (k)−b

is a non-vanishing entire function. This implies that f itself is entire (since a pole
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of f of multiplicity p would be a pole of fn

f (k)−b
of multiplicity np − (p + k) > 0).

Furthermore, all zeros of f (k) − b have multiplicity at least n, and we obtain

N

(
r,

1

f

)
=

1

n
·N

(
r,

1

f (k) − b

)
, N

(
r,

1

f (k) − b

)
≤ 1

n
·N

(
r,

1

f (k) − b

)
.

Inserting these estimates into Milloux’s inequality (Lemma 6) yields

T (r, f) ≤ N (r, f) + N

(
r,

1

f

)
+ N

(
r,

1

f (k) − b

)
+ S(r, f)

≤ 0 +
2

n
·N

(
r,

1

f (k) − b

)
+ S(r, f)

≤ 2

n
·m (

r, f (k)
)

+ S(r, f) ≤ 2

n
· T (r, f) + S(r, f).

In view of n ≥ 3 this means T (r, f) = S(r, f), a contradiction. Hence, we conclude
that c is rational (and c 6= 0).

(b) If c < 0 (and c is rational), then there exist p, q ∈ N such that c = −p
q
.

Integrating (3.22) gives

(3.24)
(

fn

f (k) − b

)q

= d ·
(

g(k) − b

gn

)p

for a certain constant d ∈ C \ {0}. Combining this with (3.23), we get

(3.25)
(

ψf − b

ψg − b

)2p

=
c2p

d
· fn(p+q)

(f (k) − b)
q−p

(g(k) − b)
2p

and

(3.26)
(

ψf − b

ψg − b

)2q

= c2qd ·
(
f (k) − b

)2q

gn(p+q) (g(k) − b)
q−p .

(i) First we consider the case where both f and g are entire functions. W.l.o.g. we
may assume p ≤ q. Since now ψf−b

ψg−b
has no zeros and poles at all, from (3.25) and

(3.26) we deduce

N

(
r,

1

g(k) − b

)
≤ N

(
r,

1

f

)
, N

(
r,

1

f (k) − b

)
≤ N

(
r,

1

g

)
+ N

(
r,

1

g(k) − b

)
,

N

(
r,

1

f

)
=

q − p

n(q + p)
·N

(
r,

1

f (k) − b

)
+

2p

n(p + q)
·N

(
r,

1

g(k) − b

)

and

N

(
r,

1

g

)
=

2q

n(q + p)
·N

(
r,

1

f (k) − b

)
− q − p

n(p + q)
·N

(
r,

1

g(k) − b

)
.
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Inserting this into Milloux’s inequality, we arrive at

T (r, f) + T (r, g)

≤ N

(
r,

1

f

)
+ N

(
r,

1

g

)
+ N

(
r,

1

f (k) − b

)
+ N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g)

≤ 3N

(
r,

1

f

)
+ 2N

(
r,

1

g

)
+ S(r, f) + S(r, g)

≤ 7q − 3p

n(p + q)
·N

(
r,

1

f (k) − b

)
+

8p− 2q

n(p + q)
·N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g)

≤ 7

n
· T (

r, f (k)
)

+
6p

n(p + q)
· T (

r, g(k)
)

+ S(r, f) + S(r, g)

≤ 7

n
· (T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which gives T (r, f) + T (r, g) = S(r, f) + S(r, g) since n ≥ 8. This is a contradiction.
(ii) Now we consider the case where either f or g has a pole. W.l.o.g. we assume

that z0 ∈ C is a pole of g of multiplicity β.2 Then z0 is a zero of the right hand side
and hence of the left hand side of (3.24), and we deduce that it is a zero of f , say
of multiplicity α. On the other hand, z0 can’t be a zero of f (k) − b, for otherwise it
would be a zero of ψf − b and hence of ψg − b, contradicting the fact that the poles
of g are also poles of ψg. So comparing the multiplicities on both sides of (3.24) we
deduce

nqα = npβ − p(β + k),

and by (3.25) we have

2npβ = n(p + q)α + 2p(β + k).

Combining these two identities we obtain p = q. Hence from (3.24) we have

(3.27)
fn

f (k) − b
= d̃ · g(k) − b

gn

for some d̃ 6= 0.
We claim that d̃ = 1. Indeed, if every zero of ψf − b (and hence of ψg − b) would

be a zero of f (k) − b or a zero of g(k) − b, we would obtain

(3.28) N

(
r,

1

ψf − b

)
≤ N

(
r,

1

f (k) − b

)
+ N

(
r,

1

g(k) − b

)
,

i.e. an estimate even stronger than (3.17), and a similar estimate would hold for
N

(
r, 1

ψg−b

)
. So exactly the same argument as in part (3.3) of the proof would lead

to a contradiction. This shows that there exists a z̃ ∈ C such that ψf (z̃) = b = ψg(z̃),
f (k)(z̃) 6= b and g(k)(z̃) 6= b, hence

fn

f (k) − b
(z̃) = −1 =

g(k) − b

gn
(z̃).

2This is possible since in Case (ii) we do not assume q ≥ p any longer.
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Inserting this into (3.27) gives d̃ = 1, thus

fn

f (k) − b
=

g(k) − b

gn
.

So we arrive at

ψf − b = fn

(
1 +

f (k) − b

fn

)
= fn

(
1 +

gn

g(k) − b

)
=

fn

g(k) − b
· (ψg − b),

hence
ψf − b

ψg − b
=

fn

g(k) − b
=

f (k) − b

gn
,

and (1.3) holds.
(c) Therefore, it remains to study the case that c > 0 (and c is rational). Assume

that c 6= 1. Then c = p
q
for certain p, q ∈ N, p 6= q. From (3.22) we obtain by

integration

(3.29)
(

fn

f (k) − b

)q

= d ·
(

gn

g(k) − b

)p

with appropriate d ∈ C \ {0}. Combining this with (3.23) yields
(

ψf − b

ψg − b

)2q

= c2qd ·
(
f (k) − b

)2q

gn(q−p) (g(k) − b)
q+p(3.30)

=
c2q

d
· f 2nq

gn(q+p) (g(k) − b)
q−p(3.31)

and

(3.32)
(

ψf − b

ψg − b

)2p

=
c2p

d
· fn(p+q)

g2np (f (k) − b)
q−p .

(i) We start with the case that either f or g has a pole in C. W.l.o.g. we assume
that z0 ∈ C is a pole of f of multiplicity α. Considering (3.29) yields that z0 is a
pole of g or a zero of g(k) − b.

First we assume that z0 is a pole of g of multiplicity β. So from (3.29) and (3.30)
we deduce

nqα− q(α + k) = npβ − p(β + k)

and
2nq(α− β) = 2q(α + k)− n(q − p)β − (p + q)(β + k).

Combining these two identities gives

n(q − p)β = (q − p)(β + k),

and in view of p 6= q we obtain k = (n− 1)β ≥ n− 1 ≥ k + 1, a contradiction.
Now we turn to the case that z0 is a zero of g(k)− b of multiplicity δ. Then from

our value sharing condition we see g(z0) 6= 0 (since otherwise z0 would be a zero of
ψg − b and hence of ψf − b, contradicting the fact that z0 is a pole of f). Comparing
the multiplicities of the poles on both sides of (3.29) gives

nqα− q(α + k) = pδ,

and from (3.30) we get
2nqα = 2q(α + k) + (p + q)δ.
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Combining these two identities gives (q − p)δ = 0, a contradiction once more.
(ii) Now we consider the case that both f and g are entire functions. W.l.o.g.

we may assume q > p. If z0 is a zero of f (k)− b but not a zero of g, then from (3.32)
we see that it is a zero of f , thus the multiplicity of z0 as a zero of f (k)− b is at least
n(q+p)

q−p
> n, i.e. at least n + 1. Therefore,

(3.33) N

(
r,

1

f (k) − b

)
≤ N

(
r,

1

g

)
+

1

n + 1
·N

(
r,

1

f (k) − b

∣∣∣ g 6= 0

)
.

Likewise, if z0 is a zero of g(k) − b but not a zero of g, then from (3.31) we get that
it is a zero of f and that its multiplicity as a zero of g(k)− b is at least 2nq

q−p
> 2n, i.e.

at least 2n + 1. This shows

(3.34) N

(
r,

1

g(k) − b

)
≤ N

(
r,

1

g

)
+

1

2n + 1
·N

(
r,

1

g(k) − b

∣∣∣ g 6= 0

)
.

Furthermore, from (3.23) we deduce

(3.35) N

(
r,

1

f

)
≤ N

(
r,

1

g

)
+

1

n
·N

(
r,

1

g(k) − b

)
.

Next, assume that z0 is a zero of g of multiplicity β ≥ 1. Then from (3.31) and
(3.30) we see that z0 is a zero of f of multiplicity, say, α ≥ 1, and a zero of f (k) − b
of multiplicity γ ≥ 1. So it is a zero of ψf − b and hence of ψg − b. From this and
g(z0) = 0 we finally obtain that z0 is a zero of g(k) − b, say of multiplicity δ ≥ 1.
Since fn and gn have a zero of order at least n at z0, we have

ψf (z0) = f (k)(z0)− b, ψg(z0) = g(k)(z0)− b

and

(3.36) ψ
(j)
f (z0) = f (k+j)(z0), ψ(j)

g (z0) = g(k+j)(z0) for j = 1, . . . , n− 1.

Assume that γ < n or δ < n. Then from (3.36) and the fact that ψf − b and ψg − b
share the value 0 CM we would deduce γ = δ. Together with (3.23) this would imply
α = β, and so (3.29) would give

q(nα− γ) = p(nβ − δ) = p(nα− γ),

hence nα−γ = 0 since q 6= p. So we arrive at γ = nα ≥ n, a contradiction to γ = δ <
n. This shows that γ ≥ n and δ ≥ n. Furthermore, from f (k)(z0) = g(k)(z0) = b 6= 0
we see that α ≤ k and β ≤ k.

These considerations show

(3.37) N

(
r,

1

g

)
≤ 1

n
·min

{
N

(
r,

1

f (k) − b

∣∣∣ g = 0

)
; N

(
r,

1

g(k) − b

∣∣∣ g = 0

)}

and

N

(
r,

1

g

)
≤ k ·N

(
r,

1

g

)

≤ k

n
·min

{
N

(
r,

1

f (k) − b

∣∣∣ g = 0

)
; N

(
r,

1

g(k) − b

∣∣∣ g = 0

)}
.

(3.38)
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Inserting (3.33), (3.34), (3.35), (3.37) and (3.38) into Milloux’s inequality, we deduce

T (r, f) + T (r, g)

≤ N

(
r,

1

f

)
+ N

(
r,

1

g

)
+ N

(
r,

1

f (k) − b

)
+ N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g)

≤ 2N

(
r,

1

g

)
+ 2N

(
r,

1

g

)
+

1

n
·N

(
r,

1

g(k) − b

)
+

1

n + 1
·N

(
r,

1

f (k) − b

∣∣∣ g 6= 0

)

+
1

2n + 1
·N

(
r,

1

g(k) − b

∣∣∣ g 6= 0

)
+ S(r, f) + S(r, g)

≤ 2

n
· (k + 1) ·min

{
N

(
r,

1

f (k) − b

∣∣∣ g = 0

)
; N

(
r,

1

g(k) − b

∣∣∣ g = 0

)}

+
1

n
·N

(
r,

1

g(k) − b

)
+

1

n + 1
·N

(
r,

1

f (k) − b

∣∣∣ g 6= 0

)

+
1

2n + 1
·N

(
r,

1

g(k) − b

∣∣∣ g 6= 0

)
+ S(r, f) + S(r, g)

≤ 2k + 3

2n
·N

(
r,

1

f (k) − b

)
+

2k + 3

2n
·N

(
r,

1

g(k) − b

)
+ S(r, f) + S(r, g)

≤ 2k + 3

2n
· (T (r, f) + T (r, g)) + S(r, f) + S(r, g).

Since 2n > 2k + 3, this gives T (r, f) + T (r, g) ≤ S(r, f) + S(r, g), a contradiction.
Therefore, we finally can conclude that c = 1.
By integration, we have

(3.39)
fn

f (k) − b
= d · gn

g(k) − b

for a constant d 6= 0.
We show that d = 1. If every zero of ψf − b would be a zero of f (k) − b or a zero

of g(k) − b, the same reasoning as in (3.28) would lead to a contradiction. So there
exists a z0 ∈ C such that ψf (z0) = b = ψg(z0), f (k)(z0) 6= b and g(k)(z0) 6= b, hence

fn

f (k) − b
(z0) = −1 =

gn

g(k) − b
(z0).

Inserting this into (3.39) gives d = 1, thus

fn

f (k) − b
=

gn

g(k) − b

and

ψf − b = fn ·
(

1 +
f (k) − b

fn

)
= fn ·

(
1 +

g(k) − b

gn

)
=

fn

gn
· (ψg − b)

and therefore
ψf − b

ψg − b
=

fn

gn
=

f (k) − b

g(k) − b
.

This completes the proof of Theorem 1 and Theorem 2. ¤
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4. Proof of Theorem 3 and of the Corollaries

Proof of Theorem 3. We assume that f
g
is not constant. Then from Theorem 2

we obtain that
fn

gn
=

af ′ − b

ag′ − b
,

and that f and g share the value 0 CM. We define

H :=
af ′ − b

afn
.

Then

f ′ = fn ·H +
b

a
, g′ = gn ·H +

b

a
,

i.e. f and g satisfy the same differential equation u′ = un ·H + b
a
. The main idea of

the proof is to apply the uniqueness theorem for differential equations. This requires
some point z0 where f and g coincide and a Lipschitz condition for the right hand side
of the differential equation which is valid in some neighborhood of z0. Unfortunately,
the only points where f and g coincide might be the common zeros of f and g
where no Lipschitz condition for H holds. To avoid this problem we make some
transformation and consider f j and gj instead of f and g for some appropriate j.

Since f
g
omits the values 0 and ∞, by Picard’s theorem f

g
assumes every value

w ∈ ∂D. Since the set ∂D is uncountable while f and g have only countably many
zeros, there exists some z̃ ∈ C such that w0 := f

g
(z̃) ∈ ∂D while f (z̃) 6= 0, g (z̃) 6= 0.

There is some open neighborhood U of z̃ such that f and g are non-vanishing in U .
Since f

g
(U) is an open neighborhood of w0 ∈ ∂D, there is some z0 ∈ U such that

η := f
g

(z0) is some root of unity, i.e. ηj = 1 for some j ∈ N. We choose an open disk
U0 with center z0 such that f and g are non-vanishing in U0. Now we set

F := f jn and G := gjn.

Then in the simply connected domain U0 we have

F ′ = jn · f jn−1f ′ = jn · f jn−1

(
fn ·H +

b

a

)
= jn · F 1+ 1

j
− 1

jn ·H +
b

a
· jn · F 1− 1

jn

and in the same way

G′ = jn ·G1+ 1
j
− 1

jn ·H +
b

a
· jn ·G1− 1

jn

provided that we choose appropriate branches of F 1+ 1
j
− 1

jn and the other roots. Hence
in U0 the functions F and G satisfy the differential equation

u′ = jn · u1+ 1
j
− 1

jn ·H +
b

a
· jn · u1− 1

jn

and the initial value condition

F (z0) = f jn(z0) = ηjngjn(z0) = G(z0),

and H is analytic in U0. So by the uniqueness theorem for differential equations we
obtain F ≡ G in U0 and hence in C. This of course means that f

g
is constant, a

contradiction.
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So we have shown that there exists some c ∈ C \ {0} such that f ≡ cg. Now we
obtain

cg′ − 1 = f ′ − 1 = (g′ − 1) · fn

gn
= (g′ − 1) · cn,

hence
(c− cn) · g′ = 1− cn.

If c 6= cn, then g′ turns out to be constant, so g and f are polynomials of degree 1
with the same zero. If c = cn, then also cn = 1, hence c = 1 and f ≡ g. This proves
the theorem. ¤

Proof of Corollary 4. If f 6≡ g, Theorem 1 gives (for n ≥ 5k + 17)

(4.1) (a)
fn

gn
=

af (k) − b1

ag(k) − b1

or (b)
fn

af (k) − b1

=
ag(k) − b1

gn

and

(4.2) (a)
fn

gn
=

af (k) − b2

ag(k) − b2

or (b)
fn

af (k) − b2

=
ag(k) − b2

gn

Under the additional assumption that f and g are entire, from Theorem 2 we deduce
for n ≥ max {11; k + 2} that (4.1a) and (4.2a) hold.

Now there are four cases to consider.

Case 1: If (4.1b) and (4.2b) hold, we obtain
(
af (k) − b1

) · (ag(k) − b1

)
= fn · gn =

(
af (k) − b2

) · (ag(k) − b2

)
,

hence
a(b2 − b1) ·

(
f (k) + g(k)

)
= b2

2 − b2
1.

In view of b1 6= b2, this shows that f + g is a polynomial. In particular, f and g have
the same poles with the same multiplicities. In view of (4.1b) this means that f and
g don’t have any poles at all, i.e. they are entire. But now, as mentioned above,
from Theorem 2 we deduce that instead of (4.1b) and (4.2b) we must have (4.1a)
and (4.2a). So this case can be ruled out.

Case 2: Assume that (4.1a) and (4.2b) hold. Once more, we want to show that f
and g are entire functions. So w.l.o.g. we assume that z0 is a pole f of multiplicity α.
Then from (4.2b) we obtain that z0 is a zero of g, say of multiplicity β. On the other
hand, g(k)(z0) 6= b1

a
since otherwise ψg(z0) = b1, hence ψf (z0) = b1, contradicting the

fact that z0 is a pole of f . Therefore, (4.1a) yields

nα + nβ = α + k,

hence n− 1 ≤ (n− 1)α ≤ k, a contradiction.
So f and g are entire, and as in Case 2 we deduce that instead of (4.2b) we must

have (4.2a). So this case can be ruled out as well.

Case 3: The case where (4.1b) and (4.2a) hold is of course essentially the same
as Case 2 and can be ruled out.

Case 4: If (4.1a) and (4.2a) hold, then we obtain

af (k) − b1

ag(k) − b1

=
fn

gn
=

af (k) − b2

ag(k) − b2

,
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hence

ab1

(
f (k) − g(k)

)
= ab2

(
f (k) − g(k)

)
, i.e. f (k) = g(k) and fn = gn.

So we have f = e2πij/ng for some integer j. If g(k) 6≡ 0, from g(k) = f (k) = e2πij/ng(k)

we could even deduce e2πij/n = 1, i.e. f ≡ g, which contradicts our assumption that
f 6≡ g. So f (k) ≡ g(k) ≡ 0 which means that f and g are polynomials of degree at
most k − 1.

This proves Corollary 4. ¤
Proof of Corollary 5. If f would be a polynomial, then ψf and ψf ′ would be

polynomials of unequal degree, so they could not share the value b CM.
Therefore, from Theorem 1, resp. Theorem 2, we deduce that either

(4.3)
ψf ′ − b

ψf − b
=

(
f ′

f

)n

=
af (k+1) − b

af (k) − b

or

(4.4) fn(f ′)n =
(
af (k) − b

) · (af (k+1) − b
)
.

In both cases it is easy to see from our assumptions on n and k that f cannot have
any poles. So f is an entire transcendental function. In view of Theorem 2 this
means that (4.3) holds. In particular, f and f ′ share the value 0 CM. Of course, this
is only possible if f and f ′ have no zeros at all.

Therefore, q := f ′
f
is a non-vanishing entire function.

We assume that q is not constant.

Claim. For all j ≥ 0 there exists a differential polynomial Pj of degree at most
j + 1 with constant coefficients and without any terms of degree 0 or 1 such that

q(j) =
f (j+1)

f
+ Pj[q]

and such that each differential monomial M(6≡ 0) appearing in Pj satisfies

w(M) = j + 1.

Proof. For j = 0 this obviously holds with P0 ≡ 0. We assume that our claim
holds for one j ≥ 0. Then by differentiating we obtain

q(j+1) =
f (j+2)

f
− f (j+1)

f
· f ′

f
+ P ′

j [q]

=
f (j+2)

f
− q · (q(j) − Pj[q]

)
+ P ′

j [q] =
f (j+2)

f
+ Pj+1[q]

with Pj+1[u] := P ′
j [u] + u ·Pj[u]− uu(j). It is easy to see that the required properties

carry over from Pj to Pj+1. By induction, our claim follows for all j ≥ 0. ¤
For all j ≥ 0 we can write

Pj =

j+1∑
µ=2

Hj,µ

with certain homogeneous differential polynomials Hj,µ of degree µ (or Hj,µ ≡ 0).
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Now we define

L :=
q(k)

q
− q(k−1)

q
−

k+1∑
µ=2

Hk,µ[q]

qµ
+

k∑
µ=2

Hk−1,µ[q]

qµ
.

Then L is an entire function, and by the lemma on the logarithmic derivative and
the properties of Hj,µ we have m(r, L) = S(r, q).

We consider two cases:

Case 1: L 6≡ 0. Assume that q(z0) = 1. Then f(z0) = f ′(z0) 6= 0, and from (4.3)
we see f (k)(z0) = f (k+1)(z0). Therefore we conclude that

L(z0) = q(k)(z0)− q(k−1)(z0)−
k+1∑
µ=2

Hk,µ[q](z0) +
k∑

µ=2

Hk−1,µ[q](z0)

=
f (k+1)

f
(z0)− f (k)

f
(z0) = 0.

This consideration shows

N

(
r,

1

q − 1

)
≤ N

(
r,

1

L

)
≤ T (r, L) + O(1) = m(r, L) + O(1) = S(r, q).

Applying the Second Fundamental Theorem we obtain

T (r, q) ≤ N(r, q) + N

(
r,

1

q

)
+ N

(
r,

1

q − 1

)
+ S(r, q) = S(r, q),

a contradiction.

Case 2: L ≡ 0. We set

H[u] := uk · u(k) − uk · u(k−1) −
k+1∑
µ=2

uk+1−µ ·Hk,µ[u] +
k∑

µ=2

uk+1−µ ·Hk−1,µ[u].

Then H is a homogeneous differential polynomial of degree k + 1 and
H[q] = qk+1 · L ≡ 0.

In view of the properties of Pj, we have w(Hj,µ) = j + 1 (or possibly3 Hj,µ ≡ 0) for
all j ≥ 1 and all µ = 2, . . . , j + 1. Hence all terms in H[u] with the exception of
uk ·u(k) have weight at most 2k while uk ·u(k) has weight 2k +1. Therefore Lemma 9
(applied with s = 1) shows that q(z) = eαz+β with certain α, β ∈ C.

From f ′ = qf and the assumption that q is not constant we deduce that f has
infinite order.

On the other hand, from

f (j+1) = f · (q(j) − Pj[q]
)

and (4.3) we obtain

qn =

(
f ′

f

)n

=
af · (q(k) − Pk[q]

)− b

af · (q(k−1) − Pk−1[q])− b
,

hence
af

(
q(k) − qn · q(k−1) − Pk[q] + qn · Pk−1[q]

)
= b · (1− qn) .

3In fact, one can show that the case Hj,µ ≡ 0 never occurs, but this is not required for our
purposes.
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Since q(k) − qn · q(k−1) − Pk[q] + qn · Pk−1[q] and 1− qn have finite order while f has
infinite order, we conclude that

q(k) − qn · q(k−1) − Pk[q] + qn · Pk−1[q] ≡ 0 and 1− qn ≡ 0.

This contradicts our assumption that q is non-constant.
So we have shown that q is constant. From f ′ = qf and (4.3) we get

aqf (k) = af (k+1) = b + qn
(
af (k) − b

)
, hence a (q − qn) · f (k) = b · (1− qn) .

Since f is transcendental this implies q − qn = 0 and 1− qn = 0, hence q = 1. This
shows f ′ = f and therefore completes the proof of the Corollary. ¤
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