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Abstract. We prove that an unbounded L-bilipschitz homogeneous Jordan curve in the plane

is of B-bounded turning, where B depends only on L. Using this result, we construct a catalogue

of snowflake-type curves that includes all unbounded bilipschitz homogeneous Jordan curves, up to

bilipschitz self maps of the plane. This catalogue yields characterizations of such curves in terms of

certain quasiconformal maps.

1. Introduction

A Jordan curve Γ is L-bilipschitz homogeneous provided that for any two points
x, y ∈ Γ, there exists an L-bilipschitz self homeomorphism of Γ sending x to y.
Bishop proved ([Bis01, Theorem 1.1]) that bounded bilipschitz homogeneous Jordan
curves in the plane are quasicircles. In this paper we extend this result to unbounded
curves. Moreover, in this setting we obtain a quantitative implication, whereas [Bis01,
Theorem 1.1] did not yield quantitative control of the bounded turning constant. The
proof is carried out in Section 4.

Theorem 1.1. Suppose Γ ⊂ R2 is an unbounded L-bilipschitz homogeneous
Jordan curve. Then Γ is B-bounded turning, with B = B(L).

Rohde constructed a catalogue S of all compact quasicircles in the plane, up to
bilipschitz self maps of the plane ([Roh01, Theorem 1.1]). The catalogue S contains
a subcatalogue HS of all bounded bilipschitz homogeneous Jordan curves. We
construct a new catalogue, HT , containing all unbounded bilipschitz homogeneous
Jordan curves, up to bilipschitz maps. The following is proved in Section 6.

Theorem 1.2. Let Γ ⊂ R2 be an unbounded Jordan curve. The following are
quantitatively equivalent:

(1) Γ is bilipschitz homogeneous.
(2) Γ is bilipschitz equivalent to a curve T ∈ HT .
(3) Γ is bilipschitz equivalent to a curve T ∈ HT via a bilipschitz self map of

R2.
(4) There exists a quasiconformal homeomorphism F : R2 → R2 with F (R) = Γ

and α ∈ [0, 1) such that for almost all z, w ∈ R2 \ R,

dist(z, R) ≥ dist(w, R) > 0 =⇒ 1 .
JF (w)

JF (z)
.

(

dist(z, R)

dist(w, R)

)α

.
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(5) There exists a quasiconformal homeomorphism F : R2 → R2 with F (R) = Γ
such that for almost every a + ib = z ∈ R2 \ R, JF (z) ' JF (ib)

Finally, in Section 7, we provide a characterization of canonical dimension gauges
for unbounded bilipschitz homogeneous Jordan curves. This parallels a similar char-
acterization for bounded curves ([Roh01, Corollary 1.5]).

Theorem 1.3. Suppose that δ : R+ → R+ is a dimension gauge, normalized so
that δ(1) = 1. Then δ is comparable to the canonical dimension gauge for some
unbounded bilipschitz homogeneous Jordan curve Γ ⊂ R

2 if and only if there exists
α ∈ [1, 2) such that for all 0 < r ≤ s < +∞,

s

r
.

δ(s)

δ(r)
.

(s

r

)α

.

The constants depend only on one another.

2. Preliminaries

We denote the real line by R, the positive reals by R+, and the Euclidean plane
by R2. The upper half plane is H, the unit circle is S, and the (open) unit disk is
D. Given x ∈ R

2 and r > 0, D(x; r) represents the open disk of radius r centered
at x. Then D(x; r) indicates the closure of D(x; r) in R2, and C(x; r) := ∂D(x; r).
Given a set E, we write U(E; r) to denote the open set

⋃

x∈E D(x; r). For an open
set Ω ⊂ R

2 and z ∈ Ω, define dΩ(z) := dist(z, ∂Ω).
For a point z ∈ H, write Iz to denote the subarc of R cut off by the circle

orthogonal to R whose intersection with H has Euclidean midpoint z.
Given two positive numbers A and B, we write A ' B to indicate the existence

of some C ∈ [1, +∞) such that C−1B ≤ A ≤ C B. Here we require that C is inde-
pendent of A and B. We write A . B to indicate A ≤ C B. When C is determined
by numbers N, M, . . . , we write C = C(N, M, . . . ). We say that two conditions are
quantitatively equivalent if the constants for each condition are determined solely by
the constants for the other.

Given a set E ⊂ R
2 and a scale r > 0, we define a covering number for E as

N(r; E) := inf{n ∈ N : ∃ {xi}k
i=1 ⊂ R

n such that E ⊂ ∪k
i=1D(xi; r)}.

Note that R2 is D-doubling : there exists a constant D ∈ [1, +∞) such that, given
any x ∈ R2 and r > 0, we have N(r; D(x; 2r)) ≤ D. Using this doubling condition,
when E is compact and A ∈ [1, +∞), one can verify that

N(Ar; E) ≤ N(r; E) ≤ DAlog
2
(D)N(Ar; E).

For r > 0, a set S is r-separated if for every pair of distinct points x, y in S,
|x − y| ≥ r. Given a set E ⊂ R2 and r > 0, we define the packing number P (r; E)
as the supremal cardinality of r-separated sets in E. We say that a set E is (H, α)-
homogeneous provided that for every x ∈ E and all 0 < r ≤ s < diam(E), we
have P (r; D(x; s)) ≤ H(s/r)α. It is well known that this condition is equivalent
to the doubling condition defined above. We say that a set E ⊂ R2 is P -porous

provided that for every x ∈ R2 and r > 0, there exists a point y ∈ D(x; r) such that
dist(y, E) ≥ r/P . In R2, (H, α)-homogeneity (for α < 2) is quantitatively equivalent
to P -porosity ([Luu98, Theorem 5.2]).
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A Jordan curve is a proper homeomorphic image of either the unit circle or real
line. By the term proper we mean that closed and bounded sets are compact. This
definition rules out non-complete homeomorphic images of the real line such as the
open unit interval (such curves are not bilipschitz homogeneous).

Let Γ denote a Jordan curve. Given two points x, y ∈ Γ, we write Γ(x, y) to
denote the smallest (with respect to diameter) component of Γ \ {x, y}. If both
components have the same diameter (as may occur for bounded curves), choose one.
If we desire to include the points x and y, we write Γ[x, y]. We say that Γ is of
B-bounded turning provided that for all x, y ∈ Γ we have diam(Γ[x, y]) ≤ B|x − y|.
The curve Γ is of ε-local B-bounded turning provided that for all x, y ∈ Γ, |x − y| ≤
ε ⇒ diam(Γ[x, y]) ≤ B|x − y|.

When studying bilipschitz homogeneous (thus bounded turning) Jordan curves
Γ ⊂ R2, a canonical class of dimension gauges presents itself. Suppose first that
Γ is bounded. Then for t > 0 define δΓ(t) := N(t; Γ)−1. Suppose now that Γ is
unbounded. Choose a basepoint x0 and an orientation on Γ. Given t > 0, we move
in the positive direction along Γ until we reach the first point xt such that |xt−x0| = t.
Writing Γt := Γ[x0, xt], we define

δΓ(t) :=

{

N(t; Γ1)
−1 if t ≤ 1,

N(1; Γt) if t ≥ 1.

Clearly, this definition depends on the choice of x0. However, due to [HM99, Fact
3.2(a)], different choices of x0 change δΓ only up to a multiplicative constant. More-
over, this constant depends only on the bilipschitz homogeneity and bounded turning
constants. We have the following, which is the necessity of Theorem 1.3 (cf. [FH,
Proposition 3.20]).

Fact 2.1. Let Γ ⊂ R2 be an L-bilipschitz homogeneous B-bounded turning Jor-
dan curve with canonical dimension gauge δ := δΓ. Then there exist constants
D ∈ [1, +∞) and α ∈ [1, 2) depending only on B and L, such that for all 0 < r ≤
s < diam(Γ) we have

(2.1) D−1s

r
≤ δ(s)

δ(r)
≤ D

(s

r

)α

.

It is well known (cf. [Ric66]) that bounded turning Jordan curves in R2 are pre-
cisely the images of R or S under quasisymmetric maps. Given a homeomorphism
η : R+ → R+, recall that an embedding f : X → Y is η-quasisymmetric if, for all
x, y, z ∈ X, we have

|f(x) − f(y)|
|f(x) − f(z)| ≤ η

( |x − y|
|x − z|

)

.

When studying bilipschitz homogeneous Jordan curves, it is useful to consider
quasihomogeneous maps. Again we let η : R+ → R+ be a homeomorphism. An
embedding f : X → Y is η-quasihomogeneous if, for all x, y, z, w ∈ X, we have

|f(x) − f(y)|
|f(z) − f(w)| ≤ η

( |x − y|
|z − w|

)

.

In some cases, this condition is equivalent to weak or very weak quasihomogeneity (see
[HM99, p. 775]). Weak quasihomogeneity is defined by the existance of a constant
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H ∈ [1, +∞) such that |x − y| ≤ |z − w| ⇒ |f(x) − f(y)| ≤ H|f(z) − f(w)|. Very
weak quasihomogeneity is defined similarly, for |x − y| = |z − w|.

3. A qualitative result

Here we prove that unbounded bilipschitz homogeneous Jordan curves are of
bounded turning, qualitatively. In Section 4 we use this result to ‘bootstrap’ our
way towards a quantitative implication. See [FH, Lemma 2.2 and Proposition 3.2]
for proofs of the following.

Fact 3.1. Suppose Γ is a Jordan curve with homeomorphic parametrization
γ : R → Γ. Then lim

t→±∞
|γ(t) − γ(0)| = +∞.

Fact 3.2. Suppose Γ is a Jordan curve that is L-bilipschitz homogeneous with
respect to orientation preserving maps, but is not of bounded turning. Then there
exists some C = C(L) such that for any R > 30L2, there exists x ∈ Γ, s ∈ (0, 1/R),
and r > 0 such that D(x; r)∩Γ contains an rs/C separated set of cardinality greater
than 1/(Cs2). We can take C = 60L3.

The requirement of orientation preserving maps in Fact 3.2 is not significant (see
[GH99, Lemma 2.5]). The next two lemmas provide useful technical information.

Lemma 3.3. Let Γ ⊂ R
2 be a Jordan curve. Suppose x, y ∈ Γ are distinct points

satisfying
diam(Γ[x, y])

|x − y| ≥ C.

Then there exist points u, v ∈ Γ ∩ [x, y] such that Γ ∩ [u, v] = {u, v} and

diam(Γ[u, v]) ≥
(

1

2
− 1

C

)

diam(Γ[x, y]).

Proof. First we assume that Γ is unbounded. Let Γx denote the component
of Γ \ Γ(x, y) with endpoint x, and Γy denote the component of Γ \ Γ(x, y) with
endpoint y. We order points on [x, y] from x to y, and let z denote the last point in
[x, y] that lies in Γx. Then define w to be the first point in [x, y] such that w > z
and w ∈ Γy. Note that we may have z = x and w = y. By our choice of z and w,
Γx ∩ (z, w) = ∅ = Γy ∩ (z, w). Define Γz to be the component of Γ \ Γ(z, w) with
endpoint z. Since Γz ⊂ Γx, we have Γz ∩ (z, w) = ∅. Similarly, Γw ∩ (z, w) = ∅.

Let a denote a point in Γ[x, y] of maximal distance from x. Let u denote the last
point in [z, w] for which u ∈ Γ[z, a]. We may have u = z. Let v denote the first point
in [z, w] for which v > u and v ∈ Γ[a, w]. We may have v = w. Then Γ[z, a]∩ [z, w] ⊂
[z, u] and Γ[a, w] ∩ [z, w] ⊂ [z, u] ∪ [v, w]. Since Γ[z, w] = Γ[z, a] ∪ Γ[a, w], we have
Γ[z, w] ∩ (u, v) = ∅. Because Γ = Γz ∪ Γ[z, w] ∪ Γw and each of these three subarcs
is disjoint from (u, v), we have Γ ∩ (u, v) = ∅.

Since u ∈ Γ[z, a] and v ∈ Γ[a, w], we have a ∈ Γ[u, v]. Therefore,

diam(Γ[u, v]) ≥ |a − u| ≥ |a − x| − |x − u|

≥ diam(Γ[x, y])

2
− |x − y| ≥

(

1

2
− 1

C

)

diam(Γ[x, y]).

Now suppose that Γ is bounded. Choose b ∈ Γ\Γ[x, y] of maximal distance from
x. We follow the strategy used above, with b playing the role of ∞. �
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Lemma 3.4. Suppose Γ ⊂ R2 is an L-bilipschitz homogeneous Jordan curve of
ε-local bounded turning for some ε > 0. Then there exist arbitrarily large disks in
R2 \ Γ.

Proof. If Γ is bounded or of bounded turning then the conclusion is trivial, so we
assume Γ is unbounded and not of bounded turning. Then for any n ∈ N, there exist
points xn, yn ∈ Γ such that diam(Γ[xn, yn]) ≥ n|xn−yn|. Since Γ is of ε-local bounded
turning, for large enough n we have |xn − yn| ≥ ε, and so diam(Γ[xn, yn]) → +∞ as
n ↗ +∞.

There are three main steps to the proof.

Step 1. We show that diam(Γ[xn, yn])/|xn − yn| → +∞ implies |xn − yn| →
+∞. By way of contradiction, suppose the sequence (|xn − yn|) contains a bounded
subsequence. For simplicity of notation, we assume that the sequence (|xn−yn|) itself
is bounded; so there exists M ∈ [1, +∞) such that for all n we have |xn − yn| ≤ M .
Map each xn to x0 via an L-bilipschitz self homeomorphism of Γ. This sends each
yn to some point zn with |x0 − zn| ≤ L|xn − yn| ≤ LM . However, diam(Γ[x0, zn]) ≥
diam(Γ[xn, yn])/L → +∞. Up to a subsequence, for every n, Γ[x0, zn] ⊂ Γ[x0, zn+1].
Taking another subsequence, we assume that 2 diam(Γ[x0, zn]) < diam(Γ[x0, zn+1]).
Therefore,

2 diam(Γ[x0, zn]) < diam(Γ[x0, zn+1]) ≤ diam(Γ[x0, zn]) + diam(Γ[zn, zn+1]),

and so

diam(Γ[zn, zn+1]) > diam(Γ[x0, zn]) ↗ +∞.

Let γ : R → Γ be a homeomorphism. Since (zn) is a bounded sequence in Γ,
Fact 3.1 tells us that (γ−1(zn)) = (sn) is a bounded sequence in R. Up to a choice of
orientation for Γ, for each n we have zn < zn+1 along Γ. Therefore, we may assume
that (sn) is strictly increasing to some finite number s∞. By the continuity of γ at
s∞, the subarcs Γ[zn, zn+1] = γ([sn, sn+1]) must have diameters tending to zero. Since
diam(Γ[zn, zn+1]) cannot simultaneously tend towards both 0 and +∞, our supposi-
tion that (|xn − yn|) contains a bounded subsequence has led to a contradiction. So
diam(Γ[xn, yn])/|xn − yn| → +∞ ⇒ |xn − yn| → +∞.

Step 2. In this step, for each n ∈ N, we choose a certain pair of points in Γ. For
n ∈ N,

Bn := sup

{

diam(Γ[x, y])

|x − y| : |x − y| ≤ n

}

,

Rn := inf

{

|x − y| : diam(Γ[x, y])

|x − y| >
Bn

2

}

.

Since diam(Γ[x, y])/|x − y| → +∞ implies that |x − y| → +∞, Bn < +∞. We also
note that Rn ≤ n (else Bn ≤ Bn/2). Since Γ is not of bounded turning, Bn → +∞
as n ↗ +∞. This in turn implies that Rn → +∞ as n ↗ +∞, since |x − y| → +∞
if diam(Γ[x, y])/|x − y| → +∞.

Suppose that Rn = n. Then for every |x − y| < n, we have

diam(Γ[x, y])

|x − y| ≤ Bn

2
< Bn.
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Therefore, Bn = sup{diam(Γ[x, y])/|x − y| : |x − y| = n}, and there exist x, y ∈ Γ
such that

diam(Γ[x, y])

|x − y| >
Bn

2
and |x − y| = Rn = n.

Suppose now that Rn < n. Then there exists δn ∈ (0, 1] and points x, y ∈ Γ such
that

diam(Γ[x, y])

|x − y| >
Bn

2
and |x − y| ≤ (1 + δn)Rn < n.

In conclusion, whether Rn = n or Rn < n we choose x := xn and y := yn in Γ such
that

diam(Γ[x, y])

|x − y| >
Bn

2
and |x − y| ≤ min {2Rn, n} .

By Lemma 3.3, there exist points u, v ∈ Γ ∩ [x, y] for which Γ ∩ (u, v) = ∅ and

diam(Γ[u, v]) ≥
(

1

2
− 2

Bn

)

diam(Γ[x, y]).

For large enough n we have diam(Γ[u, v]) ≥ 7 diam(Γ[x, y])/16. Since |u − v| ≤
|x − y| ≤ n, we then have

|u − v| ≥ diam(Γ[u, v])

Bn
≥ 7 diam(Γ[x, y])

16Bn
>

7

16Bn

Bn|x − y|
2

=
7|x − y|

32
.

Step 3. In this step we find disks in the compliment of Γ. Let Γu denote the
component of Γ \ Γ(u, v) with endpoint u. Define Γv analogously. Let w denote the
midpoint of [u, v]. Then define

U := D (u; 3|u− v|/8) ∩ D (w; 3|u− v|/16) ,

V := D (v; 3|u− v|/8) ∩ D (w; 3|u− v|/16) .

We assert that a ‘large portion’ of either U or V lies in the complement of Γ.
The remainder of the proof is dedicated to verifying this assertion.

We first show that

(3.1) Γu ∩ V = ∅ = Γv ∩ U.

To see this, suppose that there exists a point b ∈ Γu ∩ V . Then we would have
Γ[u, v] ⊂ Γ[b, v] and |b − v| < 3|u − v|/8, so

diam(Γ[b, v])

|b − v| >
8 diam(Γ[u, v])

3|u − v| ≥ 7 diam(Γ[x, y])

6|x − y| >
Bn

2
.

But we would also have

|b − v| <
3|u − v|

8
≤ 6Rn

8
< Rn.

This would contradict the definitions of Bn and Rn. Similarly, Γv ∩ U = ∅.
Next, we demonstrate that if Γu ∩ U 6= ∅, then Γv ∩ V = ∅. Similarly, if

Γv ∩ V 6= ∅, then Γu ∩ U = ∅. To see this, suppose there exist points a ∈ Γu ∩ U
and b ∈ Γv ∩ V . Then

|a − b| ≤ |a − w| + |b − w| <
3

16
|u − v| + 3

16
|u − v| = 3|u − v|/8 < Rn
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and
diam(Γ[a, b])

|a − b| >
8 diam(Γ[u, v])

3|u − v| ≥ 7 diam(Γ[x, y])

6|x − y| >
Bn

2
.

This contradicts the definitions of Bn and Rn. Thus either Γu∩U = ∅ or Γv∩V = ∅.
Now we note that Γu ∪ [u, v] ∪ Γv is an unbounded Jordan curve dividing the

plane into two unbounded domains, Ω1 and Ω2. Without loss of generality, the arc
Γ(u, v) ⊂ Ω1. We also note that U is symmetric with respect to [u, v], and U \ [u, v]
consists of two components U1 and U2. Similarly, V \ [u, v] = V1 ∪ V2. Let U2 and V2

denote the components such that points of U2 and V2 near [u, v] lie in Ω2. Note that
this does not imply that U2 or V2 is contained in Ω2.

Suppose Γu ∩ U2 = ∅. By (3.1) we know that Γv ∩ U2 = ∅, which implies that
∂Ω2 ∩ U2 = ∅. Since U2 ∩ Ω2 6= ∅ (by definition), we must have U2 ⊂ Ω2. Because
Γ(u, v) ⊂ Ω1, we have Γ[u, v]∩U2 = ∅. Thus we conclude that Γ = Γu ∪ Γ[u, v]∪ Γv

does not meet U2.
Suppose now that Γu ∩ U2 6= ∅. Then Γv ∩ V = ∅, so Γv ∩ V2 = ∅. By (3.1),

Γu ∩ V2 = ∅, which implies that ∂Ω2 ∩ V2 = ∅. Since V2 ∩ Ω2 6= ∅ (by definition),
we must have V2 ⊂ Ω2. Because Γ[u, v] ⊂ Ω1, we have Γ[u, v] ∩ V2 = ∅. Thus we
conclude that Γ = Γu ∪ Γ[u, v] ∪ Γv does not meet V2.

In conclusion, either U2 or V2 lies in the complement of Γ. Note that each of U2

and V2 contain a disk of diameter |u−v|/32 ≥ 7|x−y|/1024. Since |x−y| → +∞ as
n ↗ +∞, this confirms that the complement of Γ contains arbitrarily large disks. �

The following fact ([Bis01, Lemma 2.4]) is crucial to the proof of Theorem 3.6
below.

Fact 3.5. Suppose E ( R
2 is a closed bilipschitz homogeneous set. Then

H 2(E) = 0.

We are now ready to proceed in a manner similar to that of Bishop. This proof
utilizes a notion of local Hausdorff convergence. We say that a sequence of closed
subsets Ei ⊂ R2 is locally convergent to E ⊂ R2 if, for all r ∈ R+,

dH(D(0; r) ∩ Ei, D(0; r) ∩ E) → 0

as i ↗ +∞. Here dH denotes the usual Hausdorff distance.

Theorem 3.6. Suppose Γ ⊂ R2 is an unbounded L-bilipschitz homogeneous
Jordan curve. Then Γ is of bounded turning.

Proof. We prove this theorem by way of contradiction. Choose εn ↘ 0. By
Fact 3.2, there exists a constant C ∈ [1, +∞) such that for each n there exists a
point xn ∈ Γ, a constant sn < εn, and a constant rn > 0 satisfying the following:
each disk D(xn; rn) contains an (rnsn/C)-separated set Sn = {xni} of cardinality
greater than 1/(Cs2

n).
Suppose first that Γ is not of ε-local bounded turning for any ε > 0. In the proof

of Fact 3.2 each rn is defined to be the diameter of a subarc Γ[an, bn] for which the ratio
diam(Γ[an, bn])/|an− bn| is sufficiently large. Since Γ is not of local bounded turning,
there exist arbitrarily small subarcs for which this ratio is arbitrarily large. Therefore,
we may assume that rn ↘ 0. For large enough n, there exists a disk Dn of radius
Lrn such that Dn ∩ Γ = ∅ and such that there exists a point zn ∈ ∂Dn ∩ Γ. Using
the bilipschitz homogeneity of Γ we may assume the following: Each Sn is contained
in Dn, is (rnsn/(CL))-separated, and has cardinality greater than 1/(Csn)

2.
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Now, for each n, we translate zn to the origin and scale by a factor of 1/(Lrn)
to obtain Γn. Up to a rotation, we may assume each Γn omits the disk D(1; 1). In
addition, we define

En := Γn ∪
⋃

i

D

(

xni − zn

Lrn
;

sn

2CL2

)

.

Up to a subsequence, there exists a closed set E ⊂ R
2 to which En is locally convergent

in the Hausdorff distance. Since sn → 0, we have Γn and En converging to the same
set E. Note that each Γn remains L-bilipschitz homogeneous. By taking limits of
maps via Ascoli’s theorem for variable domains ([Väi88, Theorem 2.9]), it follows
that E is also L-bilipschitz homogeneous.

For every n, we have

H
2(En) ≥ π

1

(Csn)2

( sn

2CL2

)2

=
π

4C4L4
> 0.

By [Bis01, Lemma 2.3], we conclude that H 2(E) > 0. To see that E 6= R2, we recall
that each Γn omits the disk D(1; 1). Thus E omits the same disk. In this way the
assumption that Γ is not of local bounded turning would allow us to construct a
closed bilipschitz homogeneous set E ( R

2 with H 2(E) > 0. By Fact 3.5, such a set
cannot exist.

The above paragraph tells us that Γ is of ε-local bounded turning for some
ε > 0. We now show that in fact Γ is of bounded turning in the global sense.
Indeed, suppose the contrary. In the second paragraph of the proof of Lemma 3.4,
we proved that, under our assumptions on Γ, diam(Γ[an, bn])/|an − bn| → +∞ ⇒
diam(Γ[an, bn]) → +∞. Since rn is defined to be the diameter of some Γ[an, bn] for
which diam(Γ[an, bn])/|an − bn| → +∞, we conclude that rn → +∞. By Lemma 3.4
there exist arbitrarily large disks in the complement of Γ, so let Dn denote a disk of
radius rn such that Dn ∩ Γ = ∅ and such that there exists a point zn ∈ ∂Dn ∩ Γ.
From here we follow the same strategy as in the above paragraph, reaching the same
contradiction. Therefore, we conclude that Γ is of bounded turning. �

4. A quantitative result

Here we use the results of the previous section to obtain a quantitative result.
Our basic strategy is to find both lower and upper bounds on the Assouad dimension
of an unbounded bilipschitz homogeneous Jordan curve in the plane. The key is to
obtain such bounds in terms of the bilipschitz homogeneity and bounded turning
constants. We begin by recording the following fact (see [Väi87, Theorem 3.17]).

Fact 4.1. Suppose f : A → R2 is an L-bilipschitz map, where A ⊂ D(x; r) and
x ∈ A. Suppose also that 0 < ε ≤ 1/(16L3(L + 1)) and that D(x; r) ⊂ U(A; rε).
Then D(f(x); r/(2L)) ⊂ U(f(A); rLε).

Proposition 4.2. Suppose Γ is an L-bilipschitz homogeneous Jordan curve in
R2. Then Γ is P -porous, with P = P (L) = 160L4.

Proof. By Theorem 3.6 we know that Γ is of bounded turning, and so Γ is
porous for some finite constant. Suppose Γ fails to satisfy the P -porosity condition
for P := 160L4.

By the failure of P -porosity, there exists x0 ∈ Γ and r > 0 such that for every
z ∈ D(x0; r) we have dist(z, Γ) < r/P . Since Γ is porous for some finite constant,
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there exist arbitrarily large disks in the complement of Γ. In particular, there exists a
disk D of radius r such that D∩Γ = ∅ and such that there exists a point y0 ∈ ∂D∩Γ.
Let f : Γ → Γ be an L-bilipschitz homeomorphism with f(x0) = y0.

Now let S denote a maximal (r/P )-separated set in D(x0; r)∩Γ such that x0 ∈ S.
By the choice of x0, for every z ∈ D(x0; r) we have D(z; r/P ) ∩ Γ 6= ∅. It follows
that D(x0; r) ⊂ U(S; 5r/P ). Since 5/P = 1/(32L4) ≤ 1/(16L3(L + 1)), by Fact 4.1
we know that D(y0; r/(2L)) ⊂ U(f(S); 5rL/P ).

At this point we recall that y0 was contained in the boundary of a disk D of
radius r with D ∩Γ = ∅; so f(S)∩D = ∅. Writing w to denote the center of D, let
z denote the point at which the line segment [y0, w] intersects ∂D(y0; 2r/L). Since
D(z; r/(2L)) ⊂ D, dist(z; f(S)) ≥ r/(2L) > 5rL/P . Therefore, D(y0; r/(2L)) 6⊂
U(f(S); 5rL/P ). This contradicts the conclusion of the preceding paragraph. Since
our assumption on P leads to a contradition, we conclude that Γ is indeed P -porous
for P = 160L4. �

The above proposition in conjunction with [Luu98, Theorem 5.2] yields a quanti-
tative upper bound on the Assouad dimension of Γ that is independent of the bounded
turning constant. The following lemma provides a quantitative lower bound that in-
creases with the bounded turning constant.

Lemma 4.3. Let Γ ⊂ R2 be an L-bilipschitz homogeneous unbounded Jordan
curve that is B-bounded turning. Suppose there exist distinct points x0, x1 ∈ Γ such
that

2 diam(Γ[x0, x1]) ≥ B|x0 − x1|.

Writing r := diam(Γ[x0, x1]), there exists a (r/4BL2)-separated set in Γ whose car-
dinality is at least B2/64 and whose diameter is no greater than 10L2r.

Proof. We may assume that B ≥ 8, for otherwise the claim is satisfied by {x0, x1}.
Define an orientation on Γ by moving from x0 to x1 along Γ[x0, x1]. By [GH99,
Lemma 2.5] there exists an orientation preserving L2-bilipschitz map f1 : Γ → Γ
with f1(x0) = x1. Define x2 := f1(x1). In the same way we map x0 to x2 via
f2 : Γ → Γ and define x3 := f2(x1). We iterate this process until we obtain xM with
B + 1 ≤ M ≤ B + 2. Now we examine the circles C(x0; nr/B), for n ∈ N0. By
the choice of r, we find that when n ≤ B/4, we have C(x0; nr/B) ∩ Γ[x0, x1] 6= ∅.
In particular, we have C(x0; nr/B) ∩ Γ[x0, y0] 6= ∅, where y0 is the first point of
Γ[x0, x1]∩C(x0; r/4). For every such n, choose a point z0n ∈ C(x0; nr/B)∩Γ[x0, y0].
Thus we obtain a collection {z0n} ⊂ Γ[x0, y0] consisting of at least B/8 points.
Note that z00 = x0. For every m ≤ M , define zmn := fm(z0n) ∈ Γ[xm, ym], where
ym := fm(y0). Thus we obtain a collection {zmn} of cardinality at least B(B + 1)/8.

We claim that {zmn} is r/4BL2-separated. Let zmi and znj be given. If m = n,

|zmi − zmj | = |fm(z0i) − fm(z0j)| ≥ |z0i − z0j |/L2 ≥ r/(BL2).

Suppose now that m < n. Since zmi ≤ ym < xm+1 ≤ znj, we have

|zmi − znj | ≥ diam(Γ[zmi, znj])/B ≥ diam(Γ[ym, xm+1])/B ≥ r/(4BL2).

The final inequality follows from the fact that |x0 −y0| = r/4 while Γ[y0, x1] contains
a point on the circle C(x0; r/2).
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Finally, we claim that diam({zmn}) ≤ 10L2r. Let zmn be given. We have

|zmn − x0| ≤ |x0 − xm| + |xm − zmn| ≤
M−1
∑

i=0

|xi − xi+1| + L2r/4

≤ (B + 2)L2|x0 − x1| + L2r/4 ≤ L2(4r + r/4) ≤ 5L2r. �

Proof of Theorem 1.1. Let B ∈ [1, +∞) denote the optimal bounded turning
constant for Γ (which exists by Theorem 3.6). Then by Lemma 4.3, there exists a scale
r > 0 and a finite point set S0 ⊂ Γ such that card(S0) ≥ B2/64, sep(S0) ≥ r/(4BL2),
and diam(S0) ≤ 10L2r. Here card(S) denotes the cardinality of a given set S, and
(when card(S) > 1) sep(S) := inf{r : S is r-separated}.

By Proposition 4.2 we know that Γ is P -porous with P = P (L). Therefore, by
[Luu98, Theorem 5.2] we know that Γ is (H, α)-homogeneous for some H ∈ [1, +∞)
and α ∈ [1, 2), each depending only on L. Indeed, let k be any integer satisfying
k > 4

√
2P . We may set α = log(k2 − 1)/ log(k) and H = (k

√
2)α (see the proof of

[Luu98, Theorem 5.2]).
It follows from the definition of (H, α)-homogeneity that for any non-trivial finite

point set S ⊂ Γ, we have card(S) ≤ 2αH(diam(S)/ sep(S))α. Using the set S0

obtained above, this inequality yields B ≤ (64H(80L4)α)1/(2−α). �

5. Constructing unbounded snowflakes

Recall the construction of the catalogue S in [Roh01], which lists all bounded
quasicircles in R2 up to bilipschitz equivalence. The subcatalogue HS lists all
bounded bilipschitz homogeneous Jordan curves. We point out that HS does not
account for unbounded bilipschitz homogeneous curves. Moreover, this cannot be
remedied by the use of auxiliary Möbius maps, for such maps need not preserve
bilipschitz homogeneity (see [Fre, Theorem 1.1]). Therefore, we construct a new
catalogue HT that lists all unbounded bilipschitz homogeneous Jordan curves in
R

2, up to bilipschitz equivalence.
The construction of HT resembles that of HS . Let p ∈ [1/4, 1/2). We start

with the unit interval I = [0, 1] ⊂ R ⊂ R2, and carry out a HS p-type construction
on I (see [Roh01] for details). This yields a sequence of piecewise linear arcs (Ik)

∞
k=0

converging to a snowflake arc J0. In particular, we refer to J0 as a 0-arc. Then
we take three isometric copies of J0 and arrange them to the right of J0 so that
their endpoints coincide with the vertices of a similarity (scaled, rotated, translated)
copy of either I or Jp (see Figure 1). We leave J0 unaltered in this construction (see
Figure 2).

This forms a new arc J1, which we refer to as a 1-arc. Note that J1 consists of
four 0-arcs. Next, we take three copies of J1, and arrange them to the right of J1 so
that their endpoints coincide with the vertices of a similarity copy of either I or Jp.
We leave J1 unaltered in this construction. Thus we form a new 2-arc J2 consisting
of 42 0-arcs and 41 1-arcs. We continue inductively to form an increasing sequence of
arcs, (Jn). The union T+ :=

⋃

∞

n=0 Jn is contained in the first quadrant of the plane.
We then form the unbounded Jordan curve T := T+∪T−, where T− is the reflection
of T+ through the origin. The collection of all curves constructed in this way forms
HT p; then HT := ∪p∈[1/4,1/2)HT p.
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Figure 1. The arcs I and Jp.

J0
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Figure 2. Building J1 from J0.

To obtain a closer parallel with the construction of curves S ∈ HS (which are
the limits of polygonal arcs Sn), we define piecewise linear curves Tn converging to
a given curve T ∈ HT . To do this, we note that such a curve T consists entirely of
copies of the 0-arc J0 (as in the above paragraph). Denote these copies by {J i

0}i∈Z.
Each J i

0 is the limit of the sequence of piecewise linear arcs I i
n. We refer to the

linear segments comprising each I i
n as n-edges; so each I i

n consists of 4n n-edges. We
form the piecewise linear arc Tn :=

⋃

i∈Z
I i
n, composed entirely of n-edges. Moreover,

Tn → T as n ↗ +∞. We also emphasize the distinction between n-edges and n-arcs.
Indeed, n-edges are linear segments in Tn whose lengths decrease as n increases.
On the other hand, n-arcs are snowflake arcs in T whose diameters increase as n
increases.

We need to analyze curves T ∈ HT on scales smaller than diam(J0). To do
this, we extend the notion of n-arcs to include negative indices. Indeed, for n ∈ N,
we use the term (−n)-arc in T to describe a subarc whose endpoints coincide with
the endpoints of a copy of an n-edge in Tn.

The following can be proved as in [Roh01, Lemma 3.1].

Lemma 5.1. If T ∈ Tp, then T is of B-bounded turning, with B = B(p).

Now define a set of points W ⊂ H as follows: For every n, k ∈ Z, set

vn,k := 4n(k + (1 + i)/2).

For a given v ∈ W , we have v = vn,k for some n, k, and we write d(v) = n. We
say that a given vn,k has four children, namely vn−1,4k, vn−1,4k+1, vn−1,4k+2, vn−1,4k+3

(when k ≥ 0) or vn−1,4k, vn−1,4k−1, vn−1,4k−2, vn−1,4k−3 (when k ≤ 0). Given v ∈ W ,
let Iv denote the subarc of R defined in Section 2. When d(v) = n, we again use the
term n-arc to describe to Iv. See Figure 3.
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v

Iv

Figure 3. Points from W and associated subarcs in R.

Given a curve T ∈ HT , we may use the set W to define a canonical parametriza-
tion ϕT : R → T . We begin by recalling the construction of T . We start with a com-
pact interval I ⊂ R ⊂ R2. We then obtain a sequence of piecewise linear curves Tn

converging to T . Recall that Tn is composed of n-edges. We first define ϕ0 : R → T0

by sending the 0-arcs in R onto the corresponding 0-edges in T0 in a linear manner.
As a point of reference, we map the 0-arc [0, 1] onto the 0-edge whose endpoints co-
incide with the snowflake arc J0 ⊂ T (here we use the notation from the construction
of HT ). We proceed inductively: for n ∈ N, we map (−n)-arcs of R onto corre-
sponding n-edges of Tn by a piecewise linear map ϕn. Since Tn → T in the Hausdorff
distance, (ϕn) converges (uniformly) to a map ϕT : R → T .

Lemma 5.2. Given a curve T ∈ HT p, the canonical parametrization ϕT : R →
T is η-quasihomogeneous, with η depending only on p.

Proof. By [HM99, Fact 2.3], we only need to show that ϕR is weakly quasihomo-
geneous. That is, we need to find some constant H such that

|ϕT (x) − ϕT (y)| ≤ H|ϕT (z) − ϕT (w)|

when |x − y| ≤ |z − w|. To this end, let |x − y| ≤ |z − w| in R, and let n ∈ Z

be the largest index for which z and w are contained in non-adjacent n-arcs of R.
Thus z and w are contained in the union of 8 consecutive n-arcs in R; so x and y
are contained in 9 consecutive n-arcs. In particular, there exists an n-arc J that is
mapped inside the subarc T [ϕT (z), ϕT (w)] by ϕT . Since every n-edge in T has the
same diameter, we have

|ϕT (x) − ϕT (y)| ≤ diam(ϕT ((x, y))) ≤ 9 diam(ϕT (J))

≤ 9 diam(T [ϕT (z), ϕT (w)]) ≤ 9B|ϕT (z) − ϕT (w)|.

Here B = B(p) denotes the bounded turning constant for T (Lemma 5.1). Thus
ϕT is 9B-weakly quasihomogeneous, and thus η-quasihomogeneous with η depending
only on p. �

6. Characterizing unbounded curves

We will make frequent use of the following fact (see [Leh87, pp. 35–36] and
[Tuk81]).
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Fact 6.1. Suppose f : R → R2 is an η-quasisymmetric map. Then f has a K-
quasiconformal extension F : R2 → R2 with the following property: for all x ∈ R2 we
have

diam(F (Ix)) ' |DF (x)| diam(Ix).

The constants depend only on η.

We will also require the following two items ([Roh01, Lemma 2.1], [Fre09]).

Fact 6.2. Suppose F : R
2 → R

2 is a quasiconformal homeomorphism. Then
JF ' 1 almost everywhere if and only if F is bilipschitz. The bilipschitz constant
depends only on the dilatation of F and the constant involved in JF ' 1, and
conversely.

Fact 6.3. An unbounded Jordan curve Γ ⊂ R2 is L-bilipschitz homogeneous
and of B-bounded turning if any only if there exists a parametrization h : R → Γ, a
dimension gauge δ satisfying (2.1), and a constant C ∈ [1, +∞) such that for every
x, y ∈ R,

(6.1) C−1|x − y| ≤ δ(|h(x) − h(y)|) ≤ C|x − y|.
The constants depend only on each other.

Proof of Theorem 1.2. We prove the following implications:

(1) ⇒ (3) ⇒ (2) ⇒ (1) ⇒ (4) ⇒ (5) ⇒ (1),

noting that the implications (3) ⇒ (2) ⇒ (1) and (4) ⇒ (5) are immediate.

(1) ⇒ (3). Let Γ ⊂ R2 be an unbounded L-bilipschitz homogeneous Jordan
curve with canonical dimension gauge δ. Let D ∈ [1, +∞) and α ∈ [1, 2) denote the
constants from (2.1). We increase D by a factor of 2α so that δ(2r) ≤ Dδ(r). Let
h : R → Γ be the parametrization described in Fact 6.3, satisfying (6.1) with constant
C. By Theorem 1.1, the constants D, α and C depend only on L. Define

ρ(r) := sup{t : δ(t) ≤ r}.
It follows from (2.1) and (6.1) that for every x, y ∈ R we have ρ(|x−y|) ' |h(x)−h(y)|
up to the constant DC.

Recalling the collection of points {vn,k} = W ⊂ H, we define a labeling ` : W →
R+. Given v ∈ W , set `(v) := ρ(4d(v)). Using the fact that ρ is non-decreasing along
with (2.1), for m ≤ n we have

1

D

ρ(4n)

ρ(4m)
≤ δ(ρ(4n))

δ(ρ(4m))
≤ D

(

ρ(4n)

ρ(4m)

)α

.

At the same time,

D−24n−m ≤ δ(ρ(4n))

δ(ρ(4m))
≤ D24n−m.

Therefore, for v, w ∈ W with d(v) = m ≤ n = d(w),

D−3An−m ≤ `(w)

`(v)
≤ D34n−m,

where A := 41/α ∈ (2, 4].
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Now we define another labeling `′ : W → R+ such that, for d(v) = d(w) − 1,

`′(w)

`′(v)
∈ {4, A}.

Moreover, our construction also yields `′ ' `, up to the constant D3. For ease of
notation, let vn denote any element of W with d(v) = n. Define `′(v0) := ρ(40) = ρ(1).
Then for n ≥ 1, define

`′(vn+1) :=

{

A`′(vn) if `(vn) ≤ `′(vn),

4`′(vn) if `(vn) > `′(vn).

For n ≤ −1, define

`′(vn−1) :=

{

`′(vn)/4 if `(vn) ≤ `′(vn),

`′(vn)/A if `(vn) > `′(vn).

To see that ` ' `′ on W , let vn be given, with n ≥ 1. Suppose that `(vn) > `′(vn).
Let 0 ≤ m < n be the smallest non-negative integer such that for every m+1 ≤ l ≤ n
we have `(vl) > `′(vl); so `(vm) ≤ `′(vm). By the definition of `′, the properties of `,
and the choice of m, we have

`(vn) > `′(vn) = 4n−m`′(vm) ≥ 4n−m`(vm) ≥ D−3`(vn).

Now suppose that `(vn) ≤ `′(vn). Choose 0 ≤ m < n to be the smallest non-negative
integer such that for every m + 1 ≤ l ≤ n we have `(vl) ≤ `′(vl); so `(vm) ≥ `′(vm).
Similar to our above calculations, we have

`(vn) ≤ `′(vn) = An−m`′(vm) ≤ An−m`(vm) ≤ D3`(vn).

Therefore, `(vn) ' `′(vn) for n ≥ 1, with constant D3. A parallel strategy can be
used to verify that the same comparability holds for n ≤ −1.

We use `′ to construct a curve T ∈ HT . Define I = [0, `′(v0)] ⊂ R. We begin
our construction on decreasing scales. If `′(v−1) = `′(v0)/4, then we replace I by a
similarity copy of I. If `′(v−1) = `′(v0)/A, then we replace I by a similarity copy of
Jp. Here p := A−1 ∈ [1/4, 1/2). Thus we form an arc we call I1, and which consists
of four 1-edges. Inductively, for n ≥ 2, if `′(v−n) = `′(v−n+1)/4 then we replace each
(n−1)-edge in In−1 by a similarity copy of I. If `′(v−n) = `′(v−n+1)/A then we replace
each (n − 1)-edge in In−1 by a similarity copy of Jp. Thus we obtain In, consisting
of 4n n-edges. Continuing in this manner, we obtain a limit arc, which we denote
by J0. We refer to J0 as a 0-arc and for n ≥ 0 we use the term (−n)-arc to refer to
subarcs of J0 whose endpoints coincide with the n-edges in In.

Now we perform our construction on increasing scales. If `′(v1) = 4`′(v0), then
we place three copies of J0 to the right of J0 so that the endpoints of the four arcs
coincide with the vertices of a similarity copy of I. We leave J0 unaltered in this
process, and so we form J1. If `′(v1) = A`′(v0), then we place three copies of J0 to
the right of J0 so that the endpoints of the four arcs coincide with the vertices of a
similarity copy of Jp. We leave J0 unaltered in this process, and so we form J1. In
either case, J1 is a 1-arc consisting of four 0-arcs. We continue inductively. Let Jn be
given (for n ≥ 2). If `′(vn+1) = 4`′(vn), then we place three copies of Jn to the right
of Jn so that the endpoints of the four arcs coincide with the vertices of a similarity
copy of I. If `′(vn+1) = A`′(vn), then we place three copies of Jn to the right of Jn so
that the endpoints of the four arcs coincide with the vertices of a similarity copy of
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Jp. We continue in this manner, obtaining a limit arc. Taking the union of this arc
with it’s reflection through the origin, we obtain a Jordan curve T ∈ HT .

Let ϕT : R → T denote the canonical parametrization of T . Given v ∈ W , we
write T (v) to denote ϕT (Iv). We observe that for any n ∈ Z and any vn ∈ W , we
have

`′(vn) = diam(T (vn)).

Since ϕT is quasihomogeneous (Lemma 5.2), it is quasisymmetric. Let Φ: R
2 →

R2 denote the quasiconformal extenstion of ϕT given by Fact 6.1. We note that
h : R → Γ is also quasisymmetric (recall that h is the parametrization obtained from
Fact 6.3), and so h also has a quasiconformal extension H : R2 → R2 given by Fact 6.1.
For x ∈ R2, let n ∈ Z be such that Ix has endpoints a, b for which |a− b| ' 4n, up to
a factor of 2. Then

|DH(x)| diam(Ix) ' diam(H(Ix)) ' |h(a) − h(b)| ' ρ(|a − b|) ' `(vn)

' `′(vn) = diam(T (vn)) ' diam(Φ(Ix)) ' |DΦ(x)| diam(Ix).

Here all the constants are absolute or depend only on L. By Fact 6.2 (and the chain
rule) we know that H ◦Φ−1 : R2 → R2 is a bilipschitz map for which H ◦Φ−1(T ) = Γ.
Moreover, the bilipschitz constant depends only on L.

(1) ⇒ (4). Since (1) ⇒ (3) has been established, we may assume that T ∈ HT p

is L-bilipschitz equivalent to Γ via some map f : R2 → R2. Here p = p(L). Let
Φ: R2 → R2 be the quasiconformal extension of ϕT : R → T given by Fact 6.1. For
z, w ∈ R

2 \ R with 0 < dist(w, R) ≤ dist(z, R), let Im and In be 4-adic intervals in R

such that

diam(Im) = 4m ' diam(Iw) = 2 dist(w, R),

diam(In) = 4n ' diam(Iz) = 2 dist(z, R),

where the comparability is up to a factor of 2. Then

JΦ(w)

JΦ(z)
'

( |DΦ(w)|
|DΦ(z)|

)2

'
(

diam(ϕT (Im))

diam(ϕT (In))

)2

42(n−m).

At the same time, by the construction of T we have

4m−n ≤ diam(ϕT (Im))

diam(ϕT (In))
≤ (1/p)m−n.

Therefore,

1 .
JΦ(w)

JΦ(z)
. (4p)2(n−m) '

(

dist(z, R)

dist(w, R)

)β

.

Here β := log2(4p) ∈ [0, 1), and all the comparability constants depend only on L.
Note that Ψ := f ◦Φ is a quasiconformal map of R2 with Ψ(R) = Γ. By the chain

rule, JΨ ' JΦ almost everywhere, up to a constant depending only on L. It follows
that Ψ is our desired map.

(5) ⇒ (1). Let F be the K-quasiconformal map given by (5); so there exists
C ∈ [1, +∞) such that for almost every a + ib = z ∈ R

2 we have

(6.2) C−1JF (z) ≤ JF (ib) ≤ CJF (z).

Choose points x, y ∈ Γ and define the horizontal translation G(z) = z + (F−1(y) −
F−1(x)). Then G(F−1(x)) = F−1(y), and so F ◦ G ◦ F−1 is a self homeomorphism
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of Γ that sends x to y. Moreover, this map is bilipschitz. Indeed, the chain rule and
(6.2) tell us that for almost every a + ib = z ∈ R2, J(F ◦G)(z) = JF (G(z))JG(z) '
JF (ib) ' JF (z). Thus J(F ◦ G ◦ F−1) ' 1 almost everywhere in R2, up to the
constant C2. By Fact 6.2 F ◦ G ◦ F−1 is bilipschitz, so Γ is bilipschitz homogeneous
with constant depending only on C and K. �

7. A characterization of canonical dimension gauges

The techniques involved in proving Theorem 1.2 allow us to further explore the
behavior of certain quasiconformal Jacobians and to characterize dimension gauges
satisfying (2.1). This section closely follows ideas behind analogous results in [Roh01].
Indeed, the following proposition is a direct analogue to [Roh01, Corollary 1.4].

Proposition 7.1. Let ρ : (0, +∞) → (0, +∞) be a function. Suppose there
exists α ∈ [0, 1/2) and D ∈ [1, +∞) such that for all 0 ≤ r ≤ s we have

D−1
(r

s

)α

≤ ρ(s)

ρ(r)
≤ D.

Then there exists a constant C ∈ [1, +∞) and a K-quasiconformal map F : R2 → R2

such that for z ∈ R2 \ R,

C−1ρ(dist(z, R)) ≤ JF (z)1/2 ≤ Cρ(dist(z, R)).

Here the constants C and K depend only on D and α.

Proof. We make use of notation from the proof of Theorem 1.2. Let W ⊂ H

denote the collection {vn,k}, where vn denotes any element of W such that d(v) = n.
Define the labeling ` : W → R+ by `(vn) := 4nρ(4n) = 2dH(vn)ρ(2dH(vn)). For m ≤ n,

`(vn)

`(vm)
=

4nρ(4n)

4mρ(4m)
≤ D4n−m.

As well,
`(vn)

`(vm)
=

4nρ(4n)

4mρ(4m)
≥ D−14n−m(4m−n)α = D−1An−m,

where A = 41−α ∈ (2, 4]. Thus we have D−1An−m ≤ `(vn)/`(vm) ≤ D4n−m. As
in the proof of Theorem 1.2, using the above inequalities we construct a labeling
l′ ' l such that for d(v) = d(w)− 1 we have `′(w)/`′(v) ∈ {4, A}. From `′ we obtain
T ∈ HT such that `′(v) = diam(T (v)). Via Lemma 5.2, we know that the canonical
parametrization ϕT : R → T is η-quasihomogeneous, with η depending only on D
and α. Fact 6.1 yields a quasiconformal extension Φ: R2 → R2.

For z ∈ R2 \ R, there exists n ∈ Z such that dist(z, R) ' 4n up to a factor of 2.
We have

JΦ(z)1/2 ' |DΦ(z)| ' diam(ϕT (Iz))

diam(Iz)
' diam(ϕT (Ivn

))

diam(Iz)
' `′(vn)

4n

' `(vn)

4n
= ρ(4n) ' ρ(dist(z, R)).

Thus JΦ(z)1/2 ' ρ(dist(z, R)) for z ∈ R2 \ R, up to a constant depending only on
D, α. �

We supply the following technical lemma.
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Lemma 7.2. Let f : R → R2 be an η-quasihomogeneous map and let I ⊂ R be
a compact interval. Then for z ∈ H,

N(JF (z)1/2dH(z); F (I)) ' N(dH(z); I).

Here F denotes the quasiconformal extension of f given by Fact 6.1, and the com-
parability constant depends only on η.

Proof. We begin by noting that f is η-quasisymmetric, so Γ = f(R) is of B-
bounded turning for some B depending only on η. Next, the properties of F described
in Fact 6.1 tell us that for a + ib = z ∈ H, JF (z) ' JF (ib), where the comparability
depends only on η.

Let {Ji}n
i=1 be a finite cover of I by consecutive, non-overlapping intervals, each

of which has the same diameter 2dH(z). Note that n may equal 1. Again using
quasihomogeneity, for our calculations we may assume that J1 = Iz. Furthermore,
for i, j ∈ {1, 2, . . . , n} we have diam(F (Ji)) ' diam(F (Jj)) up to the constant η(1).
Therefore,

N(2η(1) diam(F (Iz)); F (I)) ≤ N(2dH(z); I).

Let xi denote the left endpoint of each Ji. Since F (I) is of B-bounded turning and
F is quasihomogeneous, the points F (xi) form a (diam(F (Iz))/(η(1)B))-separated
collection in F (I). Therefore,

P (2dH(z); I) ≤ P

(

diam(F (Iz))

η(1)B
; F (I)

)

.

Using the comparability of covering and packing numbers along with the above es-
timates, we conclude that N(dH(z); I) ' N(diam(F (Iz)); F (I)), up to a constant
depending only on η. Finally, using the properties of F and the metric doubling
property, we have

N(JF (z)1/2dH(z); F (I)) ' N(diam(F (Iz)); F (I)) ' N(dH(z); I).

Again the constants depend only on η. �

Proof of Theorem 1.3. As already mentioned, the necessity is Fact 2.1. To prove
the sufficiency, we define ρ : R+ → R+ as ρ(s) := sup{t ∈ R+ : δ(ts) ≤ s}.

Claim 1. We first claim that ρ satisfies the hypotheses of Proposition 7.1. By
our assumptions on δ, it is clear that ρ(s) > 0 on R+.

Subclaim 1a. For any s > 0, δ(ρ(s)s) ' s, up to the constant 2αD. To verify
this subclaim, suppose first that δ(ρ(s)s) > s. Choose r < ρ(s) such that ρ(s) ≤ 2r.
By the definition of ρ we must have δ(rs) ≤ s. Thus we have

s < δ(ρ(s)s) ≤ δ(2rs) ≤ 2αDδ(rs) ≤ 2αDs.

When δ(ρ(s)s) ≤ s we proceed similarly. Thus our first subclaim is verified.
Subclaim 1b. Given s, t ∈ R+ for which s < t, we have ρ(s)s ≤ 4αD3ρ(t)t. To

see this, suppose that ρ(s)s > ρ(t)t. By the properties of δ and Subclaim 1a,

ρ(s)s

ρ(t)t
≤ D

δ(ρ(s)s)

δ(ρ(t)t)
≤ 4αD3

(s

t

)

≤ 4αD3.

Thus our second subclaim is verified.
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Using these two subclaims, when 0 < s < t it is straightforward to check that

C−1
(s

t

)β

≤ ρ(t)

ρ(s)
≤ C.

where C := D(4αD3)2+log
2
(D) and β := (α − 1)/α ∈ [0, 1/2). Therefore, Claim 1 is

verified.
By Proposition 7.1, there exists a quasiconformal map F : R2 → R2 such that

JF (z)1/2 ' ρ(dist(z, R)) in R2 \ R, where the dilatation and comparability depend
only on D, α. By Subclaim 1a and the properties of δ, for z ∈ H we conclude that

(7.1) δ(JF (z)1/2dH(z)) ' dH(z),

up to a constant depending only on D, α.
By construction of ρ we find that F satisfies Theorem 1.2 (5), with constants

depending only on D and α. Therefore, we know that Γ := F (R) is a B-bounded
turning, L-bilipschitz homogeneous unbounded Jordan curve, with B and L depend-
ing only on D and α.

Claim 2. Let δΓ denote the canonical dimension guage for Γ. We claim that for
z ∈ H we have δΓ(JF (z)1/2dH(z)) ' dH(z), up to a constant depending only on D
and α. To verify this claim, we start by observing that F is η-quasihomogeneous on
R, with η : R+ → R+ depending only on D, α. By [HM99, Lemma 2.2 and Fact 2.3] it
suffices to check that F is very weakly quasihomogeneous, which is straightforward.

Let Ω := F (H); thus Ω is a quasidisk. Given z ∈ H, by [Hei89, Theorem
3.1] (here we use implication III ⇒ IV, which does not require the boundedness
of Ω), diam(F (Iz)) ' dΩ(F (z)). Then by [AG85, Theorem 1.8], diam(F (Iz)) '
JF (z)1/2dH(z). The comparability constants depend only on D, α.

Choose a point w1 ∈ H such dH(w1) = δ(1) = 1; so diam(F (Iw1
)) ' JF (w1)

1/2.
We have

δ(ρ(1)) = δ(ρ(dH(w1))dH(w1)) ' dH(w1) = 1 = δ(1);

so property (2.1) yields ρ(1) ' 1. Using the relationship between JF and ρ, we
obtain

diam(F (Iw1
)) ' JF (w1)

1/2dH(w1) ' ρ(dH(w1)) = ρ(1) ' 1.

Using [Fre, Lemma 2.2 and Fact 3.1(b)], the above estimate tells us that, for any
r ≤ 1,

(7.2) δΓ(r) = N(r; Γ1)
−1 ' N(r; F (Iw1

))−1,

where comparability depends only on D, α.
We are now ready to verify Claim 2 regarding δΓ. Suppose first that for z ∈ H we

have dH(z) ≤ 1. Then by Subclaim 1b and the construction of F and w1, for such z
we have JF (z)1/2dH(z) . JF (w1)dH(w1) ' 1. We write ω(z) := JF (z)1/2dH(z). By
the doubling property, the definition of δΓ, and Lemma 7.2,

δΓ(ω(z)) ' N(ω(z); F (Iw1
))−1 ' N(dH(z); Iw1

)−1 ' dH(z)

diam(Iw1
)
' dH(z).

All comparability constants depend only on D, α.
Suppose now that dH(z) ≥ 1. Again by Subclaim 1b, ω(z) & 1. Note also

that diam(Γω(z)) = ω(z) ' diam(F (Iz)), so as in (7.2), δΓ(ω(z)) ' N(1; Γυ(z)) '
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N(1; F (Iz)). Since ω(w1) ' 1, by Lemma 7.2, we have

N(1; F (Iz)) ' N(ω(w1); F (Iz)) ' N(dH(w1); Iz) '
diam(Iz)

dH(w1)
' dH(z).

Again, all comparability constants depend only on D, α, and Claim 2 is verified.
By Subclaim 1a, lims→0 ρ(s)s = 0 while lims→+∞ ρ(s)s = +∞. Using this obser-

vation along with Claim 1, the hypotheses of Proposition 7.1 allow us to conclude
that for all r > 0, there exists s > 0 such that ρ(s)s ' r up to the constant 2C
(recall, C = D(4αD3)2+log

2
(D)). Then there exists z ∈ H such that dH(z) = s and

JF (z)1/2 ' ρ(dH(z)). Therefore, ρ(s)s ' JF (z)1/2dH(z). Using (7.1), it follows that

δ(r) ' δ(JF (z)1/2dH(z)) ' dH(z) ' δΓ(JF (z)1/2dH(z)) ' δΓ(r).

The comparability constants depend only on D, α. �
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