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Abstract. We introduce a quasiregular analog F of the sine and cosine function such that, for
a sufficiently large constant λ, the map x 7→ λF (x) is locally expanding. We show that the dynamics
of this map define a representation of Rd, d ≥ 2, as a union of simple curves γ : [0,∞) → Rd which
tend to∞ and whose interiors γ∗ = γ((0,∞)) are disjoint such that the union of all γ∗ has Hausdorff
dimension 1.

1. Introduction and statement of results

The Julia set J(f) of an entire function f is defined as the set of all points in C
where the iterates fk of f do not form a normal family. An equivalent definition was
given in [9]: J(f) = ∂I(f) where I(f) = {z : fn(z) →∞} is the set of escaping points;
see [3] for an introduction to the dynamics of entire and meromorphic functions.

Devaney and Krych [7] showed that J(λez) is a “Cantor bouquet” for 0 < λ < 1/e.
To give a precise statement of their result we say that a subset H of C (or Rd) is
a hair if there exists a continuous injective map γ : [0,∞) → C (or Rd) such that
limt→∞ γ(t) = ∞ and γ([0,∞)) = H. We call γ(0) the endpoint of the hair.

The result of Devaney and Krych is the following.

Theorem A. Let 0 < λ < 1/e. Then J(λez) is an uncountable union of pairwise
disjoint hairs.

We denote by dim X the Hausdorff dimension of a set X in C (or in Rd). The
following result is due to McMullen [16, Theorem 1.2].

Theorem B. For λ ∈ C\{0} we have dim J(λez) = 2.

Karpińska [14, Theorem 1.1] proved the following surprising result.

Theorem C. Let 0 < λ < 1/e and let Eλ be the set of endpoints of the hairs
that form J(λez). Then dim Eλ = 2 and dim(J(λez)\Eλ) = 1.

The conclusion of Theorem B holds more generally for entire functions of finite
order for which the set of critical and asymptotic values is bounded; see [2, Theo-
rem A] and [23]. If, in addition, this set is compactly contained in the immediate
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basin of an attracting fixed point, then the conclusions of Theorems A and C also
hold [1, 2].

These results apply in particular to trigonometric functions. However, the ana-
logue of Theorem A for trigonometric functions had been obtained already much
earlier by Devaney and Tangerman [8].

Theorem D. Let 0 < λ < 1. Then J(λ sin z) is an uncountable union of pairwise
disjoint hairs.

McMullen [16, Theorem 1.1] and Karpińska [13, Theorem 3] also considered the
case of trigonometric functions. Their results are as follows. Here area X stands for
the Lebesgue measure of a measurable subset X of C.

Theorem E. Let λ, µ ∈ C, λ 6= 0. Then area J(λ sin z + µ) > 0.

Theorem F. For 0 < λ < 1 let Eλ be the set of endpoints of hairs that form
J(λ sin z). Then area Eλ > 0.

The argument in [14] shows that under the hypothesis of Theorem F we also have
dim(J(λ sin z)\Eλ) = 1.

The conclusions of Theorems D and F , as well as the last remark, hold more
generally for functions of the form f(z) = λ sin z + µ if the parameters are chosen
such that the critical values ±λ + µ of f are contained in the immediate basin of the
same attracting fixed point. If this condition on the critical values is not satisfied,
then the hairs in the Julia set of f still may exist, but in general distinct hairs may
share their endpoints [20].

If the critical values of f(z) = λ sin z +µ are strictly preperiodic, then J(f) = C.
Schleicher ([21], see also [22]) showed that J(f) is still a union of hairs which are
pairwise disjoint except for their endpoints, and the Hausdorff dimension of the hairs
without their endpoints is 1. Thus he obtained the following result.

Theorem G. There exists a representation of the complex plane C as a union
of hairs with the following properties:

• the intersection of two hairs is either empty or consists of the common end-
point;

• the union of the hairs without their endpoints has Hausdorff dimension 1.

Zorich [25] introduced a quasiregular analog F : R3 → R3\{0} of the exponential
function. It was shown in [4] that the results about the dynamics of the exponential
function quoted above (Theorems A, B and C) have analogs in the context of Zorich
maps.

In this paper we introduce a higher dimensional analog of the trigonometric
functions. The dynamics of this map are then used to extend Theorem G to all
dimensions greater than 1.

Theorem 1. For each d ∈ N, d ≥ 2, there exists a representation of Rd as a
union of hairs with the following properties:

• the intersection of two hairs is either empty or consists of the common end-
point;

• the union of the hairs without their endpoints has Hausdorff dimension 1.

The construction of our higher dimensional analog of the trigonometric functions
is similar to the construction of Zorich’s map as given in [12, Section 6.5.4]. We begin
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with a bi-Lipschitz map F from the half-cube{
x = (x1, . . . , xd) ∈ Rd : ‖x‖∞ ≤ 1, xd ≥ 0

}
= [−1, 1]d−1 × [0, 1]

to the upper half-ball
{x ∈ Rd : ‖x‖2 ≤ 1, xd ≥ 0}

which maps the face [−1, 1]d−1×{1} to the hemisphere {x ∈ Rd : ‖x‖2 = 1, xd ≥ 0}.
We will give an explicit construction of such a bi-Lipschitz map F in Section 4. Next
we define F : [−1, 1]d−1 × (1,∞) → Rd by

F (x) = exp(xd − 1)F (x1, . . . , xd−1, 1).

The map F is now defined on [−1, 1]d−1 × [0,∞), and it maps [−1, 1]d−1 × [0,∞)
bijectively onto the upper half-space H+ := {x ∈ Rd : xd ≥ 0}. Using repeated
reflections at hyperplanes we can extend F to a map F : Rd → Rd.

It turns out that the map F is quasiregular. However, we shall not actually use
this fact. On the other hand, the quasiregularity of F is one of the underlying ideas
in the proofs, and thus we make some remarks about quasiregular maps in Section 5.
We also show there that our map F is indeed quasiregular.

We note that since F is locally bi-Lipschitz, the restriction of F to any line is
absolutely continuous, and F is differentiable almost everywhere. We denote by

‖DF (x)‖ := sup
‖y‖=1

‖DF (x)(y)‖

the operator norm of the derivative DF (x). (Here and in the following ‖y‖ = ‖y‖2

for y ∈ Rd; that is, unless specified otherwise we consider the Euclidean norm in
Rd.) We also put

`(DF (x)) := inf
‖y‖=1

‖DF (x)(y)‖.
We note that it follows from the definition of F that if x, x′ ∈ (−1, 1)d−1 × (1,∞)
and xj = x′j for 1 ≤ j ≤ d− 1, then

(1.1) DF (x′) = exp(x′d − xd)DF (x)

whenever these derivatives exist.
It is easy to see that

β := ess inf
x∈Rd

`(DF (x)) > 0

for our map F . We choose λ > 1/β and consider the map f = λF . Clearly f is
quasiregular and

(1.2) α := ess inf
x∈Rd

`(Df(x)) = λβ > 1,

that is, f is locally uniformly expanding in Rd.
We put S := Zd−1 × {−1, 1} and for r = (r1, . . . , rd) ∈ S we define

T (r) := {x ∈ Rd : |xj − 2rj| ≤ 1 for 1 ≤ j ≤ d− 1, rdxd ≥ 0}.
We find that if

σ(r) :=
d−1∑
j=1

rj +
1

2
(rd − 1)

is even, then f maps T (r) bijectively onto H+. If σ(r) is odd, then f maps T (r)
bijectively onto H− := {x ∈ Rd : xd ≤ 0}.
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For a sequence s = (sk)k≥0 of elements of S we put

H(s) :=
{
x ∈ Rd : fk(x) ∈ T (sk) for all k ≥ 0

}
.

Evidently Rd =
∑

s∈S H(s), where S is the set of all sequences with elements in S

for which H(s) is not empty.

Proposition 1. If s ∈ S, then H(s) is a hair.

For s ∈ S we denote by E(s) the endpoint of H(s).

Proposition 2. If s′ 6= s′′, then H(s′)∩H(s′′) = ∅ or H(s′)∩H(s′′) = {E(s′)} =
{E(s′′)}.

Proposition 3. dim
(⋃

s∈S H(s)\{E(s)}
)

= 1.

Theorem 1 follows from these propositions.

Acknowledgment. We thank the referee for valuable comments.

2. Preliminaries

It follows from the definition of F that

‖F (x)‖ = exp(|xd| − 1), x ∈ Rd, |xd| ≥ 1,

so that

(2.1) ‖f(x)‖ = λ exp(|xd| − 1), x ∈ Rd, |xd| ≥ 1.

For r ∈ S we denote by Λr the inverse function of f |T (r). Thus Λr : H+ → T (r)
or Λr : H− → T (r), depending on whether σ(r) is even or odd. For x ∈ T (r) and
y = f(x) we have

‖DΛr(y)‖ =
1

`(Df(x))
and thus

(2.2) ‖DΛr(y)‖ ≤ 1

α
by (1.2). It follows from (2.2) that if a, b ∈ T (r), then

‖a− b‖ = ‖Λr(f(a))− Λr(f(b))‖ ≤ 1

α
‖f(a)− f(b)‖.

Hence

(2.3) ‖f(a)− f(b)‖ ≥ α‖a− b‖ for a, b ∈ T (r), r ∈ S.

If |xd| ≥ 1, then we have

`(Df(x)) ≥ α exp(|xd| − 1) =
α‖f(x)‖

λ
= β‖f(x)‖

by (1.1), (1.2) and (2.1). Note that the condition |xd| ≥ 1 is equivalent to ‖y‖ ≥ λ.
Thus

(2.4) ‖DΛr(y)‖ ≤ 1

β‖y‖ , y ∈ Rd, ‖y‖ ≥ λ.

Similarly we deduce from (1.1) that there exists a positive constant δ such that

(2.5) ` (DΛr(y)(x)) ≥ δ

‖y‖ , y ∈ Rd, ‖y‖ ≥ λ.
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We shall also need the following result.

Lemma 1. Let s = (sk)k≥0 be an element of S and let x, y ∈ H(s). For k ≥ 0
we put xk = (xk

1, . . . , x
k
d) := fk(x) and yk = (yk

1 , . . . , y
k
d) := fk(y).

There exists M > 0 with the following property: if

(2.6) |yk
d | > |xk

d|+ M

for some k ≥ 0, then

|yk+1
d | > λ

3
exp |yk

d |+ M ≥ 5|xk+1
d |+ M.

Proof. We will denote by p the projection

p : Rd → Rd−1, (x1, . . . , xd−1, xd) 7→ (x1, . . . , xd−1).

Since |xk
j − yk

j | ≤ 2 for 1 ≤ j ≤ d− 1 and all k we have

(2.7)
∥∥p(xk)− p(yk)

∥∥ ≤ 2
√

d− 1

for all k.
Suppose now that (2.6) holds. Then using (2.1) and (2.7) we obtain∣∣yk+1

d

∣∣ ≥
∥∥yk+1

∥∥−
∥∥p(yk+1)

∥∥
≥ λ exp

(∣∣yk
d

∣∣− 1
)−

∥∥p(xk+1)
∥∥− 2

√
d− 1

≥ λ exp
(∣∣yk

d

∣∣− 1
)− λ exp

(∣∣xk
d

∣∣− 1
)− 2

√
d− 1

≥ λ exp
(∣∣yk

d

∣∣− 1
)− λ exp

(∣∣yk
d

∣∣−M − 1
)− 2

√
d− 1

=
λ

e

(
1− e−M

)
exp

∣∣yk
d

∣∣− 2
√

d− 1.

Noting that |yk
d | > M by (2.6) we find that if M is sufficiently large, then

∣∣yk+1
d

∣∣ ≥ λ

3
exp

∣∣yk
d

∣∣ + M.

Since
λ

3
exp

∣∣yk
d

∣∣ >
λ

3
eM exp

∣∣xk
d

∣∣ =
e

3
eM

∥∥xk+1
∥∥ ≥ e

3
eM

∣∣xk+1
d

∣∣ ,

the last inequality in the conclusion of the lemma also holds if M is large. ¤

3. Proof of the Propositions

Proof of Proposition 1. For a sequence s = (sk) in S we have

H(s) =
⋂

k≥0

(Λs0 ◦ Λs1 ◦ . . . ◦ Λsk) (T (sk+1)).

Thus X := H(s) ∪ {∞} is an intersection of nested, connected, compact subsets of
Rd := Rd ∪ {∞}. This implies that X is compact and connected.

To prove that H(s) is a hair we follow Rottenfußer, Rückert, Rempe and Schlei-
cher [19] and use the following lemma from [17].

Lemma 2. Let X be a non-empty, compact, connected metric space. Suppose
that there is a strict linear ordering ≺ on X such that the order topology on X
agrees with the metric topology. Then either X consists of a single point or there is
an order-preserving homeomorphism from X onto [0, 1].
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To define the linear ordering on X = H(s) ∪ {∞} we choose M according to
Lemma 1. For x, y ∈ H(s) we say that x ≺ y if there exists k ≥ 0 such that
|yk

d | > |xk
d|+ M , and we define x ≺ ∞ for all x ∈ H(s). Lemma 1 implies that x ≺ y

and y ≺ x cannot hold simultaneously. Another easy consequence of Lemma 1 is
that our relation ≺ is transitive.

To show that it is a linear ordering we notice that ‖xk−yk‖ ≥ αk‖x−y‖ by (2.3).
Using (2.7) we obtain

(3.1) |xk
d − yk

d | ≥
∥∥xk − yk

∥∥−
∥∥p(xk)− p(yk)

∥∥ ≥ αk‖x− y‖ − 2
√

d− 1.

Thus x 6= y implies either x ≺ y or y ≺ x.
Now we prove that the order topology on X is the same as the topology induced

from Rd. We have to show that the identity map from X with the induced topology to
X with the order topology is a homeomorphism. Since X with the induced topology
is compact and since X with the order topology is Hausdorff, it suffices to show that
the identity map is continuous [15, p. 141, Theorem 8]. Thus we only have to show
that the sets

U−(a) := {w ∈ X : w ≺ a} and U+(a) := {w ∈ X : w Â a}
are open with respect to the induced topology for all a ∈ X. In order to do so, let
w ∈ U−(a) and choose the minimal k such that |wk

d | < |ak
d| − M . Then there is a

neighborhood V of w in Rd where the same inequality is satisfied. The intersection
V ∩ H(s) is a neighborhood of w that is contained in U−(a). Thus U−(a) is open
with respect to the induced topology. The proof for U+(a) is similar.

Thus the order topology on X agrees with the topology induced from Rd. Propo-
sition 1 now follows from Lemma 2. ¤

Proof of Proposition 2. Let y ∈ H(s′)∩H(s′′). Let m be the smallest subscript
such that s′m 6= s′′m. Then fm(y) belongs to the common boundary of T (s′m) and
T (s′′m). From the definition of f we conclude that fk(y) belongs to the hyperplane
{x ∈ Rd : xd = 0} for all k ≥ m + 1. This implies that x ≺ y is impossible for
any x. So y is the minimal element of the order ≺ and thus an endpoint of H(s′)
and H(s′′). ¤

Proof of Proposition 3. We follow the argument in [4] and with ψ : [1,∞) → R,

ψ(t) := exp
(√

log t
)

and L := max{e, 4λ} we put

Ω :=
{
x ∈ Rd : |xd| ≥ L, ‖p(x)‖ ≤ ψ (|xd|)

}
.

We then have

(3.2) ‖x‖ ≤ |xd|+ ‖p(x)‖ ≤ |xd|+ ψ (|xd|) ≤ 2|xd|, x ∈ Ω.

The following result is analogous to [4, Lemma 5.3].

Lemma 3. If y ∈ H(s)\{E(s)} then fk(y) →∞ as k →∞. Moreover, we have
fk(y) ∈ Ω for all large k.

Proof. Let s = (sk)k≥0 ∈ S such that y ∈ H(s). With x = E(s) and the ordering
≺ as in Section 3 we have x ≺ y. As before, we put xk = fk(x) and yk = fk(y) for
k ≥ 0. By Lemma 1 we have

|yk
d | ≥ 5|xk

d|+ M
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for all large k. Using (3.1) we see that |yk
d | → ∞ and hence yk →∞ as k →∞.

Since ∥∥p(yk)
∥∥ ≤

∥∥p(xk)
∥∥ + 2

√
d− 1 ≤

∥∥xk
∥∥ + 2

√
d− 1

by (2.7) we see that fk(y) ∈ Ω holds for large k if ‖xk‖ ≤ R, where R is any fixed
constant. Noting that ∥∥xk

∥∥ ≤ λ exp
∣∣xk−1

d

∣∣ ≤ λ exp
∥∥xk−1

∥∥ ,

we also find that fk(y) ∈ Ω holds for all large k for which ‖xk−1‖ ≤ log(R/λ).
We may thus suppose that min{‖xk‖, ‖xk−1‖} is large. Lemma 1 now yields for

large k that
∣∣yk−1

d

∣∣ ≥ λ

3
exp

∣∣yk−2
d

∣∣ + M ≥ λ

3
exp

(
5
∣∣xk−2

d

∣∣ + M
)

+ M

≥ eM

3λ4

(
λ exp

∣∣xk−2
d

∣∣)5
+ M ≥

∥∥xk−1
∥∥4 ≥

∣∣xk−1
d

∣∣4 ,

and hence that
∣∣yk

d

∣∣ ≥ λ

3
exp

∣∣yk−1
d

∣∣ + M ≥ λ

3
exp

(∣∣xk−1
d

∣∣4
)

≥ λ

3
exp

((
log

∥∥xk
∥∥)4

)
≥ exp

((
log

∥∥xk
∥∥)3

)
.

Thus ∥∥p(yk)
∥∥ ≤

∥∥p(xk)
∥∥ + 2

√
d− 1 ≤

∥∥xk
∥∥ + 2

√
d− 1

≤ exp
((

log
∣∣yk

d

∣∣)1/3
)

+ 2
√

d− 1 ≤ exp
√

log
∣∣yk

d

∣∣
for large k. This means that yk ∈ Ω, and the proof of Lemma 3 is completed. ¤

The following result [4, Lemma 5.2] is a simple consequence of some classical
covering lemmas. Here we denote by B(x, r) the open ball of radius r around a point
x ∈ Rd.

Lemma 4. Let Y ⊂ Rd and ρ > 1. Suppose that for all y ∈ Y and η > 0 there
exist r(y) ∈ (0, 1), d(y) ∈ (0, η) and N(y) ∈ N satisfying d(y)ρN(y) ≤ r(y)d such
that B(y, r(y)) ∩ Y can be covered by N(y) sets of diameter at most d(y). Then
dim Y ≤ ρ.

In [4, Lemma 5.2] it is additionally assumed that Y is bounded, but this hypoth-
esis can be omitted, since the Hausdorff dimension of a set is the supremum of the
Hausdorff dimensions of its bounded subsets.

We now begin with the actual proof of Proposition 3, following the argument
in [4]. Since f is locally bi-Lipschitz, and since the Hausdorff dimension is invariant
under bi-Lipschitz maps, Lemma 3 implies that it suffices to show that

Y :=
{
y ∈ H(s)\{E(s)} : fk(y) ∈ Ω for all k ≥ 0

}

has Hausdorff dimension 1. We shall prove this using Lemma 4.
Let y ∈ Y ∩H(s) and, as before, put yk = fk(y). With x = E(s) we deduce from

Lemma 1 that

(3.3) |yj+1
d | > λ

3
exp |yj

d|+ M

for large j.
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We now fix a large k and denote by Bk the closed ball of radius 1
2
|yk

d | around yk.
We cover Bk ∩ Ω by closed cubes of sidelength 1 lying in {x ∈ Rd : |xd| ≥ 1

2
|yk

d |}. If
c > 2d−1, then the number Nk of cubes required satisfies

Nk ≤ c|yk
d |ψ

(
2
∣∣yk

d

∣∣)d−1
,

provided k is large enough. Given ε > 0 we thus can achieve that

(3.4) Nk ≤
∣∣yk

d

∣∣1+ε

by choosing k large.
Let B0 be the component of f−k(Bk) that contains y. With

ϕ := Λs0 ◦ Λs1 ◦ · · · ◦ Λsk−1

we have B0 = ϕ(Bk). Using (2.2) and (2.4) we find that if C is one of the cubes of
sidelength 1 used to cover Bk ∩ Ω, then

diam ϕ(C) ≤ 1

αk−1

2

β
∣∣yk

d

∣∣ diam C ≤ 1∣∣yk
d

∣∣
if k is sufficiently large. Thus we can cover B0 ∩ Y by Nk sets of diameter dk, where

(3.5) dk ≤ 1∣∣yk
d

∣∣ .

In order to apply Lemma 4 we estimate the radius rk of the largest ball around y
that is contained in B0. Let z ∈ ∂B0 with ‖z−y‖ = rk and let σ0 be the straight line
connecting y and z. For 1 ≤ j ≤ k we put σj = f j(σ0), Bj = f j(B0) and zj = f j(z).
Then σk connects yk to zk ∈ ∂Bk and thus

(3.6) length(σk) ≥ 1

2

∣∣yk
d

∣∣ .

We deduce from (2.4) that

diam Bk−1 = diam Λsk−1 (Bk) ≤ 2

β
∣∣yk

d

∣∣ diam Bk =
2

β

and hence

diam Bj ≤ 2

β

for j ≤ k − 1 by (2.2). Since |yj
d| ≥ L > 4/β, this implies that

σj ⊂ Bj ⊂ B

(
yj,

1

2

∣∣yj
d

∣∣
)
⊂ B

(
yj,

1

2

∥∥yj
∥∥
)

for j ≤ k − 1. It thus follows from (2.5) and (3.2) that

length σj = length Λsj(σj+1) ≥ 2δ

3 ‖yj+1‖ length σj+1 ≥ δ

3
∣∣yj+1

d

∣∣ length σj+1

for j ≤ k − 1 and this implies that

length σk ≤
(

3

δ

)k
(

k∏
j=1

∣∣yj
d

∣∣
)

length σ0.
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Combining this with (3.6) we find that

rk = length σ0 ≥ 1

2

(
δ

3

)k
1∏k−1

j=1

∣∣yj
d

∣∣ .

Using (3.3) we see that we can achieve

(3.7) rk ≥ 1∣∣yk
d

∣∣ε

by choosing k large.
We thus find that we can cover B(y, rk) ∩ Y by Nk sets of diameter at most dk,

where Nk, dk and rk satisfy (3.4), (3.5) and (3.7). With ρ = 1 + (d + 1)ε it follows
from (3.4), (3.5) and (3.7) that

(dk)
ρNk ≤

∣∣yk
d

∣∣1+ε−ρ
=

∣∣yk
d

∣∣−dε ≤ (rk)
d.

Given η > 0 we can also achieve that rk < 1 and dk < η by choosing k large. We
thus see that the hypothesis of Lemma 4 are satisfied with r(y) = rk, d(y) = dk and
N(y) = Nk.

It follows that dim Y ≤ ρ = 1 + (d + 1)ε. Since ε > 0 was arbitrary, we obtain
dim Y ≤ 1. ¤

4. An explicit bi-Lipschitz map

Let B+ := [−1, 1]d−1 × [0, 1], B− := [−1, 1]d−1 × [−1, 0],

U+ := {x ∈ Rd : ‖x‖2 ≤ 1, xd ≥ 0} and U− := {x ∈ Rd : ‖x‖2 ≤ 1, xd ≤ 0}.
Then h1 := B+ → B−, x 7→ x− (0, . . . , 0, 1), and h2 : B− → U−, x 7→ (‖x‖∞/‖x‖2)x,
are both bi-Lipschitz, and with X := [−1, 1]d−1 × {1} and Y := {x ∈ Rd : ‖x‖2 ≤
1, xd = 0} we have h2(h1(X)) = Y . It remains to define a bi-Lipschitz map h3 : U− →
U+ with h3(Y ) = {x ∈ Rd : ‖x‖2 = 1, xd ≥ 0}. Then h := h3 ◦h2 ◦h1 has the desired
properties.

In order to define h3 we note that

T (z) =
z + i

iz + 1

defines a bi-Lipschitz map from the lower half-disk {z ∈ C : |z| ≤ 1, Im z ≤ 0} to the
upper half-disc {z ∈ C : |z| ≤ 1, Im z ≥ 0}, with {z ∈ C : |z| ≤ 1, Im z = 0} being
mapped onto {z ∈ C : |z| = 1, Im z ≥ 0}. With x = (x1, . . . , xd) = (p(x), xd) and
z = ‖p(x)‖2 + ixd it follows that

h3(x) =

(
p(x)

‖p(x)‖2

Re T (z), Im T (z)

)

has the desired properties.

5. Quasiregular maps

Let Ω ⊂ Rd be open. A continuous map f : Ω → Rd is called quasiregular if it
belongs to the Sobolev space W 1

d,loc(Ω) and if there exists a constant KO ≥ 1 such
that

(5.1) ‖DF (x)‖d ≤ KO JF (x) a.e.,
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where JF = det DF denotes the Jacobian determinant. Equivalently, there exists
KI ≥ 0 such that

(5.2) JF (x) ≤ KI `(DF (x))d a.e.

The smallest constants KO and KI for which the above estimates hold are called the
outer and inner dilatation. For a thorough treatment of quasiregular maps we refer
to [18].

To see that our map F defined in Section 1 is quasiregular, we note first that (5.1)
holds on the half-cube (−1, 1)d−1 × (0, 1) since F is bi-Lipschitz there. By the same
reason, (5.1) holds on the bounded set (−1, 1)d−1 × (1, 2). Using (1.1) we deduce
that (5.1) holds on (−1, 1)d−1 × (1,∞). Thus (5.1) holds on (−1, 1)d−1 × (0,∞) and
in the sets obtained from this by reflection. We deduce that F is indeed quasiregular.

We mention that it follows from (5.1) and (5.2) that if F is quasiregular, then

(5.3) ‖DF (x)‖ ≤ K `(DF (x)) a.e.

where K = (KOKI)
1/d. We could also use (5.3) instead of (5.1) or (5.2) in the

definition of quasiregularity. It follows from (2.4) and (2.5) that (5.3) holds for
|xd| ≥ 1 with K = 1/(βδ). This is one reason why we said in the introduction that
the quasiregularity of F is among the underlying ideas of the proof.

We note that for quasiregular maps there is no obvious definition of the Julia set;
see, however, [5, 24]. On the other hand, the escaping set I(f) can be defined. It was
shown in [6] that if f is a quasiregular self-map of Rd with an essential singularity
at ∞, then I(f) 6= ∅. In fact, I(f) has an unbounded component. Fletcher and
Nicks [11] have shown that for quasiregular maps of polynomial type the boundary
of the escaping set has properties similar to the Julia set of polynomials.

We mention that for the entire functions f(z) = λez or λ sin z + µ considered in
Theorems A–G we have I(f) ⊂ J(f) and thus J(f) = I(f); see [10, Theorem 1].
This plays an important role in the proofs of these theorems. For example, McMullen
actually proved that the conclusion of Theorems B and E holds with J(f) replaced
by I(f). Also, a crucial part in the proofs of Theorems C, F and G is based on the
fact that points which are on a hair but which are not endpoints escape to infinity
under iteration very fast.

This also played an important role in our proof. In particular, for the map f
considered in this paper we have⋃

s∈S

H(s)\{E(s)} ⊂ I(f)

by Lemma 3. On the other hand, it is not difficult to see that {E(s) : s ∈ S} intersects
both I(f) and the complement of I(f).
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