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Abstract. The classical isodiametric inequality in the Euclidean space says that balls maxi-
mize the volume among all sets with a given diameter. We consider in this paper the case of Carnot
groups. We prove that for any non abelian Carnot group equipped with a Haar measure one can
find a homogeneous distance for which this fails to hold. We also consider Carnot–Carathéodory
distances and prove that this also fails for these distances as soon as there are length minimiz-
ing curves that stop to be minimizing in finite time. Next we study some connections with the
comparison between Hausdorff and spherical Hausdorff measures, rectifiability and the generalized
1/2-Besicovitch conjecture, giving in particular some cases where this conjecture fails.

1. Introduction

The classical isodiametric inequality in the Euclidean space Rn says that balls
maximize the volume among all sets with prescribed diameter,

L n(A) ≤ 2−nαn(diam A)n, A ⊂ Rn,

where L n denotes the n-dimensional Lebesgue measure and αn the Lebesgue mea-
sure of the unit ball in Rn. This gives non trivial information about the geometry
of the Euclidean space and about the relation between the Euclidean metric and
the Lebesgue measure. In particular a well-known consequence of the isodiametric
inequality is the following relation between the n-dimensional Lebesgue measure and
the n-dimensional Haudorff measure defined with respect to the Euclidean distance,

L n = 2−nαnH n,

where H n(A) = limδ↓0 inf {∑i(diam Ai)
n; A ⊂ ⋃

i Ai, diam Ai ≤ δ}.
More generally when working on analysis on metric spaces it is a natural question

to ask in what kind of settings one can have some—and what—type of isodiametric
inequalities and what kind of properties can be deduced from this information.

In the present paper we are interested in Carnot groups equipped with homoge-
neous distances. A Carnot group is a connected and simply connected nilpotent Lie
group whose Lie algebra admits a stratification. We denote by Q its homogeneous
dimension. It can be equipped with a natural family of dilations. A distance d on a
Carnot group G is called homogeneous if it induces the topology of the group, is left
invariant and one-homogeneous with respect to the dilations. See Section 2 for the
definitions. The simplest examples of non abelian Carnot groups are the Heisenberg
groups. From a metric point of view, natural measures on (G, d) are given by the
Q-dimensional Hausdorff and spherical Hausdorff measures. They turn moreover out
to be non trivial left invariant measures, hence Haar measures of the group, and
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Q-homogeneous with respect to the dilations, so that they are also well-behaved and
natural measures to be considered with respect to the structures the group is endowed
with.

We will use throughout this paper the following general definitions and con-
ventions about Hausdorff and spherical Hausdorff measures. Given a metric space
(M, d) and a non negative number n, we denote by H n

d the n-dimensional Hausdorff
measure given by

H n
d (A) = lim

δ↓0
inf{

∑
i

(diam Ai)
n; A ⊂

⋃
i

Ai, diam Ai ≤ δ},

and by S n
d the n-dimensional spherical Hausdorff measure,

S n
d (A) = lim

δ↓0
inf{

∑
i

(diam Bi)
n; A ⊂

⋃
i

Bi, Bi ball, diam Bi ≤ δ}.

For a Carnot group equipped with a homogeneous distance (G, d) we will more
specifically take as a choice of a reference measure the Q-dimensional spherical Haus-
dorff measure S Q

d . A first fact supporting our choice is that

S Q
d (B) = (diam B)Q for any metric ball B in (G, d),

see Proposition 2.1. Moreover, it turns out that the isodiametric problem can be
rephrased in simple terms as we shall explain now.

Going back to the isodiametric problem one seeks for the maximal possible value
of the measure of sets with a given diameter. Using dilations this can be rephrased
in our context into the problem of finding the maximal possible value of the ratio
S Q

d (A)/(diam A)Q among all subsets A ⊂ G with positive and finite diameter. We
denote by Cd this value and call it the isodiametric constant,

(1.1) Cd = sup
{ S Q

d (A)

(diam A)Q
; 0 < diam A < +∞

}
.

It obviously follows that one has the following inequality,

S Q
d (A) ≤ Cd(diam A)Q, A ⊂ G,

where 0 < Cd < +∞ is by definition the best possible constant in the right-hand
side. Since S Q

d (B) = (diam B)Q for balls B, one has actually Cd ≥ 1. Hence the
best possible inequality one can expect is the following,

(SII) S Q
d (A) ≤ (diam A)Q, A ⊂ G,

that we call the sharp isodiametric inequality.
We are interested in this paper in the question to know whether the sharp isodia-

metric inequality holds, or equivalently if balls realize the supremum in the right-hand
side of (1.1), in Carnot groups equipped with some specific homogeneous distances.
Note that it is not difficult to see that in our context one can always find sets re-
alizing the supremum in (1.1). We shall prove this fact for sake completeness, see
Theorem 3.1. The isodiametric problem can thus be pursued with the question of
finding explicitly which are these sets and this will be explored in forthcoming works
(see [14]).

In the present paper we first prove that given a non abelian Carnot group G one
can always find some homogeneous distance on G, namely d∞-distances (see 2.2.1),
for which the sharp isodiametric inequality does not hold, see Theorem 3.4. For the
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specific class of H-type groups equipped with the gauge distance (see 2.2.3) we prove
with a similar argument that (SII) does not hold either, see Theorem 3.5. Going back
to general Carnot groups, another kind of natural homogeneous distances are the so-
called Carnot–Carathéodory (or sub-Riemannian) distances (see 2.2.2). Equipped
with such a distance a Carnot group becomes a geodesic space. We prove that
the sharp isodiametric inequality also fails in that case provided there are length
minimizing curves that stop to be minimizing in finite time, see Theorem 3.6. This
property holds true in particular in the Heisenberg groups and more generally in
H-type groups.

We will then investigate some consequences of these results. One of our initial
motivations in the study of the isodiametric problem was indeed some connections
with geometric measure theoretic properties of the space and in particular rectifia-
bility.

First we explicitly state and prove that in our context the comparison between
the Q-dimensional Hausdorff and spherical Hausdorff measures can be related to the
isodiametric problem in the following way,

S Q
d = CdH

Q
d ,

see Proposition 2.3. It follows that

(SII) holds in (G, d) ⇐⇒ H Q
d = S Q

d .

As a consequence we immediately get that in the cases we are more specifically
interested in and where (SII) does not hold, the measures H Q

d and S Q
d do not

coincide.
As another consequence of the non-validity of the sharp isodiametric inequality

for at least one homogeneous distance, we recover the fact that any non abelian
Carnot group equipped with a homogeneous distance and with homogeneous dimen-
sion Q is purely Q-unrectifiable, see Subsection 4.1. This was already known, see e.g.
[1], [15]. Existing proofs of this fact, and more generally of related facts, basically
involve some algebraic properties of some subgroups of a Carnot group. The point
here is that we give a different proof that uses only purely metric arguments.

Finally we investigate some connections with the Besicovitch 1/2-problem. First
we will note that the density constant σQ(G, d) (see Subsection 4.2 for the definition)
of a non abelian Carnot group G with homogeneous dimension Q and equipped with
a homogeneous distance d satisfies σQ(G, d) = C−1

d , see Theorem 4.2. In particular,
σQ(G, d) < 1 whenever the sharp isodiametric inequality does not hold in (G, d). The
validity of the bound σn(M,d) ≤ 1/2 for any separable metric space (M,d), which was
conjectured long ago by Besicovitch for the one-dimensional density constant in R2

(see [4]), is known as the generalized Besicovitch 1/2-problem. We give here some
counterexamples to this conjecture in the case of the Heisenberg groups equipped
with their natural d∞-distance as well as with the Carnot–Carathéodory distance,
see Theorem 4.3 and Theorem 4.4.

The paper is organized as follows. In Section 2 we recall the definition of a Carnot
group and we introduce the homogeneous distances on these groups we are interested
in. Next in this section we state and prove some general facts about Q-dimensional
Hausdorff and spherical Hausdorff measures on these groups equipped with homo-
geneous distances as mentionned before. Section 3 is devoted to the isodiametric
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problem itself. We give in this section the proof that the sharp isodiametric inequal-
ity does not hold in the cases mentionned above. Finally we investigate in Section 4
the consequences of this fact described at the end of this introduction.

2. Carnot groups

2.1. Carnot groups. A Carnot group G is a connected and simply connected
nilpotent Lie group whose Lie algebra G admits a stratification,

G =
k⊕

j=1

Vj, [V1, Vj] = Vj+1, Vk 6= {0}, Vk+1 = {0},

for some integer k ≥ 1 called the step of the stratification.
The exponential map exp: G → G is then a global diffeomorphism and the group

law is given by the Campbell–Hausdorff formula,

exp X · exp Y = exp H(X, Y ),

where H(X, Y ) = X +Y +[X, Y ]/2+ · · · where the dots indicate terms of order ≥ 3
(the exact formula for H may be found in [5, II.6.4]). We will denote by 0 the unit
element of the group.

We denote by

Q =
k∑

j=1

j dim Vj

the homogeneous dimension of G.
A natural family of dilations on G is given by δλ(

∑k
j=1 Yj) =

∑k
j=1 λj Yj, Yj ∈ Vj,

λ > 0. The maps exp ◦δλ ◦ exp−1 are group automorphisms of G. We shall denote
them also by δλ and call them dilations on G.

We refer to [8] for a more detailed presentation of Carnot, and more generally
homogeneous, groups.

2.2. Homogeneous distances. A distance d on a Carnot group G is called
homogeneous if it induces the topology of the group, is left invariant,

d(x · y, x · z) = d(y, z)

for all x, y, z ∈ G, and one-homogeneous with respect to the dilations,

d(δλ(y), δλ(z)) = λ d(y, z)

for all y, z ∈ G and λ > 0.
A Carnot group equipped with a homogeneous distance is a separable and com-

plete metric space in which closed bounded sets are compact. We also explicitly
note that in this context the diameter of a ball is given by twice its radius. There
are many ways to define homogeneous distances on a Carnot group. We shall see
some examples below. As a general fact we also mention that any two homogeneous
distances on a Carnot group are bilipschitz equivalent.

2.2.1. d∞-distances. The first kind of homogeneous distances we will consider
in this paper is the class of so-called d∞-distances. They can be defined in the fol-
lowing way. First one chooses a basis (X1, . . . , Xn) of G adapted to the stratification,
i.e., (Xhj−1+1, . . . , Xhj

) is a basis of Vj where h0 = 0 and hj = dim V1 + · · ·+ dim Vj.
Next one defines an Euclidean norm ‖ · ‖ on G by declaring the Xj’s orthonormal.
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Then one fix some positive coefficients cj so that ‖H(Y, Z)‖∞ ≤ ‖Y ‖∞+‖Z‖∞ where
‖Y ‖∞ = maxj cj‖Yj‖1/j whenever Y = Y1 + · · · + Yk, Yj ∈ Vj. It turns out that one
can always find such a family of coefficients (see e.g. [9]). We then set

‖x‖∞ = ‖ exp−1 x‖∞ and d∞(x, y) = ‖x−1 · y‖∞.

It is easy to check that d∞ is a homogeneous distance on G.

2.2.2. Carnot–Carathéodory distances. The second kind of homogeneous
distances we wish to consider are the so-called Carnot–Carathéodory, also known as
sub-Riemannian, distances which we denote by dc. We fix a left invariant Riemannian
metric g on G and we set

dc(x, y) = inf{lengthg(γ); γ horizontal curve joining x to y},
where a curve is said to be horizontal if it is absolutely continuous and such that
at a.e. every point, its tangent vector belongs to the so-called horizontal subbundle
of the tangent bundle whose fiber at some point x is given by span{X(x); X ∈ V1}
when identifying elements in V1 with left invariant vector fields. More generally one
actually only needs a scalar product on the first layer V1 of the stratification to define
the related Carnot–Carathéodory distance in a similar way.

Recall that by Chow’s theorem any two points can be joined by a horizontal
curve and dc turns indeed out to be distance. One can also easily check that it is
homogeneous.

An important feature of Carnot–Carathéodory distances that makes them natural
distances from the geometric point of view is that, endowed with such a distance,
a Carnot group becomes a geodesic space, i.e., for all x, y ∈ G, there exists a—so-
called length minimizing—curve γ ∈ C([a, b], G) such that γ(a) = x, γ(b) = y and
dc(x, y) = ldc(γ) where

ldc(γ) = sup
N∈N∗

sup
a=t0≤···≤tN=b

N−1∑
i=0

dc(γ(ti), γ(ti+1)).

Up to a suitable reparameterization, one can—and we will henceforth always assume
that—rectifiable curves γ ∈ C([a, b], G), i.e., curves with ldc(γ) < +∞, have constant
speed, i.e., (b− a) ldc(γ|[s,s′]) = (s′ − s) ldc(γ) for all s < s′ ∈ [a, b].

For x ∈ G, we denote by C (x) the set of points y ∈ G, y 6= x, such that one can
find a length minimizing curve γ : [a, b] → G from x to y which is no more length
minimizing after reaching y. In other words, if T > 0 and c : [a, b + T ] → G is a
rectifiable curve such that c|[a,b] = γ then c is not length minimizing on [a, b+T ]. We
note that due to the left invariance of the distance dc, if C (x) 6= ∅ for some x ∈ G
then C (x) 6= ∅ for all x ∈ G.

We say that (G, dc) satifies assumption (C ) if

(C ) C (x) 6= ∅ for some, and hence all, x ∈ G.

Note also that due to the homogeneity of dc, if (G, dc) satifies assumption (C ),
then for all x ∈ G and ρ > 0, one can find y ∈ C (x) such that dc(x, y) = ρ.

Heisenberg groups (see e.g. Section 4 for the description of one model for these
groups) and more generally H-type groups (see below for the definition) satisfy as-
sumption (C ) (see e.g. [10], [2], resp. [13], [17], for an explicit description of length
minimizing curves in Heisenberg, resp. H-type, groups). For general Carnot groups
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it is to our knowledge a delicate question to know whether assumption (C ) is sat-
isfied or not. This question is in particular related to delicate issues about length
minimizing curves in sub-Riemannian geometry.

We will prove in this paper that the sharp isodiametric inequality does not hold
in (G, dc) as soon as (G, dc) satifies assumption (C ).

2.2.3. H-type groups and gauge distance. We recall here the definition of
H-type groups. These Carnot groups are classical groups concerning many aspects
of analysis, in particular Harmonic Analysis and PDE’s, on homogeneous groups.
We will prove the non validity of the sharp isodiametric inequality for that class of
groups equipped with the gauge distance.

Let G be a Lie algebra equipped with a scalar product and which can be decom-
posed in a non trivial orthogonal direct sum, G = V ⊕ Z , where [V ,V ] ⊂ Z
and [V ,Z ] = [Z ,Z ] = {0}. We define the linear map J : Z → End V by
〈J(Z)X, X ′〉 = 〈Z, [X, X ′]〉 for all X, X ′ ∈ V and Z ∈ Z . We say that G is a
H-type algebra if for all Z ∈ Z ,

J(Z)2 = −‖Z‖2 Id .

Note that in such a case [V ,V ] = Z so that G is a stratified Lie algebra of step two.
For more details about H-type algebras we refer to e.g. [11]. A Carnot group is said
to be a H-type group if its Lie algebra is of H-type.

This class of groups gives a natural generalization of the Heisenberg groups which
correspond to the case where dim Z = 1.

The gauge distance dg on a H-type group G is defined in the following way. One
defines a homogeneous norm on G by

‖ exp(X + Z)‖g = (‖X‖4 + 16 ‖Z‖2)1/4

for all X ∈ V and Z ∈ Z where the norm in the right-hand side is the norm induced
by the given scaler product on G . By [6], this norm satisfies ‖x · y‖g ≤ ‖x‖g + ‖y‖g

for all x, y ∈ G, and one then defines the gauge distance between any two points x,
y ∈ G by

dg(x, y) = ‖x−1 · y‖g .

which is clearly homegeneous.

2.3. Hausdorff measures. As a classical fact the Hausdorff dimension of
a Carnot group equipped with a homogeneous distance (G, d) coincides with its
homogeneous dimension Q. Moreover both measures H Q

d and S Q
d (see Section 1 for

the definitions and conventions about Hausdorff measures) are left invariant measures
which give positive and finite measure to any ball with positive and finite diameter
and hence are Haar measures of the group. These measures are also Q-homogeneous
with respect to the dilations of the group,

H Q
d (δλ(A)) = λQH Q

d (A), S Q
d (δλ(A)) = λQH Q

d (A),

for all A ⊂ G and λ > 0. As a consequence any Haar measure µ of the group is
Q-homogeneous as well and in particular we have µ(B) = C (diam B)Q for any ball
B in (G, d) and for some constant C > 0 which depends only on the homogeneous
distance d and the Haar measure µ. As already mentionned in the introduction we
will take as a reference measure in (G, d) the measure S Q

d . The first observation
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supporting this choice is the following fact which gives in our context the exact—and
particularly simple—value of the S Q

d -measure of a ball.

Proposition 2.1. Let (G, d) be a Carnot group equipped with a homogeneous
distance. Let Q denote its homogeneous dimension. Then

S Q
d (B) = (diam B)Q

for any ball B in (G, d).

This follows from classical covering arguments and might be well-known as well
although to our knowledge not explicitly stated that way in the literature. We
give a proof below for sake of completeness. We first recall the general covering
arguments to be used. Let F be a family of subsets of G. We say that F covers
a set A finely if for all a ∈ A and all ε > 0, there exists F ∈ F such that a ∈ F
and diam F ≤ ε. We say that F is adequate for a set A if for any open set U
there exists a countable disjointed subfamily F̃ of F such that

⋃
F∈F̃ F ⊂ U and

µ((U ∩A)\⋃
F∈F̃ F ) = 0 where µ denotes any Haar measure of the group. If F ∈ F ,

we set F̂ =
⋃{T ∈ F ; T ∩ F 6= ∅, diam(T ) ≤ 2 diam(F )}.

Theorem 2.2. [7, Chapter 2.8] Assume that all sets in F are closed and bounded
and that µ(F ) > 0 for all F ∈ F . If F covers a set A finely and if there exists τ ≥ 1

such that µ(F̂ ) ≤ τµ(F ) for all F ∈ F , then F is adequate for A.

Proof of Proposition 2.1. Let ν denote the Haar measure of the group normalized
in such a way that ν(B) = (diam B)Q for any ball B in (G, d). It will actually follow
from the proposition that S Q

d = ν. Let B be a ball in (G, d). Let ε > 0 be fixed
and (Bi)i be a countable family of balls such that B ⊂ ⋃

i Bi and
∑

i(diam Bi)
Q ≤

S Q
d (B) + ε. We have

ν(B) ≤
∑

i

ν(Bi) =
∑

i

(diam Bi)
Q ≤ S Q

d (B) + ε.

Since this is true for all ε > 0, we get that (diam B)Q = ν(B) ≤ S Q
d (B).

Conversely, let δ > 0 be fixed and F denote the family of closed balls in (G, d)
with positive diameter less than δ. Let B be an open ball. Then F covers B finely
and satisfies the assumptions of Theorem 2.2. Hence F is adequate for B and one
can find a countable disjointed subfamily F̃ ⊂ F such that

⋃
F∈F̃ F ⊂ B and

S Q
d (B \⋃

F∈F̃ F ) = 0. It follows that

S Q
d,δ

( ⋃

F∈F̃

F
)
≤

∑

F∈F̃

(diam F )Q = ν
( ⋃

F∈F̃

F
)
≤ ν(B)

where S Q
d,δ(A) = inf{∑i(diam Bi)

Q; A ⊂ ⋃
i Bi, Bi ball, diam Bi ≤ δ} for any A ⊂

G. We have S Q
d,δ(B) ≤ S Q

d,δ

( ⋃
F∈F̃ F

)
+S Q

d,δ

(
B\⋃F∈F̃ F

)
and S Q

d,δ

(
B\⋃F∈F̃ F

) ≤
S Q

d

(
B \⋃

F∈F̃ F
)

= 0. It follows that

S Q
d,δ(B) ≤ ν(B).

Letting δ ↓ 0, we get that S Q
d (B) ≤ ν(B).

Hence the claim follows for any open, and then also automatically for any closed,
ball. ¤
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Next we note and explicitly prove that the ratio between H Q
d and S Q

d can be
related to the isodiametric constant Cd (see (1.1) for the definition of Cd).

Proposition 2.3. Let (G, d) be a Carnot group equipped with a homogeneous
distance. Let Q denote its homogeneous dimension. Then

S Q
d = CdH

Q
d .

Proof. The proof is very similar to the proof of of Proposition 2.1. First we note
that it is enough to prove that S Q

d (U) = Cd H Q
d (U) for any open set U with finite

Haar measure.
Let ε > 0 be fixed and (Ui)i be a countable family of bounded sets such that

U ⊂ ⋃
i Ui and

∑
i(diam Ui)

Q ≤ H Q
d (U) + ε. We have

S Q
d (U) ≤

∑
i

S Q
d (Ui) ≤

∑
i

Cd (diam Ui)
Q ≤ Cd (H Q

d (U) + ε).

Since this is true for all ε > 0, we get that S Q
d (U) ≤ Cd H Q

d (U).
Conversely, for any subset A of G with 0 < diam A < +∞ we set C(A) =

S Q
d (A)/(diam A)Q. We prove that C(A)H Q

d (U) ≤ S Q
d (U). The required inequality

CdH
Q

d (U) ≤ S Q
d (U) will then follow from the definition of Cd. First we note that

C(A) ≤ C(A) and C(Ax,λ) = C(A) where Ax,λ = x · δλ(A) with x ∈ G and λ >
0. Hence, taking closure and up to a translation, one can assume with no loss of
generality that A is closed and 0 ∈ A. We also assume that C(A) > 0 otherwise there
is nothing to prove. Let δ > 0 be fixed and set F = {Ax,λ; x ∈ G, λ ≤ δ/ diam A}.
We have x ∈ Ax,λ and diam Ax,λ = λ diam A for any x ∈ G and λ > 0 hence F covers
U finely. Next we have diam Âx,λ ≤ 5 diam Ax,λ hence Âx,λ is contained in a ball
with diameter 10 diam Ax,λ. On the other hand it follows from Proposition 2.1 that
C(A) = µ(A)/µ(B) where B is a ball with diameter diam A and µ any Haar measure.
Then we get that µ(Âx,λ) ≤ 10Qµ(Ax,λ)/C(Ax,λ) = 10Qµ(Ax,λ)/C(A) for any Haar
measure µ. The family F thus satisfies the assumptions of Theorem 2.2. Hence F is
adequate for U and one can find a countable disjointed subfamily F̃ ⊂ F such that⋃

F∈F̃ F ⊂ U and H Q
d

(
U \⋃

F∈F̃ F
)

= 0. Arguing as in the proof of Proposition 2.1
it follows that

C(A)H Q
d,δ(U) = C(A)H Q

d,δ

( ⋃

F∈F̃

F
)
≤ C(A)

∑

F∈F̃

(diam F )Q =
∑

F∈F̃

C(F )(diam F )Q

=
∑

F∈F̃

S Q
d (F ) = S Q

d

( ⋃

F∈F̃

F
)
≤ S Q

d (U)

where H Q
d,δ(E) = inf{∑i(diam Ei)

Q; E ⊂ ⋃
i Ei, diam Ei ≤ δ} for any E ⊂ G.

Letting δ ↓ 0, we get that C(A)H Q
d (U) ≤ S Q

d (U) as wanted. ¤

3. Isodiametric problem

This section is devoted to the isodiametric problem in Carnot groups equipped
with homogeneous distances. We refer to the introduction (see Section 1) for the
statement of this problem. We shall in particular follow here the conventions and
notations introduced in Section 1. When not explicitly stated it is also always implic-
itly assumed throughout this section that the notations G, resp. d, resp. Q, denotes a
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Carnot group, resp. a homogeneous distance on G, resp. the homogeneous dimension
of G.

We say that a set E is isodiametric in (G, d) if E is a compact subset of G which
maximizes the ratio S Q

d (A)/(diam A)Q among all A ⊂ G with positive and finite
diameter and hence satisfying

S Q
d (E) = Cd(diam E)Q.

See (1.1) for the definition of the isodiametric constant Cd. Note that it is not
restrictive to ask isodiametric sets to be compact as the closure of any set which
realizes the supremum in the right-hand side of (1.1) is a compact set that still
realizes the supremum.

Theorem 3.1. Let (G, d) be a Carnot group equipped with a homogeneous
distance. Let Q denote its homogeneous dimension. Then isodiametric sets in (G, d)
do exist.

Proof. Using dilations it is enough to find a compact set E with diam E = 1 and
such that S Q

d (E) = sup{S Q
d (A); diam A = 1}. Let (Ei) be a maximizing sequence

of sets with diameter 1 such that

lim
i→+∞

S Q
d (Ei) = sup{S Q

d (A); diam A = 1}.
Taking closure if necessary and up to a suitable translation one can assume each
Ei to be compact and contained in the closed unit ball. Then one can extract a
subsequence, still denoted by (Ei), converging in the Hausdorff distance to some
compact set E.

The measure S Q
d being a regular measure it follows that S Q

d is upper semi-
continuous with respect to the convergence of compact sets in the Hausdorff distance.
Indeed let (Ai) be a sequence of compact sets converging to some compact set A in
the Hausdorff distance. By regularity of S Q

d , for any ε > 0, one can find an open
set U ⊃ A such that S Q

d (U) ≤ S Q
d (A) + ε. On the other hand by convergence in

the Hausdorff distance we have Ai ⊂ U for all i large enough and hence S Q
d (Ai) ≤

S Q
d (U). It follows that

lim sup
i→+∞

S Q
d (Ai) ≤ S Q

d (U) ≤ S Q
d (A) + ε.

Since this holds for any ε > 0, we finally get

lim sup
i→+∞

S Q
d (Ai) ≤ S Q

d (A)

as wanted.
Going back to the maximizing sequence (Ei), it follows that

S Q
d (E) ≥ lim

i→+∞
S Q

d (Ei) = sup{S Q
d (A); diam A = 1}.

On the other hand, by convergence in the Hausdorff distance, we have diam E = 1
and hence E is isodiametric. ¤

Next we give a necessary condition for a set to be isodiametric.

Lemma 3.2. Let (G, d) be a Carnot group equipped with a homogeneous dis-
tance. Let E ⊂ G be a compact set with diam E > 0. Assume that one can find
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x ∈ ∂E such that d(x, y) < diam E for all y ∈ E. Then E is not isodiametric in
(G, d).

Proof. Let E and x ∈ ∂E be as in the statement. Since E is compact, we
have supy∈E d(x, y) < diam E. The map z 7→ supy∈E d(z, y) being 1-Lipschitz and
hence continuous, it follows that one can find a closed ball B centered at x with
0 < diam B < diam E such that supy∈E d(z, y) < diam E for all z ∈ B. We set
A = E ∪ B. We have diam A = diam E. Since x ∈ ∂E and E is closed, we
have that A \ E has non empty interior and hence positive S Q

d -measure. Hence
S Q

d (A) > S Q
d (E) which proves that E is not isodiametric. ¤

Remark 3.3. One can actually prove that if E is isodiametric and x ∈ ∂E then
any y ∈ E such that d(x, y) = diam E belongs to the boundary of E. This follows
essentially from the fact that the distance function from a given point is in our context
an open map (recall also that isodiametric sets are assumed to be compact). We will
however not use this fact in this paper.

From now on we will consider non abelian Carnot groups, i.e., Carnot groups
with a stratification of step ≥ 2. When the stratification is of step 1, one recovers
the abelian group (Rn, +). Then dilations are given by the multiplication by a
scalar factor and homogeneous distances are distances induced by a norm in the
classical usual sense. It is well-known that the sharp isodiametric inequality holds in
Rn equipped with any distance induced by a norm. On the contrary the situation
becomes definitely different as soon as the stratification is of step ≥ 2 as we shall see
below.

First we prove that for any non abelian Carnot group, there exists a homogeneous
distance, namely the d∞-distances, for which the sharp isodiametric inequality does
not hold.

Theorem 3.4. Let (G, d∞) be a non abelian Carnot group equipped with a
homogeneous d∞-distance. Then closed balls in (G, d∞) are not isodiametric and the
sharp isodiametric inequality (SII) does not hold in (G, d∞).

Proof. Let the d∞-distance be defined as in 2.2.1. Using left translations and
dilations we only need to prove that the closed unit ball in (G, d∞) is not isodiametric.
Let B denote the closed unit ball in (G, d∞). Let X ∈ Vk be such that ck‖X‖1/k = 1
and set x = exp X. Then x ∈ ∂B. Let y ∈ B, y = exp(Y1 + · · · + Yk), Yj ∈ Vj. We
have

x−1 · y = exp(−X) · exp(
k∑

j=1

Yj) = exp(
k−1∑
j=1

Yj + Yk −X).

Since

c2k
k ‖Yk −X‖2 = c2k

k ‖Yk‖2 + c2k
k ‖X‖2 − 2c2k

k 〈Yk, X〉 ≤ 2 + 2ck
k‖Yk‖ck

k‖X‖ ≤ 4,

we get d∞(x, y) ≤ max(1, 21/k) < 2 = diam B and the conclusion follows from
Lemma 3.2. ¤

Similarly the sharp isodiametric inequality (SII) does not hold in H-type groups
equipped with the gauge distance. See 2.2.3 for the definitions of H-type groups and
of the gauge distance.
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Theorem 3.5. Let (G, dg) be a H-type group equipped with the gauge distance.
Then closed balls in (G, dg) are not isodiametric and the sharp isodiametric inequality
(SII) does not hold in (G, dg).

Proof. Arguing as in the proof of Theorem 3.4 we prove that the closed unit ball
in (G, dg)—denoted by B—is not isodiametric. Following the notations of 2.2.3 we
choose some x = exp(Zx) with Zx ∈ Z such that ‖Zx‖ = 1/4. Then if y = exp(X +
Z) ∈ B with X ∈ V and Z ∈ Z , we have exp(Zx)

−1 ·exp(X +Z) = exp(X +Z−Zx)
hence

dg(x, y)4 = ‖X‖4 + 16‖Z − Zx‖2

= ‖X‖4 + 16‖Z‖2 + 16‖Zx‖2 − 32〈Zx, Z〉 ≤ 2(1 + 16‖Z‖‖Zx‖) ≤ 4

since y ∈ B and hence ‖X‖4 +16 ‖Z‖2 ≤ 1 and ‖Z‖ ≤ 1/4. It follows that dg(x, y) ≤√
2 < 2 = diam B and we get the conclusion from Lemma 3.2. ¤
Finally we investigate the case of the Carnot–Carathéodory distances. See 2.2.2

for the definition of Carnot–Carathéodory distances.

Theorem 3.6. Let (G, dc) be a non abelian Carnot group equipped with a
Carnot-Carathéodory distance. Assume that (G, dc) satisfies assumption (C ). Then
closed balls in (G, dc) are not isodiametric and the sharp isodiametric inequality (SII)
does not hold in (G, dc).

Proof. By assumption (C ) one can find x ∈ C (0) with dc(0, x) = 1 and γ : [0, 1] →
G a length minimizing curve from 0 to x which is no more length minimizing after
reaching x. Let B denote the closed ball with center x and radius one. We prove
that B, and hence any closed ball, is not isodiametric in (G, dc). Let y ∈ B and
c : [0, 1 + dc(x, y)] → G be such that c|[0,1] = γ and c|[1,1+dc(x,y)] is a unit speed length
minimizing curve from x to y. Then c is not length minimizing on [0, 1 + dc(x, y)]
by choice of γ hence dc(0, y) < ldc(c) = dc(0, x) + dc(x, y) ≤ 2 = diam B and the
conclusion follows from Lemma 3.2. ¤

4. Some consequences and related problems

4.1. Non-rectifiabilty. We recover here the fact that a non abelian Carnot
group equipped with a homogeneous distance and with homogeneous dimension Q
is purely Q-unrectifiable. This is already well-known, see e.g. [1], [15] for more and
further results about rectifiability in Carnot groups. The point is that we give here
a different proof using only metric arguments. Recall that a metric space (M, d) is
said to be purely n-unrectifiable if one has H n

d (f(A)) = 0 for every Lipschitz map
f : A ⊂ Rn → (M, d) where Rn is equipped with the Euclidean distance.

Theorem 4.1. Let (G, d) be a non abelian Carnot group equipped with a homo-
geneous distance. Let Q denote its homogeneous dimension. Then (G, d) is purely
Q-unrectifiable.

Proof. The property of being purely Q-unrectifiable is invariant under a change
of bilipschitz equivalent distance. Since all homogeneous distances are bilipschitz
equivalent, one can assume that G is equipped with a d∞-distance defined as in 2.2.1.
Assume by contradiction that one can find a Lipschitz map f : A ⊂ RQ → (G, d∞)

such that H Q
d∞(f(A)) > 0. One can also assume with no loss of generality that A is



256 Séverine Rigot

bounded and hence H Q
d∞(f(A)) < +∞. Then one has

lim
r↓0

H Q
d∞(f(A) ∩B(x, r))

(2r)Q
= 1

for H Q
d∞-a.e. x ∈ f(A) (see [12]). On the other hand it follows from Proposition 2.1,

Proposition 2.3 and Theorem 3.4 that

H Q
d∞(f(A) ∩B(x, r))

(2r)Q
≤ H Q

d∞(B(x, r))

(2r)Q
=

H Q
d∞(B(x, r))

S Q
d∞(B(x, r))

= C−1
d∞ < 1

which gives a contradiction. ¤
4.2. Besicovitch 1/2-problem We investigate now some connection between

the isodiametric problem and densities. Following [16] given a metric space (M,d)
we denote by σn(M, d) the smallest number such that every subset A ⊂ M of finite
H n

d -measure having
Dn(A, x) > σn(M,d)

at H n
d -a.e. x ∈ A is n-rectifiable, where the lower n-density of A at x is given by

Dn(A, x) = lim inf
r↓0

H n
d (A ∩B(x, r))

(2r)n
.

We call this number the density constant. Recall that A is said n-rectifiable if H n
d -

almost all of A can be covered by countably many Lipschitzian images of subsets of
the Euclidean space Rn.

It follows from famous results of Besicovitch (see [3], [4]) that one always has
σn(M,d) ≤ 1. These results also imply that the fact that σn(M, d) = 1 does not give
any positive information about rectifiability. See [16] for a more detail account about
known results on density constants.

We first note and explicitly prove that σQ(G, d) < 1 whenever d is a homogeneous
distance on a Carnot group G for which the sharp isodiametric inequality (SII) does
not hold and Q denotes the homogeneous dimension of G. More precisely

Theorem 4.2. Let (G, d) be a non abelian Carnot group equipped with a ho-
mogeneous distance. Let Q denote its homogeneous dimension. Then one has

σQ(G, d) = C−1
d

and hence σQ(G, d) < 1 if and only if the sharp isodiametric inequality (SII) does
not hold in (G, d).

Proof. Let U ⊂ G be open. It follows from Proposition 2.1 and Proposition 2.3
that

Dn(U, x) = lim inf
r↓0

H Q
d (B(x, r))

(2r)Q
= lim inf

r↓0
H Q

d (B(x, r))

S Q
d (B(x, r))

= C−1
d

for all x ∈ U . Since (G, d) is purely Q-unrectifiable (see e.g. Theorem 4.1) it follows
that σQ(G, d) ≥ C−1

d . On the other hand, one obviously has

Dn(A, x) ≤ Dn(G, x) = C−1
d

for all A ⊂ G and x ∈ G. Hence σQ(G, d) ≤ C−1
d which concludes the proof. ¤

Besicovitch conjectured in [4] that σ1(R
2) ≤ 1/2. More generally the question to

know whether σn(M,d) ≤ 1/2 for any separable metric space (M, d) is known as the
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generalized Besicovitch 1/2-problem. We investigate below the case of the Heisenberg
groups equipped with a d∞-distance as well as with a Carnot–Carathéodory distance
exhibiting cases where the conjecture fails.

We first describe the model we consider for the Heisenberg group Hn. We identify
it with R2n ×R and denote points in Hn by [z, t], z = (x1, . . . , x2n) ∈ R2n, t ∈ R.
The group law is

[z, t] · [z′, t′] = [z + z′, t + t′ + 2
n∑

j=1

(xn+jx
′
j − xjx

′
n+j)].

The stratification is given by

V1 = span{Xj, Yj; j = 1, . . . , n}, V2 = span{∂t},
where Xj = ∂xj

+ 2xn+j∂t and Yj = ∂xn+j
− 2xj∂t. The dilations are δλ([z, t]) =

[λz, λ2t]. The homogeneous dimension of Hn is 2n + 2. The (2n + 1)-dimensional
Lebesgue measure L 2n+1 on Hn ≈ R2n ×R is a Haar measure of the group.

We consider first the d∞-distance defined with respect to the homogeneous norm
‖[z, t]‖∞ = max(‖z‖, |t|1/2) where here ‖ · ‖ denotes the Euclidean norm in R2n,

d∞([z, t], [z′, t′]) = ‖[z, t]−1 · [z′, t′]‖∞.

Theorem 4.3. The isodiametric constant Cd∞ in (Hn, d∞) satisfies Cd∞ < 2
and hence σ2n+2(H

n, d∞) > 1/2.

Proof. First we note that due to Proposition 2.1 and using dilations the isodia-
metric constant can be rewritten as

Cd∞ =
sup L 2n+1(A)

L 2n+1(B)

where the supremum is taken over all compact subsets A of (Hn, d∞) with diam A = 2
and B denotes the closed unit ball in (Hn, d∞). We have B = {[z, t] ∈ Hn; ‖z‖ ≤
1, |t| ≤ 1 } hence

L 2n+1(B) = 2 L 2n(U)

where U denotes the closed unit Euclidean ball in R2n and L 2n the 2n-dimensional
Lebesgue measure on R2n. Let p : Hn → R2n denote the projection defined by
p([z, t]) = z. Let A be a compact subset of (Hn, d∞) with diam A = 2. The map p is
1-Lipschitz from (Hn, d∞) to the Euclidean space (R2n, ‖ · ‖) hence

(4.1) L 2n(p(A)) ≤ L 2n(U)

by the classical isodiametric inequality in (R2n, ‖·‖). Next for any z ∈ p(A), we have
|t − t′| ≤ d∞([z, t], [z, t′])2 ≤ 4 whenever [z, t] and [z, t′] ∈ A hence A ∩ p−1({z}) is
contained in some segment with length at most 4. It follows from Fubini’s Theorem
that

L 2n+1(A) ≤ 4 L 2n(U)

and hence
Cd∞ ≤ 2.

Assume by contradiction that Cd∞ = 2 and thus (see Theorem 3.1) that one can
find a compact subset E in (Hn, d∞) with diam E = 2 and such that L 2n+1(E) =
4 L 2n(U). By the argument above we know that for any z ∈ p(E) we have L 1(E ∩
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p−1({z})) ≤ 4 where L 1 denotes the one-dimensional Lebesgue measure. On the
other hand, remembering (4.1), we have

(4.2)
ˆ

p(E)

(L 1(E ∩ p−1({z}))− 4) dL 2n(z) ≥ L 2n+1(E)− 4 L 2n(U) = 0.

It follows that L 1(E ∩ p−1({z})) = 4 and consequently that E ∩ p−1({z}) is a
whole segment with length 4, E ∩ p−1({z}) = {[z, t]; t−z ≤ t ≤ t+z } for some t−z
and t+z such that t+z − t−z = 4, for L 2n-a.e. z ∈ p(E). Up to a translation one can
assume that 0 ∈ E and that E ∩ p−1({0}) = {[0, t]; 0 ≤ t ≤ 4 }. Then the fact
that d∞([0, 4], [z, t−z ]) ≤ 2 implies in particular that t−z ≥ 0 and on the other hand
d∞([0, 0], [z, t+z ]) ≤ 2 implies that t+z ≤ 4 and we finally get that t−z = 0 and t+z = 4
for L 2n-a.e. z ∈ p(E).

For z = (x1, . . . , x2n) ∈ R2n we consider now the half-space Hz in R2n defined
by Hz = {z′ = (x′1, . . . , x

′
2n) ∈ R2n;

∑n
j=1(xn+jx

′
j − xjx

′
n+j) < 0}. We have z ∈ ∂Hz.

On the other hand, considering points in p(E) where p(E) has density one, we recall
that

lim
r↓0

L 2n(p(E) ∩ U(z, r))

L 2n(U(z, r))
= 1

for L 2n-a.e. z ∈ p(E) where U(z, r) denotes the (closed) ball in (R2n, ‖ · ‖) with
center z and radius r. It follows that L 2n(p(E) ∩Hz) > 0 for L 2n-a.e. z ∈ p(E).

All together we finally get that one can find z and z′ ∈ p(E) such that t−z = t−z′ =
0, t+z = t+z′ = 4 and z′ ∈ Hz. It follows that

diam E ≥ d∞([z, 0], [z′, 4]) ≥ (4− 2
n∑

j=1

(xn+jx
′
j − xjx

′
n+j))

1/2 > 2

which gives a contradiction and concludes the proof. ¤
We consider now the Carnot–Carthéodory distance dc on Hn defined in the fol-

lowing way. We consider the left invariant Riemannian metric g on Hn that makes
(X1, . . . , Xn, Y1, . . . , Yn, ∂t) an orthonormal basis and we define dc as in 2.2.2. Ex-
plicit description of balls in (Hn, dc) are well-known. We refer to, e.g., [10] or [2]. If
we denote by B the closed unit ball in (Hn, dc) one has

B = {[ sin ϕ

ϕ
· χ,

2ϕ− sin(2ϕ)

2ϕ2
‖χ‖2]; χ ∈ R2n, ‖χ‖ ≤ 1, ϕ ∈ [−π, π]}.

It follows that

L 2n+1(B) = 4nα2n

ˆ π

0

2ϕ− sin(2ϕ)

2ϕ2
·
(

sin ϕ

ϕ

)2n−1

·
∣∣∣∣
(

sin ϕ

ϕ

)′∣∣∣∣ dϕ

= 4nα2n

ˆ π

0

2ϕ− sin(2ϕ)

2ϕ2
·
(

sin ϕ

ϕ

)2n−1

· sin ϕ− ϕ cos ϕ

ϕ2
dϕ.

Let A be a compact subset of (Hn, dc) with diam A = 2. The projection p defined
as before by p([z, t]) = z is 1-Lipschitz from (Hn, dc) to (R2n, ‖ · ‖) hence (4.1) still
holds for A. Next we recall that

dc([z, t], [z, t
′]) = (π|t− t′|)1/2,
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hence A∩ p−1({z}) is contained in some segment with length at most 4/π. It follows
that

L 2n+1(A) ≤ 4π−1α2n.

All together this gives an upper bound for the isodiametric constant Cdc in (Hn, dc),

Cdc ≤
1

nπ

(ˆ π

0

2ϕ− sin(2ϕ)

2ϕ2
·
(

sin ϕ

ϕ

)2n−1

· sin ϕ− ϕ cos ϕ

ϕ2
dϕ

)−1

.

One can compute numerically this upper bound. For n = 1 one gets an upper bound
≤ 1.22. Then it increases for n equals 1 to 8 up to a value ≤ 1.98. For n = 9 the
upper bound is larger than 2 and this argument leaves actually open the cases n ≥ 9.
Summing up, we get the following

Theorem 4.4. Let n ∈ {1, . . . , 8}. The isodiametric constant Cdc in (Hn, dc)
satisfies Cdc < 2 and hence σ2n+2(H

n, dc) > 1/2.
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