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Abstract. We study the maximal number 0 ≤ h ≤ +∞ for a given plane domain Ω such
that f ∈ Hp whenever p < h and f is analytic in the unit disk with values in Ω. One of our main
contributions is an estimate of h for unbounded K-quasidisks.

1. Introduction

In his 1970 paper [10] Hansen introduced a number, denoted by h(Ω), for a
domain Ω in the complex plane. The number h = h(Ω) is defined as the maximal
one in [0, +∞] so that every holomorphic function on any plane domain D with values
in Ω belongs to the Hardy class Hp(D) whenever 0 < p < h. The number was called
by him the Hardy number of Ω. If Ω is bounded, then clearly h(Ω) = +∞. Therefore,
the consideration of h(Ω) is meaningful only when Ω is unbounded.

Hansen [10] studied the number by using Ahlfors’ distortion theorem. Also, in
the same paper, he described it in terms of geometric quantities for starlike domains.
Indeed, let Ω 6= C be an unbounded starlike domain with respect to the origin. Let
αΩ(t) be the length of maximal subarc of {z ∈ T : tz ∈ Ω} for t > 0, where T stands
for the unit circle {z ∈ C : |z| = 1}. Observe that αΩ(t) is non-increasing in t by
starlikeness. Hansen [10, Theorem 4.1] showed the formula h(Ω) = limt→+∞ π/αΩ(t).
Later he obtained a similar formula for spirallike domains [11]. These formulae cover
only a family of good enough (necessarily simply connected) domains. In subsequent
papers [12] and [13], lower bounds for h(Ω) are given in terms of growth of the image
area.

Essén [7] gave a description of h(Ω) for general Ω in terms of harmonic measures
and obtained almost necessary and sufficient conditions for h(Ω) > 0 in terms of ca-
pacity. Practically, however, it is hard to compute or estimate the harmonic measure
or capacity in terms of geometric quantities of the domain Ω. Thus it is desirable to
have more geometric estimates of h(Ω).

It seems that after the work of Essén, only very few papers have been devoted
to the study of the quantity h(Ω). Bourdon and Shapiro [4] and Poggi-Corradini
[15] studied the range domains Ω of univalent Koenigs functions and found that
the number h(Ω) can be described in terms of the essential norm of the associated
composition operators.
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We will discuss below the change of h(Ω) under conformal mappings of domains.
This sort of observation gives another way of estimation of h(Ω).

We briefly explain the organization of the present note. Section 2 is devoted to the
basic properties of h(Ω) as well as preliminaries and necessary definitions. In Section
3, we introduce Essén’s main lemma, by which we prove a couple of results given
in Section 2. Section 4 is devoted to a study of local behaviour of quasiconformal
mappings. One of our main results is Theorem 4.4 which gives a sharp estimate of
h(ϕ(H)) for a conformal mapping ϕ of the upper half-plane H with K-quasiconformal
extension to the complex plane. The contents in Section 4 may be of independent
interest.

Acknowledgements. The authors are grateful to Professors Mikihiro Hayashi,
Matti Vuorinen and Rikio Yoneda for helpful information on the matter of the present
article.

2. Basic properties of h(Ω)

We denote by Hol(D, Ω) the set of holomorphic functions on a domain D with
values in a domain Ω. The (classical) Hardy space Hp is the set of holomorphic
functions f on the unit disk D = {z ∈ C : |z| < 1} with finite norm

‖f‖p = sup
0<r<1

(
1

2π

ˆ 2π

0

|f(reiθ)|p dθ

)1/p

< ∞

for 0 < p < ∞ and
‖f‖∞ = sup

z∈D
|f(z)| < ∞

for p = ∞. (Note that ‖f‖p is not really a norm when 0 < p < 1.) For each
holomorphic function f on D, set

h(f) = sup{p > 0: f ∈ Hp}.
Here and hereafter, the supremum of the empty set is defined to be 0 unless otherwise
stated. Since Hp ⊂ Hq for 0 < q < p ≤ ∞, we have f /∈ Hp for p > h(f).

The Hardy space Hp(D) on a general plane domain D for 0 < p < ∞ is usually
defined to be the set of holomorphic functions f such that |f |p has a harmonic
majorant on D, that is, there is a harmonic function u satisfying |f |p ≤ u on D. The
space H∞(D) is defined to be the set of bounded holomorphic functions on D. When
D = D, the space Hp(D) agrees with the classical Hp. See [6, Chap. 10] for details.

Lemma 2.1. Let Ω be a domain in C with at least two boundary points. Then
the number h(Ω) ∈ [0, +∞] can be characterized by each of the following conditions:

(1) h(Ω) = sup{p > 0: |z|p has a harmonic majorant on Ω}.
(2) h(Ω) is the maximal number such that Hol(D, Ω) ⊂ Hp(D) for any domain

D in C and for any 0 < p < h(Ω).
(3) h(Ω) = sup{p > 0: Hol(D, Ω) ⊂ Hp}.
(4) h(Ω) = inf{h(f) : f ∈ Hol(D, Ω)}.
(5) h(Ω) = h(f) for a holomorphic universal covering projection f of D onto Ω.

The condition (1) is the original definition of the number h = h(Ω) due to
Hansen [10, Definition 2.1]. Though part of this lemma is already noted in [10] and
the others are obvious to experts, we indicate an outline of the proof for convenience
of the reader.
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Proof. For clarity, we use the notation hj to designate h(Ω) which appears in the
condition (j). If u(z) is a harmonic majorant of |z|p on Ω, then |f |p ≤ u ◦ f on D
for f ∈ Hol(D, Ω). Since u ◦ f is harmonic too, one has h1 ≤ h2. It is obvious that
h2 ≤ h3 = h4 ≤ h5.

It is thus enough to show h5 ≤ h1. Suppose that f is a holomorphic universal
covering projection of D onto Ω and p < h5. Note that the radial limit f ∗ of f belongs
to Lp(∂D). Let v be the Poisson integral of |f ∗|p. Then |f |p ≤ v on D because |f |p
is subharmonic. Since the function f ∗ is invariant under the action of the Fuchsian
group Γ = {γ ∈ Aut(D) : f◦γ = f}, so is v. Hence v is factored to u◦f with harmonic
function u on Ω = D/Γ. It is now clear that u is the least harmonic majorant of |z|p
on Ω. See the proof of Theorem 10.11 in [6] for the details of the last part. ¤

It is well known that the conformal mapping ϕ(z) = i(1 + z)/(1 − z) of D onto
the upper half-plane H belongs to Hp precisely when 0 < p < 1. In particular,
h(H) = h(ϕ) = 1. Since ϕ(z)α maps D conformally onto the sector 0 < arg w < πα
for 0 < α ≤ 2, we have the following, which is due to Cargo (cf. [10]).

Example 2.2. (Sectors) Let Sα be a sector with opening angle πα with 0 < α ≤
2. Then h(Sα) = 1/α.

We also observe that h(P ) = +∞ for a parallel strip P since f(z) = log((1 +
z)/(1− z)) belongs to BMOA and thus to Hp for all 0 < p < ∞.

We collect basic properties of the number h(Ω). All properties but the last in the
next lemma are found in [10].

Lemma 2.3. Let Ω and Ω′ be plane domains.
(1) h(Ω) = +∞ if Ω is bounded.
(2) h(Ω′) ≤ h(Ω) if Ω ⊂ Ω′.
(3) h(ϕ(Ω)) = h(Ω) for a complex affine map ϕ(z) = az + b, a 6= 0.
(4) h(Ω) = 0 if C \ Ω is bounded.
(5) h(Ω) ≥ 1/2 if Ω is simply connected and Ω 6= C.
(6) h(Ω) ≥ 1 if Ω is convex and Ω 6= C.

Proof. Assertions (1), (2) and (3) are trivial. To show (4), we may assume that
C \ Ω ⊂ D. Then the function f(z) = exp(1+z

1−z
) belongs to Hol(D, Ω) but does not

belong to Hp for any p > 0. Thus h(Ω) = 0. In view of Lemma 2.1 (5), assertion (5)
follows from the fact that every univalent function on the unit disk belongs to Hp

for 0 < p < 1/2 (see [6, Theorem 3.16]). Since every convex proper subdomain Ω of
C is contained in a half-plane, say, H, one can see that h(Ω) ≥ h(H) = 1. ¤

In addition to the above lemma, we have the following deeper properties of the
quantity h(Ω). We will give a proof for it in Section 3.

Theorem 2.4. Let Ω and Ω′ be plane domains.
(i) h(Ω \N) = h(Ω) for a locally closed polar set N in Ω.
(ii) Suppose that 0 ∈ Ω and let Ω∗ be the circular symmetrization of Ω with

respect to the positive real axis. Then h(Ω) ≥ h(Ω∗).

Here, Ω∗ is defined to be {reiθ : 0 ≤ r < ∞, |θ| < L(r)/2}, where L(r) is the
length of the set {θ ∈ (−π, π] : reiθ ∈ Ω} if the circle |z| = r is not entirely contained
in Ω, and L(r) = +∞ otherwise.
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It is well known that a plane domain Ω does not admit Green’s function if and
only if ∂Ω is polar (cf. [2] or [5]). Therefore, as a consequence of (i) in the last
theorem, we see that h(Ω) = 0 when Ω does not admit Green’s function. Frostman
[8] even proved that there exists an analytic map f : D → Ω which does not belong
to the Nevanlinna class if and only if Ω does not admit Green’s function.

Remark. The authors proposed in [14] a quantity W (Ω), to which we named
the circular width of Ω, for a plane domain Ω with 0 /∈ Ω. Though the natures of
the quantities 2h(Ω) and 1/W (Ω) are rather different, it is surprising that they share
many properties. Compare with Theorem 3.2 and Example 5.1 in [14].

The following is useful to estimate the quantity h(Ω) by comparing with that of
a standard domain.

Lemma 2.5. (Comparison lemma) Let ϕ be a conformal homeomorphism of a
domain Ω onto another domain Ω′ and let α and β be positive numbers.

(1) If |ϕ(z)| ≤ C(1 + |z|α) for z ∈ Ω and for a positive constants C, then h(Ω) ≤
αh(Ω′).

(2) If c|z|β ≤ |ϕ(z)| + 1 for z ∈ Ω and for a positive constant c, then βh(Ω′) ≤
h(Ω).

Proof. We first show (2). By assumption, there is a constant A > 0 such that
|z|β ≤ A(|ϕ(z)| + 1) holds for z ∈ Ω. If 0 < p < h(Ω′), by definition, there exists a
harmonic majorant u(w) of |w|p on Ω′, namely, |w|p ≤ u(w) on Ω′. Thus

|z|βp ≤ (2A)p(|ϕ(z)|p + 1) ≤ (2A)p(u(ϕ(z)) + 1), z ∈ Ω,

which means that |z|βp has the harmonic majorant (2A)p(u◦ϕ+1). Hence, h(Ω) ≥ βp.
Letting p → h(Ω′), we have assertion (2).

The proof of (1) is similar to (and even simpler than) the above. ¤

Example 2.6. (Spiral domains) For β ∈ (−π/2, π/2), the image σβ = γβ(R) of
the curve γβ(t) = exp(t(1+i tan β)) and its rotation σβ,θ = eiθσβ are called a β-spiral.
For α ∈ (0, 2], the domain

Sp(β, α) =
⋃

0<θ<πα

σβ,θ

will be called a β-spiral domain with width α. Note that Sp(0, α) = Sα.
For a complex number λ 6= 0 with |λ− 1| ≤ 1, we consider the function ϕλ(z) =

zλ = eλ log z on the upper half-plane H, where we take the branch of log z so that 0 <
Im log z < π. Then one can easily see that ϕλ maps H conformally onto the domain
Sp( arg λ, |λ|2/Re λ). Then |ϕλ(z)| = e− Im λ arg z|z|Re λ. Since the function Im λ arg z
is bounded on H, Lemma 2.5 yields h(ϕλ(H)) = h(H)/Re λ = 1/Re λ.

For given β ∈ (−π/2, π/2) and α ∈ (0, 2], we have Sp(β, α) = ϕλ(H), where
λ = αeiβ cos β. Since Re λ = α cos2 β, we obtain

(2.1) h(Sp(β, α)) =
1

α cos2 β
.

Note that the circular symmetrization of Sp(β, α) is equal to e−πiα/2Sα. Theorem 2.4
implies h(Sp(β, α)) ≥ h(Sα) = 1/α. This agrees with the above computation. The
formula (2.1) was already mentioned by Hansen [10, Example I, p. 245] for α = 2 and
can be deduced by the main result of [11].
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3. Essén’s main lemma

For a bounded domain D and a Borel measurable subset E of ∂D, we denote by
ω(z, E, D) the harmonic measure of E viewed from z in D. In other words, u(z) =
ω(z, E, D) is the bounded harmonic function on D determined by the boundary
condition

u =

{
1 on E,

0 on ∂D \ E

in the sense of Perron–Wiener–Brelot (see [2] for details).
We now introduce Essén’s main lemma in [7]. Let Ω be a domain in C with

0 ∈ Ω. For R > 0, let ΩR be the connected component of Ω ∩DR containing 0 and
set ωR(z, Ω) = ω(z, ∂ΩR ∩ ∂DR, ΩR), where DR = {z ∈ C : |z| < R}. In view of its
proof, the main lemma of Essén [7, §2] can be formulated as follows.

Lemma 3.1. Let Ω be a domain with 0 ∈ Ω and let p0 > 0. If

(3.1) ωR(0, Ω) = O(R−p0) (R → +∞),

then h(Ω) ≥ p0. Conversely, if p0 < h(Ω), then (3.1) holds.

With the aid of Essén’s main lemma, we are now able to show the following
representation of h(Ω).

Lemma 3.2. Let Ω be a plane domain containing the origin. Then

h(Ω) = − lim sup
R→+∞

log ωR(0, Ω)

log R
= lim inf

R→+∞
log(1/ωR(0, Ω))

log R
.

Proof. Let

q0 = lim sup
R→+∞

log ωR(0, Ω)

log R
.

For q > q0, we have log ωR(0, Ω) < q log R for R > R0, where R0 is a large enough
number. Then ωR(0, Ω) < Rq for R > R0. By Lemma 3.1, we now have h(Ω) ≥ −q.
Therefore, letting q → q0, we get h(Ω) ≥ −q0.

We next take p < h(Ω). Then by Lemma 3.1 we have ωR(0, Ω) = O(R−p) as
R → +∞. Hence, log ωR(0, Ω) ≤ −p log R + O(1), which implies q0 ≤ −p. Letting
p → h(Ω), we get q0 ≤ −h(Ω), equivalently, h(Ω) ≤ −q0.

Summarizing the above, we obtain h(Ω) = −q0 as required. ¤
We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. We may assume that 0 ∈ Ω \N to show (i). Since N is
polar and a polar set is removable for bounded harmonic functions (see [2, Cor. 5.2.3]
for instance), we have ωR(0, Ω) = ωR(0, Ω\N) for R > 0. Hence, assertion (i) follows
from Lemma 3.2.

Let now Ω∗ be the circular symmetrization of a plane domain Ω with 0 ∈ Ω.
We now fix R > 0. Since ΩR ⊂ Ω, we have the relation (ΩR)∗ ⊂ Ω∗, and thus,
(ΩR)∗ ⊂ (Ω∗)R. A theorem of Baernstein II (see [3, Theorem 7]) asserts that

ω(z, ∂ΩR ∩ ∂DR, ΩR) ≤ ω(|z|, ∂(ΩR)∗ ∩ ∂DR, (ΩR)∗).

On the other hand, since (ΩR)∗ ⊂ (Ω∗)R and ∂(ΩR)∗ ∩ ∂DR ⊂ ∂(Ω∗)R ∩ ∂DR, the
maximum principle implies that

ω(z, ∂(ΩR)∗ ∩ ∂DR, (ΩR)∗) ≤ ω(z, ∂(Ω∗)R ∩ ∂DR, (Ω∗)R)
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for z ∈ (ΩR)∗. Hence, we obtain

ωR(0, Ω) = ω(0, ∂ΩR ∩ ∂DR, ΩR) ≤ ω(0, ∂(ΩR)∗ ∩ ∂DR, (ΩR)∗)

≤ ω(0, ∂(Ω∗)R ∩ ∂DR, (Ω∗)R) = ωR(0, Ω∗).

We now apply Lemma 3.2 to obtain the required assertion h(Ω) ≥ h(Ω∗). ¤

4. Local behaviour of quasiconformal mappings

Let K ≥ 1 be a real number. A homeomorphism g of a subdomain Ω of the
Riemann sphere Ĉ = C ∪ {∞} onto another one Ω′ is called K-quasiconformal if
g has locally square integrable partial derivatives (in the sense of distributions) on
Ω\{∞, g−1(∞)} such that |gz̄| ≤ k|gz| a.e. on Ω, where k = (K−1)/(K +1) ∈ [0, 1).
It is known (cf. [1]) that gz 6= 0 a.e. on Ω and therefore the ratio µg = gz̄/gz can
be uniquely defined as a bounded measurable function on Ω with ‖µg‖∞ ≤ k. The
quantity µg is called the complex dilatation or Beltrami coefficient of g.

The local behaviour of quasiconformal mappings is well understood. If g is a
K-quasiconformal mapping in a neighbourhood of the origin with g(0) = 0, then
c|z|K ≤ |g(z)| ≤ C|z|1/K for small enough z. (This can be seen, for example, in the
following way. First we may assume that g is a bounded K-quasiconformal mapping
of the unit disk D. Let ϕ be the conformal homeomorphism of g(D) onto D with
ϕ(0) = 0. We can apply Mori’s theorem [1] to the K-quasiconformal automorphism
G = ϕ ◦ g of D to get |z − w|K/16K ≤ |G(z) − G(w)| ≤ 16|z − w|1/K . Since ϕ is
bi-Lipschitz continuous near the origin, we have the desired estimates.)

By the transformation 1/g(1/z), we obtain the following lemma.

Lemma 4.1. Let g be a K-quasiconformal mapping on a neighbourhood of ∞
with g(∞) = ∞. Then, there exist positive constants c and C such that

c|z|1/K ≤ |g(z)| ≤ C|z|K
for large enough |z|.

We plug the last lemma with Lemma 2.5 to show the following.

Proposition 4.2. Let ϕ be a conformal homeomorphism of an unbounded plane
domain Ω onto another Ω′ such that z → ∞ in Ω precisely when ϕ(z) → ∞ in Ω′.
Suppose that there exists a K-quasiconformal mapping g around∞ with g(∞) = ∞
such that ϕ(z) = g(z) for z ∈ Ω with large enough |z|. Then

(4.1)
h(Ω)

K
≤ h(Ω′) ≤ Kh(Ω).

Note that the above assumption is always fulfilled when Ω is unbounded and ϕ
has a K-quasiconformal extension to the complex plane C.

Example 4.3. Fix a real number K > 1. Take α ∈ (0, 1) and set L = (1 −
α/2)K + α/2 and β = α/L. We consider the conformal map ϕ(z) = zβ/α of the
sector Sα onto Sβ.

We now extend ϕ to the mapping g : C → C defined by g(0) = 0 and for z 6= 0
by

g(z) =

{
zβ/α, 0 ≤ arg z ≤ πα,

|z|β/α exp
(
i 2−β
2−α

arg z
)
, −π(2− α) ≤ arg z < 0.
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Then g is K-quasiconformal on C. This can be seen by a straightforward computation
or in the following way. The function g is nothing but gβ−1 ◦ (gα−1)

−1, where gκ is
given in Example 4.5 below. Thus by (4.2) we have

‖µg‖∞ =
α− β

1− (α− 1)(β − 1)
=

L− 1

L + 1− α
=

K − 1

K + 1
.

Hence, we have confirmed that g is K-quasiconformal.
As we saw in Example 2.2, h(Sβ) = 1/β = L/α = Lh(Sα), namely, L =

h(Sβ)/h(Sα). This ratio L = (1− α/2)K + α/2 tends to K as α → 0, which implies
that the constant K cannot be replaced by any smaller number in Proposition 4.2.

As we have seen above, Proposition 4.2 is certainly sharp. However, for a specific
domain Ω, we may improve the constant. For instance, if Ω = H, by Lemma 2.3 (5),
h(Ω′) is not less than 1/2. On the other hand, h(H)/K = 1/K may become much
smaller. Indeed, we have a better estimate in this case.

Theorem 4.4. Let g : C → C be a K-quasiconformal map which is conformal
on the upper half-plane H. Then the quasidisk Ω = g(H) satisfies

K + 1

2K
≤ h(Ω) ≤ K + 1

2
.

The lower and upper bounds are both sharp.

Recall that a subdomain Ω of Ĉ is called a K-quasidisk if it is the image of the
unit disk D under a K-quasiconformal homeomorphism of Ĉ. Ω is called a quasidisk
if it is a K-quasidisk for some K ≥ 1.

The following examples show the sharpness.

Example 4.5. In Example 2.6, we set κ = λ− 1 and assume that |κ| < 1. Then
the function ϕ1+κ extends to

g(z) = gκ(z) =

{
z1+κ for Im z ≥ 0,

zz̄κ for Im z < 0.

Then µg = κz/z̄ on Im z < 0 and thus g is a K(κ)-quasiconformal automorphism of
C, where K(κ) = (1 + |κ|)/(1− |κ|). In particular, the image Ω = g(H) = ϕ1+κ(H)
of H is an unbounded K(κ)-quasidisk. The following formula is sometimes useful:

(4.2) |µgκ′◦g−1
κ
| =

∣∣∣∣
κ′ − κ

1− κ̄κ′

∣∣∣∣ on gκ(ExtH).

For a given K ≥ 1, we set k = (K − 1)/(K + 1) as usual. If we let κ = k,
then we have K(k) = K and ϕ1+k(H) = S1+k = S2K/(K+1). By Example 2.2, h(Ω) =
(K + 1)/2K, which is the lower bound.

On the other hand, if we let κ = −k, then we have K(−k) = K and ϕ1−k(H) =
S1−k = S2/(K+1). Similarly, we have h(Ω) = (K + 1)/2, which is the upper bound.

By the same argument used in the proof of Proposition 4.2, one can deduce
Theorem 4.4 from the next proposition, which describes the local behaviour of qua-
siconformal mappings which are conformal on the upper half-plane.

Proposition 4.6. Let g be a K-quasiconformal mapping of D onto a bounded
domain with g(0) = 0. If g is conformal on D+ = {z ∈ D : Im z > 0}, then there
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exist positive constants c and C such that

c|z|2K/(1+K) ≤ |g(z)| ≤ C|z|2/(1+K), z ∈ D.

The exponents 2K/(1 + K) and 2/(1 + K) are both sharp.

For the proof, we need some preliminaries. A domain B in C is called a ring
domain if the complement Ĉ \ B consists of two connected components. In the
sequel, we always assume that both components are continua. Then B is known to
be conformally equivalent to an annulus A of the form {r2 < |z| < r1}. The modulus
of B is defined to be the number log(r1/r2) and denoted by mod B.

The next lemma is essentially due to Teichmüller. The following form can be
found in [9].

Lemma 4.7. There exists an absolute constant C0 > 0 with the following prop-
erty. Let B be a ring domain in C separating 0 from ∞ with mod B > C0. Then B
contains an annulus A of the form {r < |z| < R} with mod B −mod A ≤ C0.

By using this lemma, one can show the following (see [9]).

Lemma 4.8. There are positive absolute constants C1 and C2 with the following
property. Let B be a ring domain in C with mod B > C1. Then

diamE0 ≤ C2dist(E0, E1)e
−mod B,

where E0 and E1 are bounded and unbounded components of Ĉ \B, respectively.

To state the next result, we introduce some quantities. Let g be a K-quasicon-
formal mapping of the unit disk D onto a bounded domain. Let µ be its complex
dilatation, i.e., µ = gz̄/gz. This is a (Borel) measurable function on D with |µ| ≤
(K − 1)/(K + 1) a.e. in D. We now define the measurable functions D+ and D− by

D±(z) =
|1± µ(z)z̄/z|2

1− |µ(z)|2 .

Note that D± ≤ K holds a.e. For 0 < r < R ≤ 1, we set

I(r, R) = 2π

ˆ R

r

1´ 2π

0
D−(teiθ)dθ

dt

t
,

and

J(r, R) = 2π

(ˆ 2π

0

dθ´ R

r
D+(teiθ)dt

t

)−1

.

Then the following holds:

Lemma 4.9. (Reich and Walczak [16]) Let g be a quasiconformal mapping of
the unit disk, I(r, R) and J(r, R) be as above and A = {z : r < |z| < R} for
0 < r < R ≤ 1. Then

I(r,R) ≤ mod g(A) ≤ J(r, R).

We are now ready to prove Proposition 4.6.

Proof of Proposition 4.6. Let g satisfy the assumptions in the proposition. We
may assume that g(D) ⊂ D and set

r1 = dist(0, ∂g(D)).
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Choose δ, ρ ∈ (0, 1) so that 2
K+1

log(1/δ) > C0 and 2
K+1

log(1/ρ) > C1, where C0, C1

are the constants in Lemmas 4.7 and 4.8, respectively. It is enough to show the
inequality only for z with |z| ≤ ρ. Fix now an arbitrary point z0 with 0 < r0 = |z0| ≤ ρ
and put w0 = g(z0). Set A = {z : r0 < |z| < 1} and B = g(A). Let E0 and E1 be
as in Lemma 4.8. Then 0, w0 ∈ E0 while 1 ∈ E1. In particular, |w0| ≤ diamE0 and
dist(E0, E1) ≤ 1.

Since D± = 1 a.e. in D+ and D± ≤ K a.e. in D \D+, it is easily seen that
2

K + 1
log

R

r
≤ I(r, R) and J(r,R) ≤ 2K

K + 1
log

R

r
.

Therefore, Lemma 4.9 now implies

(4.3)
2

K + 1
log

R

r
≤ mod g({r < |z| < R}) ≤ 2K

K + 1
log

R

r
.

In particular, we have

mod B ≥ 2

K + 1
log

1

r0

≥ 2

K + 1
log

1

ρ
> C1.

Thus we can apply Lemma 4.8 to obtain the estimate

|w0| ≤ diamE0 ≤ C2dist(E0, E1)e
−mod B ≤ C2e

−(2/(K+1)) log(1/r0) = C2|z0|2/(K+1).

Secondly, we make a lower estimate. We further set Ã = {z : δr0 < |z| < 1} and
A0 = {z : δr0 < |z| < r0}. Let

r2 = max{|g(z)| : |z| = δr0}.
By (4.3) and the choice of δ, we now have

mod g(A0) ≥ 2

K + 1
log

1

δ
> C0.

Thus, by Lemma 4.7, the annulus {r2 < |w| < r2 + ε} is contained in g(A0) for
a sufficiently small ε > 0. Since w0 lies on the outer boundary of g(A0), one has
r2 ≤ |w0|. Since the annulus A′ = {w : r2 < |w| < r1} is contained in g(Ã), we have
the following estimate by monotonicity of the modulus and (4.3):

mod A′ ≤ mod g(Ã) ≤ 2K

K + 1
log

1

δr0

.

Taking into account the inequality log(r1/|w0|) ≤ mod A′, we have

r1/|w0| ≤ (δr0)
−2K/(K+1).

This is equivalent to

r1(δr0)
2K/(K+1) = c|z0|2K/(K+1) ≤ |w0|,

where c = r1δ
2K/(K+1). Thus we are done. ¤

Remark. With a slight modification, the above proof also yields a result for a
sector Sα instead of the upper half-plane H in Theorem 4.4.

We conclude the present note by giving future problems. We discussed in this
section the distortion of the number h(Ω) under conformal mappings which extend
to K-quasiconformal automorphisms of C. What can we say if we replace conformal
mappings by quasiconformal mappings? For example, let g be a K-quasiconformal
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automorphism of C and let Ω′ = g(Ω) for an unbounded domain Ω. What is rela-
tionship between h(Ω) and h(Ω′)? Even the equivalence of the conditions h(Ω) > 0
and h(Ω′) > 0 is not clear.
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