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Abstract. In this paper we examine the quasiminimizing properties of radial power-type
functions u(x) = |x|α in Rn. We find the optimal quasiminimizing constant whenever u is a
quasiminimizer of the p-Dirichlet integral, p 6= n, and similar results when u is a quasisub- and
quasisuperminimizer. We also obtain similar results for log-powers when p = n.

1. Introduction

Let 1 < p < ∞ and let Ω ⊂ Rn be a nonempty open set. A function u ∈ W 1,p
loc (Ω)

is a Q-quasiminimizer, Q ≥ 1, in Ω if

(1.1)
ˆ

ϕ 6=0

|∇u|p dx ≤ Q

ˆ

ϕ 6=0

|∇(u + ϕ)|p dx

for all ϕ ∈ W 1,p
0 (Ω). Quasiminimizers were introduced by Giaquinta and Giusti [11],

[12] as a tool for a unified treatment of variational integrals, elliptic equations and
quasiregular mappings on Rn. They realized that De Giorgi’s method could be ex-
tended to quasiminimizers, obtaining, in particular, local Hölder continuity. DiBene-
detto and Trudinger [10] proved the Harnack inequality for quasiminimizers, as well
as weak Harnack inequalities for quasisub- and quasisuperminimizers. We recall that
a function u ∈ W 1,p

loc (Ω) is a quasisub(super)minimizer if (1.1) holds for all nonposi-
tive (nonnegative) ϕ ∈ W 1,p

0 (Ω).
After the papers by Giaquinta–Giusti [11], [12] and DiBenedetto–Trudinger [10],

Ziemer [25] gave a Wiener-type criterion sufficient for boundary regularity for quasi-
minimizers. Tolksdorf [22] obtained a Caccioppoli inequality and a convexity result
for quasiminimizers. The results in [10], [11], [12] and [25] were extended to met-
ric spaces by Kinnunen–Shanmugalingam [16] and J. Björn [8] in the beginning of
this century, see also A. Björn–Marola [6]. Soon afterwards, Kinnunen–Martio [15]
showed that quasiminimizers have an interesting potential theory, in particular they
introduced quasisuperharmonic functions, which are related to quasisuperminimiz-
ers in a similar way as superharmonic functions are related to supersolutions, see
Definition 2.1.

In this paper we study radial quasiminimizers of power-type. Let B = B(0, 1)
denote the unit ball in Rn. The following is one of our main results.
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Theorem 1.1. Let 1 < p < n, α ≤ β = (p−n)/(p−1) and u(x) = |x|α. Then u
is a Q-quasiminimizer in B \ {0} and a Q-quasisuperharmonic function in B, where

Q =

(
α

β

)p
pβ − p + n

pα− p + n

is the best quasiminimizer constant in both cases.

We also obtain similar results for p = n and p > n, thus including the one-
dimensional case n = 1, see Theorem 6.1.

So far, there have been very few concrete examples of quasiminimizers for which
the best quasiminimizer constant is known. There are of course a few, but not
very many, explicit examples of p-harmonic functions, i.e. with Q = 1. In the one-
dimensional case there are a couple of examples with optimal quasiminimizer constant
in Judin [14], Martio [18] and Uppman [24]. As far as we know there are no earlier
examples of quasiminimizers with known optimal quasiminimizer constant Q > 1 in
higher dimensions.

Most of the theory for quasiminimizers so far has been extending various results
known for p-harmonic functions. On the other hand, our examples show that some
results are not extendable and the class of quasiminimizers behaves in a way that
was not expected.

One of the consequences of Theorem 1.1 is that the best exponent in the weak
Harnack inequality for Q-quasisuperminimizers must depend on Q, and tends to
0, as Q → ∞. The same is true for the best exponent of local integrability for
Q-quasisuperharmonic functions. It also shows that some of the “classical” Cacciop-
poli type inequalities for superminimizers cannot be true for quasisuperminimizers
with exponents independent of the quasiminimizing constant Q. See Björn–Björn–
Marola [5] for a full discussion of the consequences of Theorem 1.1 that have so far
been obtained.

Our examples are also examples of local (1 + ε)-quasiminimizers which are not
quasiminimizers, showing that being a quasiminimizer is not a local property. We
show that this is not surprising and that there are plenty of such examples. As far
as we know there is only one explicit example in the literature in this direction, due
to Judin [14].

The function u(x) = |x|β, with β and p as in Theorem 1.1, is (up to a constant
multiple) the fundamental solution of the p-Laplace operator ∆p, i.e. the solution
of the equation ∆pu = δ, where δ is the Dirac measure at 0, and is probably the
most important superharmonic function. We believe that the quasisuperharmonic
functions u(x) = |x|α provided by Theorem 1.1 will turn out to be important in the
further studies of quasiminimizers.

The one-dimensional theory of quasiminimizers was already considered in Gia-
quinta–Giusti [11], and has since been further developed in Martio–Sbordone [21],
Judin [14], Martio [18] and Uppman [24]. Most aspects of the higher-dimensional
theory fit just as well in metric spaces, and this theory, in particular concerning
boundary regularity, has recently been developed further in a series of papers by
Martio [17]–[19], A. Björn–Martio [7], A. Björn [1]–[4] and J. Björn [9].

Compared with the theory of p-harmonic functions we have no differential equa-
tion for quasiminimizers, only the variational inequality can be used. There is also no
comparison principle nor uniqueness for the Dirichlet problem. The following result
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was recently obtained by Martio [19], Theorem 4.1. It shows that quasiminimizers
are much more flexible under perturbations than solutions of differential equations,
which can be useful in applications and in particular shows that results obtained for
quasiminimizers are very robust.

Theorem 1.2. Let u be a Q-quasiminimizer in Ω and f ∈ W 1,p
loc (Ω) be such that

|∇f | ≤ c|∇u| a.e. in Ω, where 0 < c < Q−1/p. Then u + f is a Q′-quasiminimizer in
Ω′, where Q′ = (1 + c)p/(Q−1/p − c)p.

The outline of the paper is as follows: In Section 2 we discuss the basic theory
of quasiminimizers and take a first look at radial power-type functions. In Section 3
we determine exactly when powers (and log-powers in the case p = n) are sub-
and superminimizers and sub- and superharmonic. These results are well known
but we need to record them for later use. In Sections 4–7, we study exactly when
powers are quasiminimizers, quasisub- and quasisuperminimizers and quasisub- and
quasisuperharmonic and determine the best Q’s in all cases. In Section 7 we also
obtain similar results for log-powers in the case p = n. In Section 8 we provide
examples of local quasiminimizers and show that being a quasiminimizer is not a
local property.

Acknowledgement. The authors were both supported by the Swedish Research
Council, and belong to the European Science Foundation Networking Programme
Harmonic and Complex Analysis and Applications and to the Scandinavian Research
Network Analysis and Application.

2. Quasi(super)minimizers

Our definition of quasiminimizers (and quasisub- and quasisuperminimizers) is
one of several equivalent possibilities, see Proposition 3.2 in A. Björn [1]. In fact it is
enough to test (1.1) with (all, nonpositive and nonnegative, respectively) ϕ ∈ Lipc(Ω),
where Lipc(Ω) denotes the set of all Lipschitz functions with compact support in Ω.
Note also that a function is a Q-quasiminimizer in Ω if and only if it is both a
Q-quasisubminimizer and a Q-quasisuperminimizer in Ω.

By Giaquinta–Giusti [12], Theorem 4.2, a Q-quasiminimizer can be modified on
a set of measure zero so that it becomes locally Hölder continuous in Ω. A Q-quasi-
harmonic function is a continuous Q-quasiminimizer.

Kinnunen–Martio [15], Theorem 5.3, showed that if u is a Q-quasisuperminimizer
in Ω, then its lower semicontinuous regularization u∗(x) := ess lim infy→x u(y) is
also a Q-quasisuperminimizer in Ω belonging to the same equivalence class as u in
W 1,p

loc (Ω). Furthermore, u∗ is Q-quasisuperharmonic in Ω. For our purposes we make
the following definition.

Definition 2.1. A function u : Ω → (−∞,∞] is Q-quasisuperharmonic in Ω if u
is not identically ∞ in any component of Ω, u is lower semicontinuously regularized,
and min{u, k} is a Q-quasisuperminimizer in Ω for every k ∈ R.

A function u : Ω → [−∞,∞) is Q-quasisubharmonic in Ω if −u is Q-quasisuper-
harmonic in Ω.

This definition is equivalent to Definition 7.1 in Kinnunen–Martio [15], see Theo-
rem 7.10 in [15]. (Note that there is a misprint in Definition 7.1 in [15]—the functions
vi are assumed to be Q-quasisuperminimizers.)
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A function is p-harmonic if it is 1-quasiharmonic, it is sub(super)harmonic if it is
1-quasisub(super)harmonic, and it is a (sub/super)minimizer if it is a 1-quasi(sub/
super)minimizer.

We will need the following removability result. Here Cp is the Sobolev capacity,
see Heinonen–Kilpeläinen–Martio [13] (they call it capp).

Theorem 2.2. (Theorem 6.3 in A. Björn [2]) Let E ⊂ Ω be a relatively closed set
with Cp(E) = 0. Assume that u is bounded from below and Q-quasisuperharmonic
in Ω \ E. Then u has a Q-quasisuperharmonic extension U to Ω given by U(x) =
ess lim infΩ\E3y→x u(y).

For Q = 1 and weighted Rn this is Theorem 7.35 in Heinonen–Kilpeläinen–
Martio [13].

We want to study radially symmetric functions, primarily powers, and determine
when they are quasiminimizers. The following result is important to clarify which
conditions we should discuss.

Proposition 2.3. Let u(x) = |x|α. Then the following implications and equiva-
lences hold for u:

Q-quasisuperminimizer in B

®¶

ks +3 Q-quasisuperminimizer in Rn

®¶
Q-quasisuperharmonic in B

®¶

ks +3 Q-quasisuperharmonic in Rn

®¶
Q-quasisuperharmonic in B \ {0}

KS

®¶

ks +3 Q-quasisuperharmonic in Rn \ {0}
KS

®¶
Q-quasisuperminimizer in B \ {0} ks +3 Q-quasisuperminimizer in Rn \ {0}.

The above implications remain true if “super” is replaced by “sub”. Moreover, u is
a Q-quasisubminimizer in B if and only if it is Q-quasisubharmonic there, i.e. the
uppermost downward directed implication is an equivalence in this case.

In view of this we will concentrate on discussing the first, second and fourth con-
dition in the left column for quasisuperminimizers and the conditions corresponding
to the first and fourth condition in the left column for quasisubminimizers.

Remark 2.4. (i) For 1 < p ≤ n, the middle downwards implications for the
super case are equivalences, by Theorem 2.2, as Cp({0}) = 0.

(ii) For p = n we will also consider powers of log, i.e. u(x) = (− log |x|)α, in
which case the left column holds (with the same proof, and including the equivalence
in the middle as in (i)), while u, for most α, is not even defined for |x| > 1. Similarly
when “super” is replaced by “sub”, we have the same implications in the left column
as for powers.

(iii) Note also that the proof shows that the left (resp. right) column in Proposi-
tion 2.3 holds for every extended real-valued function which is continuous in B (resp.
Rn) and locally bounded in B \ {0} (resp. Rn \ {0}).
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Proof. The lowest downwards-directed implications follow directly from the def-
inition and the fact that u is locally bounded in Rn \ {0}. The other vertical impli-
cations are trivially true for arbitrary extended real-valued continuous functions.

The left-directed horizontal implications are trivial. Let us prove the top right-
directed horizontal implication. Assume that u is a Q-quasisuperminimizer in B. Let
ϕ̃ ∈ Lipc(R

n) be nonnegative. Then there is R > 0 such that ϕ̃ ∈ Lipc(B(0, R)).
Let v(x) = u(Rx) and ϕ(x) = ϕ̃(Rx). Then v = Rαu and thus v is a Q-quasisuper-
minimizer in B. As ϕ ∈ Lipc(B), we haveˆ

ϕ̃ 6=0

|∇u|p dx = Rn−p

ˆ

ϕ 6=0

|∇v|p dx

≤ QRn−p

ˆ

ϕ 6=0

|∇(v + ϕ)|p dx = Q

ˆ

ϕ̃ 6=0

|∇(u + ϕ̃)|p dx.

Hence u is a Q-quasisuperminimizer in Rn.
The other right-directed horizontal implications are proved similarly, using in

addition Definition 2.1 for those implications concerning quasisuperharmonicity.
The proofs in the “sub” case are similar. Moreover, if u is Q-quasisubharmonic in

B, then u is also a Q-quasisubminimizer in B, as u > 0 is bounded from below. ¤

3. Sub- and superminimizers

The results in this section are straightforward and well known to experts but
may not all have been recorded explicitly in the literature. We will need them for
the later parts of the paper. Note that the statements in Theorems 3.1 and 3.2 can
be read off from Tables 1–3, and the results in Theorems 3.3 and 3.4 can be read off
from Table 4.

3.1. Powers.

Theorem 3.1. Let u(x) = |x|α. Then u is a superminimizer in B \ {0} if and
only if 




p− n

p− 1
≤ α ≤ 0, if 1 < p < n,

α = 0, if p = n,

0 ≤ α ≤ p− n

p− 1
, if p > n.

Similarly, u is a subminimizer in B \ {0} if and only if




α ≤ p− n

p− 1
or α ≥ 0, if 1 < p < n,

α is arbitrary, if p = n,

α ≤ 0 or α ≥ p− n

p− 1
, if p > n.

Proof. A straightforward calculation shows that

div(|∇u(x)|p−2∇u(x)) = α

(
α− p− n

p− 1

)
(p− 1)|α|p−2|x|α(p−1)−p for x ∈ B \ {0}.

The function u is, by definition, a subminimizer if this expression is nonnegative, and
a superminimizer if it is nonpositive throughout B \ {0}, and it is easy to check that
this happens exactly as stated. ¤
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Theorem 3.2. Let u(x) = |x|α. Then u is superharmonic in B if and only if




p− n

p− 1
≤ α ≤ 0, if 1 < p < n,

α = 0, if p ≥ n.

Moreover, u is a superminimizer in B if and only if




1− n

p
< α ≤ 0, if 1 < p < n,

α = 0, if p ≥ n.

Similarly, u is subharmonic (or equivalently a subminimizer) in B if and only if




α ≥ 0, if 1 < p ≤ n,

α = 0 or α ≥ p− n

p− 1
, if p > n.

Proof. The case α = 0 is clear as u is constant in this case. If α > 0, then u is
not superharmonic in B as it would violate the minimum principle.

If 1 < p < n and (p − n)/(p − 1) ≤ α ≤ 0, then u is superharmonic in B \ {0},
by Theorem 3.1, and thus in B, by Remark 2.4 (i) (or Theorem 2.2). In this case, u
is a superminimizer in B if and only if u ∈ W 1,p

loc (B), i.e. if and only if α > 1− n/p.
That u is neither a superminimizer nor superharmonic in the remaining cases follows
directly from Theorem 3.1.

For subharmonicity, note first that if α < 0, then u(0) = ∞ and thus u is not
subharmonic in B. For 1 < p ≤ n and α ≥ 0, it follows from Theorem 3.1 that u is
subharmonic in B \ {0} and thus in B, by Theorem 2.2, and a subminimizer in B,
by Proposition 2.3.

For p > n, the case 0 < α < (p − n)/(p − 1) follows from Theorem 3.1. So
assume that p > n and α ≥ (p − n)/(p − 1). In this case u is a subminimizer in
B \ {0} by Theorem 3.1. Moreover u ∈ W 1,p

loc (B). Let ϕ ∈ Lipc(B) be nonpositive
and ϕ̃ = max{ϕ,−u} so that u + ϕ̃ = (u + ϕ)+ and |∇(u + ϕ̃)| ≤ |∇(u + ϕ)|. Then
ϕ̃ ∈ W 1,p

0 (B \ {0}) and hence
ˆ

ϕ6=0

|∇u|p dx =

ˆ

ϕ̃6=0

|∇u|p dx ≤
ˆ

ϕ̃ 6=0

|∇(u + ϕ̃)|p dx ≤
ˆ

ϕ 6=0

|∇(u + ϕ)|p dx.

Thus u is a subminimizer, and hence subharmonic, in B. ¤
3.2. log-powers for p = n.

Theorem 3.3. Let p = n and u(x) = (− log |x|)α. Then u is a superminimizer
in B \ {0} if and only if 0 ≤ α ≤ 1. Moreover, u is a subminimizer in B \ {0} if and
only if α ≤ 0 or α ≥ 1.

Proof. A straightforward calculation shows that

div(|∇u(x)|n−2∇u(x)) = α(α− 1)|α|n−2(n− 1)(− log |x|)(n−1)α−n|x|−n

for x ∈ B \ {0}. The sign of this expression is the same as of α(α − 1), which
is nonpositive if and only if 0 ≤ α ≤ 1, i.e. u is a superminimizer if and only if
0 ≤ α ≤ 1. Similarly, u is a subminimizer if and only if α(α− 1) ≥ 0, i.e. if and only
if α ≤ 0 or α ≥ 1. ¤
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Theorem 3.4. Let p = n and u(x) = (− log |x|)α. Then u is subharmonic (or
equivalently a subminimizer) in B if and only if α ≤ 0.

Similarly, u is superharmonic in B if and only if 0 ≤ α ≤ 1, and it is a super-
minimizer in B if and only if 0 ≤ α < 1− 1/n.

Proof. The first part follows from Theorems 2.2 and 3.3, together with the fact
that u(0) = ∞ if α > 0, and thus u is not subharmonic (nor a subminimizer) in B
for α > 0.

The second part follows from Theorems 2.2 and 3.3, together with the fact that
a superharmonic function in B is a superminimizer in B if and only if it belongs to
W 1,p

loc (B), which for our u holds exactly if α < 1− 1/n. ¤

4. Power-type quasiminimizers

We want to study radially symmetric functions, primarily powers, and determine
when they are quasiminimizers. Let us introduce some notation. Let ϕ : (0,∞) → R
be given and let u(x) = ϕ(|x|) be a radially symmetric function. Then |∇u(x)| =
|ϕ′(|x|)|. Sometimes we consider u defined also at 0, in which case we define u(0) =
limx→0 u(x).

Let for the moment Ω = {x : r1 < |x| < r2} and G = {r : r1 < r < r2},
0 < r1 < r2. We want to calculate the p-energy of u, viz.

Iu(Ω) :=

ˆ

Ω

|∇u|p dx = cn−1

ˆ r2

r1

|ϕ′|prn−1 dr =: cn−1Îϕ(G),

where cn−1 is the surface area of the sphere Sn−1 (if n = 1 we have c0 = 2).
We want to compare the energy Iu with the energy of the minimizer, the p-

harmonic function, v having the same boundary values on ∂Ω. It is well known that
the function w given by

w(x) = ψ(|x|), ψ(r) =

{
r(p−n)/(p−1), if p 6= n,

log r, if p = n,

is p-harmonic in Rn \ {0}. It follows that v = aw + b for some appropriately chosen
a, b ∈ R.

Since we know that w minimizes the energy I given its boundary values on ∂Ω,
it follows that ψ minimizes the energy Î given its boundary values ψ(r1) and ψ(r2)
on ∂G. We will use this fact.

Theorem 4.1. Let 1 < p 6= n, α 6= 0, α 6= 1− n/p and u(x) = |x|α. Then u is a
quasiminimizer in B \ {0} if and only if

(4.1) M := lim sup
R→∞

∣∣∣∣
1−Rβ

1−Rα

∣∣∣∣
p∣∣∣∣

Rpα−p+n − 1

Rpβ−p+n − 1

∣∣∣∣ < ∞,

where β = (p− n)/(p− 1).
Moreover, if (4.1) holds, then

(4.2) Q =

∣∣∣∣
α

β

∣∣∣∣
p∣∣∣∣

pβ − p + n

pα− p + n

∣∣∣∣ M

is the best quasiminimizer constant for u.
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Proof. Let ϕ(r) = rα, and let us calculate Îϕ(G), where G = {r : r1 < r < r2},
0 < r1 < r2 < 1. Note that pα− p + n 6= 0, since α 6= 1− n/p.

We get, with R = r2/r1 > 1,

Îϕ(G) =

ˆ r2

r1

|αrα−1|prn−1 dr =
|α|p

pα− p + n
(rpα−p+n

2 − rpα−p+n
1 )

=
|α|p

pα− p + n
rpα−p+n
1 (Rpα−p+n − 1).

For the minimizer of the Î-energy we let ψ(r) = rβ. Putting α = β in the
calculation above we see that

Îψ(G) =
|β|p

pβ − p + n
rpβ−p+n
1 (Rpβ−p+n − 1).

Actually, pβ − p + n = β, but let us keep the expression as it is.
Let now η = aψ + b, where we choose a and b so that η = ϕ on ∂G, i.e. so that

rα
1 = arβ

1 + b and rα
2 = arβ

2 + b.

In fact we only need to determine

a =
rα
1 − rα

2

rβ
1 − rβ

2

.

Thus
Îη(G) = |a|pÎψ(G),

and we know that η minimizes the Î-energy given the boundary values of ϕ on ∂G.
Next we want to calculate

Q := sup
0<r1<r2<1

Îϕ(G)

Îη(G)
.

We will show that this Q, if finite, is the best quasiminimizer constant for u on B\{0}.
Comparing u with x 7→ η(|x|) shows directly that we cannot have a quasiminimizer
constant for u less than Q above. In particular if Q = ∞, then it follows directly
that u is not a quasiminimizer.

We have, still letting R = r2/r1,

Îϕ(G)

Îη(G)
=

∣∣∣∣
α

β

∣∣∣∣
p
pβ − p + n

pα− p + n

∣∣∣∣
rβ
1 − rβ

2

rα
1 − rα

2

∣∣∣∣
p

r
p(α−β)
1

Rpα−p+n − 1

Rpβ−p+n − 1

=

∣∣∣∣
α

β

∣∣∣∣
p
pβ − p + n

pα− p + n

∣∣∣∣
1−Rβ

1−Rα

∣∣∣∣
p
Rpα−p+n − 1

Rpβ−p+n − 1
=: k(R).

In particular we see that Îϕ(G)/Îη(G) only depends on R. Let r =
√

r1r2 and
let η1 and η2 be the minimizers of the Î-energy on G1 = (r1, r) and G2 = (r, r2),
respectively, i.e. ηi = aiψ + bi such that rα

i = air
β
i + bi and rα = air

β + bi, i = 1, 2.
Let further η̃ = η1χG1 + η2χ(0,1)\G1 . Then, as r/r1 = r2/r =

√
R, we have

Îϕ(G) = k(R)Îη(G) ≤ k(R)Îη̃(G) = k(R)(Îη1(G1) + Îη2(G2))

= k(R)

(
Îϕ(G1)

k(
√

R)
+

Îϕ(G2)

k(
√

R)

)
=

k(R)

k(
√

R)
Îϕ(G).
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As Îϕ(G) 6= 0, we find that k(R) ≥ k(
√

R), from which it follows that Q =
supR>1 k(R) = lim supR→∞ k(R), which is clearly finite if and only if (4.1) holds.

Finally, we show that if Q < ∞ then u is indeed a Q-quasiminimizer. Let ω be
such that ω − ϕ ∈ Lipc((0, 1)). The open set V = {x ∈ (0, 1) : ω(x) 6= ϕ(x)} can be
written as a countable (or finite) union of intervals {Ij}j. We find that

(4.3) Îϕ(V ) =
∑

j

Îϕ(Ij) ≤
∑

j

QÎω(Ij) = QÎω(V ).

Hence ϕ is indeed a Q-quasiminimizer for the energy Î on (0, 1).
Let us finally turn to u. Let v be such that v − u ∈ Lipc(B \ {0}). Let further

Ω = {x ∈ B\{0} : v(x) 6= u(x)}. Using polar coordinates x = (r, θ), where 0 < r < 1
and θ ∈ Sn−1, let Vθ = {r : (r, θ) ∈ Ω} and vθ(r) = v(r, θ). We then find, applying
(4.3) to G = Vθ, that

Iu(Ω) =

ˆ

Sn−1

Îϕ(Vθ) dθ ≤
ˆ

Sn−1

QÎvθ
(Vθ) dθ

= Q

ˆ

Ω

∣∣∣∣
∂v

∂r

∣∣∣∣
p

dx ≤ Q

ˆ

Ω

|∇v|p dx = QIv(Ω).

Hence u is a Q-quasiminimizer in B \ {0}. ¤
Next, we take care of the case α = 1− n/p, which was omitted in Theorem 4.1.

Proposition 4.2. Let 1 < p 6= n, α = 1− n/p and u(x) = |x|α. Then u is not a
quasiminimizer in B \ {0}.

Proof. As in the proof of Theorem 4.1, we find that

Îϕ(G) = |α|p(log r2 − log r1) = |α|p log R,

where R = r2/r1. With β = (p− n)/(p− 1) and η as in the proof of Theorem 4.1 we
get, using that pβ − p + n = β = p(β − α),

Îϕ(G)

Îη(G)
=

∣∣∣∣
α

β

∣∣∣∣
p

(pβ − p + n)

∣∣∣∣
rβ
1 − rβ

2

rα
1 − rα

2

∣∣∣∣
p

r
−(pβ−p+n)
1

log R

Rpβ−p+n − 1

=

∣∣∣∣
α

β

∣∣∣∣
p

β

∣∣∣∣
1−Rβ

1−Rα

∣∣∣∣
p

log R

Rβ − 1
=: k(R).

(4.4)

Depending on whether p < n or p > n, we see that α and β are either both negative
or both positive and hence k(R) grows as log R, as R →∞, showing that u is not a
quasiminimizer. ¤

5. The case 1 < p < n

Theorem 5.1. Let 1 < p < n and u(x) = |x|α. Then u is a quasiminimizer in
B \ {0} if and only if α < 1− n/p or α = 0.

Moreover, if α < 1− n/p, then

(5.1) Qα,p,n =

(
α

β

)p
pβ − p + n

pα− p + n

is the best quasiminimizer constant, where β = (p− n)/(p− 1).

In fact, pβ − p + n = β so that Q = |α|p/|β|p−1|pα− p + n|.
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Remark 5.2. It is sometimes interesting to determine α in terms of Q. In
general this seems impossible, but for p = 2 < n it is easy to see that

α = (n− 2)
(−Q±

√
Q2 −Q

)
.

However, noting that pα < pα− p + n < α for α < β, we easily obtain the following
estimate for Q > 1 and α < β,

(pQ)1/(p−1)β < α < Q1/(p−1)β.

Proof of Theorem 5.1. The case α = 0 is clear as u is constant in this case. The
case α = 1−n/p follows from Proposition 4.2. Next, we shall use Theorem 4.1. Note
that β = pβ − p + n < 0 here.

Case 1. α < 1− n/p. Then pα− p + n < 0 and

lim
R→∞

∣∣∣∣
1−Rβ

1−Rα

∣∣∣∣
p∣∣∣∣

Rpα−p+n − 1

Rpβ−p+n − 1

∣∣∣∣ = 1.

Thus (4.1) holds and Qα,p,n is the best quasiminimizer constant, by Theorem 4.1.
Case 2. 1−n/p < α < 0. Then pα−p+n > 0, and the expression in (4.1) grows

as Rpα−p+n, as R →∞. Hence u is not a quasiminimizer.
Case 3. α > 0. Then pα− p + n > 0 and the expression in (4.1) grows as Rn−p,

as R →∞. Hence u is not a quasiminimizer. ¤

Theorem 5.3. Let 1 < p < n, u(x) = |x|α and let Qα,p,n be as in (5.1). Then u
is a Q-quasi(sub/super)minimizer and Q-quasi(sub/super)harmonic in B \ {0} and
B as given in Table 1. Moreover, Q in Table 1 is the best quasi(sub/super)minimizer
constant.

quasi- quasi- quasi- quasi- quasi-
1 < p < n sub- sub- super- super- super-

mini- mini- mini- mini- harmo-
|x|α mizer mizer mizer mizer nic

in B \ {0} in B in B in B \ {0} in B

α <
p− n

p− 1
Q = 1 Fails Fails Q = Qα,p,n Q = Qα,p,n

α =
p− n

p− 1
Q = 1 Fails Fails Q = 1 Q = 1

p− n

p− 1
< α < 1− n

p
Q = Qα,p,n Fails Fails Q = 1 Q = 1

α = 1− n

p
Fails Fails Fails Q = 1 Q = 1

1− n

p
< α < 0 Fails Fails Q = 1 Q = 1 Q = 1

α = 0 Q = 1 Q = 1 Q = 1 Q = 1 Q = 1
α > 0 Q = 1 Q = 1 Fails Fails Fails

Table 1.
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Remark 5.4. Recall that, by Proposition 2.3, |x|α is a Q-quasisubminimizer
in B \ {0} or B if and only if it is Q-quasisubharmonic there, and u is a Q-
quasisuperminimizer in B \ {0} if and only if it is Q-quasisuperharmonic there.

Recall also that Remark 2.4 (i) shows that the last two columns are the same in
this case.

Proof. Note first that the case α = 0 is clear as u is constant in this case. Also,
if α = (p− n)/(p− 1) then Qα,p,n = 1. Moreover, the last two columns are the same
by Remark 2.4 (i).

Case 1. α ≤ (p− n)/(p− 1). By Theorem 5.1, u is a quasiminimizer in B \ {0}
with Qα,p,n being the best quasiminimizer constant. As u is a subminimizer in B\{0},
by Theorem 3.1, Qα,p,n must be the best quasisuperminimizer constant in B \ {0}.
As u /∈ W 1,p

loc (B) it is neither a quasisubminimizer nor a quasisuperminimizer in B.
Case 2. (p − n)/(p − 1) < α < 0. In this case u is superharmonic in B, by

Theorem 3.2. As u ∈ W 1,p
loc (B) if and only if α > 1−n/p, u is a quasisuperminimizer

in B only for such α. By Theorem 5.1, u is a quasiminimizer in B \ {0} if and
only if α < 1 − n/p, with Qα,p,n being the best quasiminimizer constant. As u is
a superminimizer in B \ {0}, it follows that Qα,p,n is the best quasisubminimizer
constant for α < 1− n/p, and that u fails to be a quasisubminimizer in B \ {0} for
1 − n/p ≤ α < 0. As u(0) = ∞, u cannot be quasisubharmonic (and thus not a
quasisubminimizer) in B.

Case 3. α > 0. By Theorem 3.2, u is a subminimizer in B and thus in B \ {0}.
On the other hand, u is not a quasiminimizer in B \ {0}, by Theorem 5.1. Thus u
cannot be a quasisuperminimizer in B \ {0} and thus not in B either. ¤

6. The case p > n

Note that in this case n = 1 is a possibility.

Theorem 6.1. Let p > n and u(x) = |x|α. Then u is a quasiminimizer in B\{0}
if and only if α > 1− n/p or α = 0.

Moreover, if α > 1 − n/p, then Qα,p,n given by (5.1) is the best quasiminimizer
constant.

For n = 1 and p = 2 this result was obtained by Judin [14], Example 4.0.26 and
Remark 4.0.28, and Martio [18], Section 5. The formula given in Remark 5.2 for α
in terms of Q when p = 2 is valid also in this case, i.e. when n = 1 and p = 2.

Proof. The case α = 0 is clear as u is constant in this case. The case α =
1 − n/p follows from Proposition 4.2. Next, we shall use Theorem 4.1. Note that
β = pβ − p + n > 0 here.

Case 1. α > 1− n/p > 0. In this case pα− p + n > 0 and hence

lim
R→∞

∣∣∣∣
1−Rβ

1−Rα

∣∣∣∣
p∣∣∣∣

Rpα−p+n − 1

Rpβ−p+n − 1

∣∣∣∣ = 1.

Thus (4.1) holds, u is a quasiminimizer in B\{0} and Qα,p,n is the best quasiminimizer
constant.

Case 2. 0 < α < 1− n/p. In this case pα− p + n < 0 and the expression in (4.1)
grows as Rp−n−pα, as R →∞. It follows that u is not a quasiminimizer in B \ {0}.
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Case 3. α < 0. In this case pα− p + n < 0 and the expression in (4.1) grows as
Rp−n, as R →∞. Thus u is not a quasiminimizer in B \ {0}. ¤

Theorem 6.2. Let p > n, u(x) = |x|α and let Qα,p,n be as in (5.1). Then u is
a Q-quasi(sub/super)minimizer and Q-quasi(sub/super)harmonic in B \ {0} and B
as given in Table 2. Moreover, Q in Table 2 is the best quasi(sub/super)minimizer
constant.

quasi- quasi- quasi- quasi- quasi-
p > n sub- sub- super- super- super-

mini- mini- mini- mini- harmo-
|x|α mizer mizer mizer mizer nic

in B \ {0} in B in B in B \ {0} in B

α < 0 Q = 1 Fails Fails Fails Fails
α = 0 Q = 1 Q = 1 Q = 1 Q = 1 Q = 1

0 < α ≤ 1− n

p
Fails Fails Fails Q = 1 Fails

1− n

p
< α <

p− n

p− 1
Q = Qα,p,n Q = Qα,p,n Fails Q = 1 Fails

α =
p− n

p− 1
Q = 1 Q = 1 Fails Q = 1 Fails

α >
p− n

p− 1
Q = 1 Q = 1 Fails Q = Qα,p,n Fails

Table 2.

Remark 6.3. Recall that, by Proposition 2.3, |x|α is a Q-quasisubminimizer
in B \ {0} or B if and only if it is Q-quasisubharmonic there, and u is a Q-
quasisuperminimizer in B \ {0} if and only if it is Q-quasisuperharmonic there.

Moreover, Theorem 6.2 now shows that for p > n, |x|α is Q-quasisuperharmonic
in B if and only if it is a Q-quasisuperminimizer in B. This is not very surprising,
in fact for α ≥ 0, u is quasisuperharmonic in B if and only if u is a quasisupermin-
imizer in B, as u is bounded in this case. On the other hand, if α < 0, then u is
not quasisuperharmonic in B (and hence cannot be a quasisuperminimizer in B) as
u(0) = ∞ and Cp({0}) > 0, and a quasisuperharmonic function is infinite only in a
set with zero capacity, by Kinnunen–Martio [15], Theorem 10.6.

Proof. The case α = 0 is clear as u is constant in this case.
Case 1. α < 0. By Theorem 3.1, u is a subminimizer in B \ {0}. As u(0) =

∞, u cannot be quasisubharmonic (and thus not a quasisubminimizer) in B. By
Theorem 6.1, u is not a quasiminimizer in B\{0}. As it is a subminimizer in B\{0},
it cannot be a quasisuperminimizer (and thus not quasisuperharmonic) there (and
not in B either).

Case 2. α > 0. In this case u is not quasisuperharmonic (and thus not a
quasisuperminimizer) in B as it would violate the strong minimum principle.

For 0 < α ≤ (p− n)/(p− 1), u is a superminimizer in B \ {0}, by Theorem 3.1.
For α ≥ (p − n)/(p − 1), u is a subminimizer in B (and thus also in B \ {0}) by
Theorem 3.2.
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Theorem 6.1 shows that u is a quasiminimizer in B \ {0} if and only if α >
1 − n/p, in which case Qα,p,n is the best quasiminimizer constant. For 1 − n/p <
α < (p − n)/(p − 1), u is a superminimizer in B \ {0} and hence Qα,p,n is the best
quasisubminimizer constant in B\{0} for such α. Similarly, for α ≥ (p−n)/(p−1), u
is a subminimizer in B\{0}, so Qα,p,n must be the best quasisuperminimizer constant
in B \ {0}.

For 0 < α ≤ 1−n/p, u is a superminimizer but not a quasiminimizer in B \ {0}.
Thus u cannot be a quasisubminimizer there (and hence neither in B).

Let us finally show that for α > 1 − n/p, u is a quasisubminimizer not only in
B \ {0} but also in B. Clearly, u ∈ W 1,p

loc (B). Let ϕ ∈ Lipc(B) be nonpositive and
ϕ̃ = max{ϕ,−u} so that u + ϕ̃ = (u + ϕ)+ and |∇(u + ϕ̃)| ≤ |∇(u + ϕ)|. Then
ϕ̃ ∈ W 1,p

0 (B \ {0}) and henceˆ

ϕ 6=0

|∇u|p dx ≤ Q

ˆ

ϕ 6=0

|∇(u + ϕ̃)|p dx ≤ Q

ˆ

ϕ 6=0

|∇(u + ϕ)|p dx,

and thus u is a Q-quasisubminimizer in B with the same quasisubminimizer constant
Q as in B \ {0}. ¤

7. The case p = n > 1

Recall that we do not study p = 1 at all in this paper.

7.1. Powers.

Theorem 7.1. Let p = n > 1 and u(x) = |x|α. Then u is a quasiminimizer in
B \ {0} if and only if α = 0.

Proof. The case α = 0 is clear, so assume that α 6= 0. Let ϕ(r) = rα.
As in the proof of Theorem 4.1 we have with G = {r : r1 < r < r2} and R =

r2/r1 > 1,

Îϕ(G) =
|α|p

pα− p + n
rpα−p+n
1 (Rpα−p+n − 1) =

|α|n
nα

rnα
1 (Rnα − 1).

This time the minimizer of Î is given by ψ(r) = log r, and we have

Îψ(G) =

ˆ r2

r1

(
1

r

)p

rn−1 dr =

ˆ r2

r1

dr

r
= log r2 − log r1 = log R.

Let now η = aψ + b, where we choose a and b so that η = ϕ on ∂G, i.e. so that

rα
1 = a log r1 + b and rα

2 = a log r2 + b.

We only need to determine

a =
rα
2 − rα

1

log r2 − log r1

= rα
1

Rα − 1

log R
.

Thus
Îη(G) = |a|nÎψ(G),

and we know that η minimizes the Î-energy given the boundary values of ϕ.
Next we want to calculate, still letting R = r2/r1,

Îϕ(G)

Îη(G)
=
|α|n
nα

rnα
1

(
rα
1

|Rα − 1|
log R

)−n
Rnα − 1

log R
=
|α|n
nα

Rnα − 1

|Rα − 1|n (log R)n−1 =: k(R).
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Both when α > 0 and when α < 0 it is easy to see that

lim
R→∞

|Rnα − 1|
|Rα − 1|n = 1,

and thus that limR→∞ k(R) = ∞, as n > 1, showing that u is not a quasiminimizer
in B \ {0}. ¤

Theorem 7.2. Let p = n > 1 and u(x) = |x|α. Then u is a Q-quasi(sub/super)-
minimizer and Q-quasi(sub/super)harmonic in B and B \ {0} as given in Table 3.

quasi- quasi- quasi- quasi- quasi-
p = n > 1 sub- sub- super- super- super-

mini- mini- mini- mini- harmo-
|x|α mizer mizer mizer mizer nic

in B \ {0} in B in B in B \ {0} in B

α < 0 Q = 1 Fails Fails Fails Fails
α = 0 Q = 1 Q = 1 Q = 1 Q = 1 Q = 1
α > 0 Q = 1 Q = 1 Fails Fails Fails

Table 3.

Proof. The case α = 0 is clear. So assume that α 6= 0.
By Theorem 3.1, u is a subminimizer in B \ {0}. Hence it follows from The-

orem 7.1 that u cannot be a quasisuperminimizer in B \ {0}. Thus u cannot be
quasisuperharmonic in B nor a quasisuperminimizer in B either.

By Theorem 3.2, u is a subminimizer in B when α ≥ 0. On the other hand, when
α < 0, u(0) = ∞ and thus u is not quasisubharmonic (nor a quasisubminimizer) in
B. ¤

7.2. log-powers.

Theorem 7.3. Let p = n > 1 and u(x) = (− log |x|)α. Then u is a quasimini-
mizer in B \ {0} if and only if α > 1− 1/n or α = 0.

Moreover, if α > 1− 1/n, then

(7.1) Qα,n =
αn

nα− n + 1

is the best quasiminimizer constant.

When p = 2 (and n = 2) one can easily see that α = Q ±
√

Q2 −Q. For
p = n > 2, Q > 1 and α > 1, we have α < nα− n + 1 < nα and hence

Q1/(n−1) < α < (nQ)1/(n−1).

Proof. The case α = 0 is clear, so assume that α 6= 0. Let ϕ(r) = (− log r)α.
Let G = {r : r1 < r < r2}, 0 < r1 < r2 < 1, s1 = − log r1, s2 = − log r2 < s1 and

S = s1/s2 > 1. This time we get, assuming that α 6= 1− 1/n,

Îϕ(G) =

ˆ r2

r1

|α|n (− log r)nα−n

rn
rn−1 dr =

ˆ r2

r1

|α|n(− log r)nα−n dr

r

=
|α|n

nα− n + 1
(snα−n+1

1 − snα−n+1
2 ) =

|α|n
nα− n + 1

snα−n+1
2 (Snα−n+1 − 1).
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The minimizer is given by ψ(r) = − log r, and we have letting α = 1 above,

Îψ(G) = s2(S − 1).

Let now η = aψ + b, where we choose a and b so that η = ϕ on ∂G, i.e. so that
sα
1 = as1 + b and sα

2 = as2 + b.

We only need to determine

a =
sα
1 − sα

2

s1 − s2

= sα−1
2

Sα − 1

S − 1
.

Thus
Îη(G) = |a|nÎψ(G),

and we know that η minimizes the Î-energy given the boundary values of ϕ.
Next we want to calculate

Îϕ(G)

Îη(G)
=

|α|n
nα− n + 1

snα−n+1
2 (Snα−n+1 − 1)sn−nα

2

(
S − 1

|Sα − 1|
)n

1

s2(S − 1)

=
|α|n

nα− n + 1

Snα−n+1 − 1

S − 1

(
S − 1

|Sα − 1|
)n

=: k(S).

Case 1. α > 1 − 1/n. In this case nα − n + 1 > 0 and Q = limS→∞ k(S) =
αn/(nα − n + 1). Arguing as in the proof of Theorem 4.1 we see that u is a Q-
quasiminimizer and that Q is the best quasiminimizer constant.

Case 2. 0 < α < 1 − 1/n. In this case nα − n + 1 < 0 and thus k(S) grows as
Sn−1−nα for large S. As n − 1 − nα > 0 we see that limS→∞ k(S) = ∞, and thus u
is not a quasiminimizer in B \ {0}.

Case 3. α < 0. In this case k(S) grows as Sn−1 for large S showing that
limS→∞ k(S) = ∞, and thus u is not a quasiminimizer in B \ {0}. (This case can
also be eliminated using the strong minimum principle as in the case α > 0 in the
proof of Theorem 6.2.)

Case 4. α = 1− 1/n. In this case

Îϕ(G) =

ˆ r2

r1

|α|n(− log r)nα−n dr

r
=

ˆ r2

r1

|α|n dr

−r log r

= αn(log s1 − log s2) = αn log S.

Thus
Îϕ(G)

Îη(G)
=

αn log S

s2(S − 1)
sn−nα
2

(
S − 1

Sα − 1

)n

=
αn log S

S − 1

(
S − 1

Sα − 1

)n

=: k(S).

It is easy to see that k(S) grows as log S, as S →∞, and thus that limS→∞ k(S) = ∞,
and hence u is not a quasiminimizer in B \ {0}. ¤

Theorem 7.4. Let p = n > 1, u(x) = (− log |x|)α and let Qα,n be as in (7.1).
Then u is a Q-quasi(sub/super)minimizer and Q-quasi(sub/super)harmonic in B and
B \ {0} as given in Table 4. Moreover, Q in Table 4 is the best quasi(sub/super)mi-
nimizer constant.



316 Anders Björn and Jana Björn

quasi- quasi- quasi- quasi- quasi-
p = n > 1 sub- sub- super- super- super-

mini- mini- mini- mini- harmo-
(− log |x|)α mizer mizer mizer mizer nic

in B \ {0} in B in B in B \ {0} in B

α < 0 Q = 1 Q = 1 Fails Fails Fails
α = 0 Q = 1 Q = 1 Q = 1 Q = 1 Q = 1

0 < α < 1− 1

n
Fails Fails Q = 1 Q = 1 Q = 1

α = 1− 1

n
Fails Fails Fails Q = 1 Q = 1

1− 1

n
< α < 1 Q = Qα,n Fails Fails Q = 1 Q = 1

α = 1 Q = 1 Fails Fails Q = 1 Q = 1
α > 1 Q = 1 Fails Fails Q = Qα,n Q = Qα,n

Table 4.

Remark 7.5. Recall that, by Remark 2.4, (− log |x|)α is a Q-quasisubminimizer
in B \ {0} or B if and only if it is Q-quasisubharmonic there, and u is a Q-
quasisuperminimizer in B \ {0} if and only if it is Q-quasisuperharmonic there.

Recall that Remark 2.4 also shows that the last two columns are the same in this
case.

Proof. The case α = 0 is clear. Moreover, the last two columns are the same by
Remark 2.4.

Let us first note that, u ∈ W 1,p
loc (B) if and only if α < 1− 1/n, showing that for

α ≥ 1− 1/n, u is neither a quasisubminimizer nor a quasisuperminimizer in B.
Case 1. α < 0. In this case, u is a subminimizer in B (and thus in B \ {0}), by

Theorem 3.4. As it is not a quasiminimizer in B \ {0}, by Theorem 7.3, it cannot be
a quasisuperminimizer there (and thus not in B either).

Case 2. 0 < α ≤ 1. In this case, u is superharmonic in B by Theorem 3.4.
If 0 < α ≤ 1 − 1/n, then u is not a quasiminimizer in B \ {0}, by Theorem 7.3,
and hence it cannot be a quasisubminimizer there (and thus not in B either). By
Theorem 3.4, u is a superminimizer in B for 0 < α < 1− 1/n.

If 1 − 1/n < α ≤ 1, then u is a quasiminimizer in B \ {0}, by Theorem 7.3,
with Qα,n being the best quasiminimizer constant. As it is a superminimizer in
B \ {0}, Qα,n must be the best quasisubminimizer constant for u in B \ {0}. Note
that Q1,n = 1.

Case 3. α > 1. Then u is a quasiminimizer in B \ {0}, by Theorem 7.3, with
Qα,n being the best quasiminimizer constant. As it is a subminimizer in B \ {0}, by
Theorem 3.3, Qα,n must be the best quasisuperminimizer constant for u in B\{0}. ¤

8. Local quasiminimizers

In Rn it is well known that p-harmonicity is a local property, i.e. if a function
is p-harmonic in Ω1 and Ω2 then it is p-harmonic in Ω1 ∪ Ω2. We shall see in this
section that this so called sheaf property fails for quasiminimizers.
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Let us make the following definition.

Definition 8.1. We say that u is a local Q-quasiminimizer in Ω if we can find
finitely or countably many open sets Ω1, Ω2, . . ., such that Ω =

⋃
j Ωj and such that

u is a Q-quasiminimizer in Ωj for all j.

Proposition 8.2. Let p > 1, n ≥ 1, α ∈ R, u(x) = |x|α and ε > 0. Then u is a
local (1 + ε)-quasiminimizer in Rn \ {0}.

Proof. This is clear if α = 0. By the proof of Theorem 4.1 we see that k therein
satisfies limR→1 k(R) = 1 (if α = 1−n/p, we use Proposition 4.2). Hence we can find
τ > 1 such that sup1≤R≤τ2 k(R) ≤ 1 + ε. Let now Ωj = {x ∈ Rn : τ j < |x| < τ j+2},
j ∈ Z. With the notation as in the proof of Theorem 4.1, we see that 1 < R =
r2/r1 < τ 2 in Ωj and it follows that u is a (1 + ε)-quasiminimizer in Ωj, j ∈ Z. ¤

Together with our earlier results, Proposition 8.2 gives plenty of examples of local
(1 + ε)-quasiminimizers which are not quasiminimizers. There is a similar result for
p = n > 1 and log-powers.

It was pointed out by Kinnunen–Martio [15] that being a quasiminimizer is not
a local property. Judin [14], Example 4.2.4, gave an explicit example of a local
quasiminimizer on (0,∞), for p = 2, which is not a quasiminimizer on (0,∞).

On the other hand, we have the following result in the opposite direction.

Proposition 8.3. Let Q > 1. There is a Q-quasiminimizer which is not a local
Q′-quasiminimizer for any Q′ < Q.

Proof. Let n = 1 and p = 2. Then we can find a > 0 such that Q = (a + 1)2/4a.
Let also 1 < Q′ < Q. In this case,

u(x) =

{
x, x ≤ 0,

ax, x ≥ 0,

is a Q-quasiminimizer in B = (−1, 1) ⊂ R, but not a Q′-quasiminimizer in B(0, r)
for any 0 < r < 1, which is seen by a straightforward calculation and was obtained by
Judin [14], Example 4.0.25. The example of Judin was extended to arbitrary p > 1
by Uppman [24], Section 2.2.3. It follows that u is not a Q′-quasiminimizer in any
neighbourhood of 0, and hence not a local Q′-quasiminimizer in B. ¤

Proposition 8.4. Let a, b ∈ R, a < b, and let u ∈ C1([a, b]) be such that

u′(x) 6= 0 for x ∈ [a, b].

Let further

Q =

(
maxx∈[a,b] |u′(x)|
minx∈[a,b] |u′(x)|

)p

.

Then u is a Q-quasiminimizer in (a, b).

Corollary 8.5. Let a, b ∈ R, a < b, and let u ∈ C1((a, b)) be such that u′(x) 6= 0
for a < x < b. Then u is a local (1 + ε)-quasiminimizer in (a, b) for every ε > 0.

In fact the proof here is valid also with smooth weights, and can thus be applied
for quasiminimizers with respect to the energy Î. This and the arguments at the end
of the proof of Theorem 4.1 can be used to give an alternative proof of Proposition 8.2.

Let us also mention that Martio–Sbordone [21] studied quasiminimizers on R
quite extensively.
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Proof of Proposition 8.4. We may assume that u is strictly increasing. Let

M = max
x∈[a,b]

|u′(x)|, m = min
x∈[a,b]

|u′(x)|,

and a < c < d < b. Let further v be the minimizer in (c, d) with u as boundary
values, i.e. v is linear. Then m ≤ v′ ≤ M in (c, d). So

ˆ d

c

|u′|p dx ≤ (d− c)Mp ≤ Q(d− c)mp ≤ Q

ˆ d

c

|v′|p dx.

Hence u is a Q-quasiminimizer in (a, b). ¤
Proof of Corollary 8.5. Let ε > 0. For each x ∈ (a, b) we can find yx ∈ (x, b)

such that (
maxt∈[x,yx] |u′(t)|
mint∈[x,yx] |u′(t)|

)p

< 1 + ε.

We can next find a countable subcover {Ij}∞j=1 of {(x, yx)}x∈(a,b), where Ij = (xj, yxj
).

Thus (a, b) =
⋃∞

j=1 Ij. By Proposition 8.4, u is a (1+ε)-quasiminimizer in Ij for each
j. Hence u is a local (1 + ε)-quasiminimizer in (a, b). ¤
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