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Abstract. In this paper, we study the existence of a nontrivial solution to the following
nonlinear elliptic problem:

(0.1)

{
−∆u− a(x)u = f(x, u), x ∈ Ω,

u|∂Ω = 0,

where Ω is a bounded domain of RN and a ∈ L
N
2 (Ω), N ≥ 3, f ∈ C0(Ω̄ ×R1,R1) is superlinear

at t = 0 and subcritical at t = ∞. Under suitable conditions, (0.1) possesses the so-called linking
geometric structure. We prove that the problem (0.1) has at least one nontrivial solution without
assuming the Ambrosetti–Rabinowitz condition. Our main result extends a recent result of Miyagaki
and Souto given in [14] for (0.1) with a(x) = 0 and possessing the mountain-pass geometric structure.

1. Introduction and main result

In this paper, we study the existence of nontrivial solutions to the following
problem:

(1.1)

{
−∆u− a(x)u = f(x, u), x ∈ Ω,

u|∂Ω = 0,

where Ω ⊂ RN is a bounded domain, a(x) ∈ L
N
2 (Ω), N ≥ 3, f ∈ C0(Ω̄ × R1,R1)

and (1.1) possesses the so-called linking geometric structure.
We first recall something about the eigenvalues of elliptic operators. According

to the theory of spectrum of compact operators (see e.g. Ch. 4 of [3], or Lemma 2.13
in this paper), we let

−∞ < λ1 < λ2 6 λ3 6 · · ·
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be the sequence of all eigenvalues of the following eigenvalue problem

(1.2)
{ −∆u− a(x)u = λu, x ∈ Ω,

u|∂Ω = 0,

where each eigenvalue is repeated according to its multiplicity, lim
j→∞

λj = +∞ and

let e1, e2, . . . , en, . . . be the corresponding eigenfunctions in H1
0 (Ω) normalized in the

sense of L2(Ω), that is,
ˆ

Ω

eiej dx = δij =

{
1, i = j,

0, i 6= j,

hence for any i and j we have
ˆ

Ω

[∇ej · ∇ei − a(x)ejei] dx = λj

ˆ

Ω

eiej dx = λjδij.

In this paper, we study the case when (1.1) possesses the so-called linking geo-
metric structure, so we assume that λ1 ≤ 0, and there exists an n ∈ N such that

(1.3) λ1 < λ2 6 λ3 6 · · · ≤ λn 6 0 < λn+1 6 · · · .

To recall the history, we list some conditions which may be imposed on f(x, t).

(f1) f ∈ C0(Ω̄×R1,R1), f(x, 0) = 0, lim
t→0

f(x, t)

|t|p−2t
= 0 uniformly in x ∈ Ω.

(f2) There are positive constants a and b such that

|f(x, t)| ≤ a + b|t|q−1, ∀(x, t) ∈ Ω×R1,

where q ∈ [1, p∗[, p∗ = Np
N−p

if 1 < p < N and p∗ = +∞ if p ≥ N .

(f3) lim
|t|→+∞

F (x, t)

|t|p = +∞ uniformly in x ∈ Ω, where F (x, t) ,
ˆ t

0

f(x, s) ds.

(f4) There exists a constant C∗ > 0 such that

H(x, t) ≤ H(x, s) + C∗

for each x ∈ Ω, 0 < t < s or s < t < 0 where H(x, t) , tf(x, t) − pF (x, t) and

F (x, t) =

ˆ t

0

f(x, s)ds.

(f ′4) There exist a positive constant s0 > 0 such that
f(x, s)

|s|p−2s
is nondecreasing in

s ≥ s0, and nonincreasing in s ≤ −s0 for any x ∈ Ω.
(f5)

λn

2
t2 ≤ F (x, t), ∀(x, t) ∈ Ω̄×R1.

(f ′5) lim
|t|→+∞

f(x, t)

|t|p−2t
= +∞ uniformly in x ∈ Ω.

(f ′′5 ) lim
t→+∞

f(x, t)

tp−1
= +∞ uniformly in x ∈ Ω.

(f6)
f(x, t)

|t|p−2t
is nondecreasing in t ≥ 0 for any x ∈ Ω.

(f7) There exists a positive constant s0 such that H(x, t) , tf(x, t)− pF (x, t) is
nondecreasing in t ≥ s0 and nonincreasing in t ≤ −s0.
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If p = 2, (f1) and (f2) hold, we can define weak solutions to (1.1). We say that
u ∈ H1

0 (Ω) is a weak solution to (1.1) if
ˆ

Ω

[∇u · ∇v − a(x)uv] dx =

ˆ

Ω

f(x, u)v dx, ∀v ∈ H1
0 (Ω).

By hypothesis (f1), we see that f(x, 0) = 0, so u ≡ 0 is a trivial solution of (1.1).
We are interested in getting nontrivial solutions to (1.1).

Let g(x, t) = a(x)t + f(x, t), then problem (1.1) can be written as:

(1.4)

{
−∆u = g(x, u), x ∈ Ω,

u|∂Ω = 0.

Problem (1.4) is a special case of the following p-Laplacian type problem:

(P )

{
−∆pu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where p > 1, Ω ⊂ RN is a bounded domain and ∆pu = div(|∇u|p−2∇u) is the
p-Laplacian of u.

The problem (P ) is one of the main nonlinear elliptic problems which has been
studied extensively for many years. Since Ambrosetti and Rabinowitz proposed the
mountain-pass theorem in 1973 (see [1]), critical point theory has become one of the
main tools for finding solutions to elliptic equations of variational type. Clearly, weak
solutions to (P ) correspond to critical points of the functional

(1.5) I(u) =
1

p

ˆ

Ω

|Du|p dx−
ˆ

Ω

F (x, u) dx,

defined on the Sobolev space W 1,p
0 (Ω). A standard existence result for (P ) is that

(P ) possesses at least a nontrivial solution if f(x, t) satisfies (f1) (f2) together with
the following Ambrosetti–Rabinowitz condition ((AR) for short): there are constants
θ > 0, 0 < M < +∞ such that

(AR) 0 ≤ (p + θ)F (x, s) ≤ sf(x, s),

whenever |s| ≥ M and x ∈ Ω. Ambrosetti and Rabinowitz solved the existence of a
nontrivial weak solution to (P ) when f(x, t) is of super-linear at t = 0 and subcritical
at t = ∞ such that it possesses the mountain-pass geometric structure.

Clearly, if the (AR) condition holds, then

(1.6) F (x, t) ≥ c1|t|p+θ − c2, ∀(x, t) ∈ Ω×R1,

where c1, c2 are two positive constants. The conditions (f1) and (1.6) ensure that
the functional I(u) given by (1.5) possesses the so-called mountain-pass geometric
structure near u = 0. The condition (AR) guarantees that every (PS)c sequence of
I(u) is bounded in W 1,p

0 (Ω) and (f2) guarantees that every bounded (PS)c sequence
of I(u) possesses a subsequence which converges strongly in W 1,p

0 (Ω); hence I(u)
satisfies the (PS)c condition, and one can get a nontrivial solution to (P ) by applying
the mountain-pass theorem.
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As the (AR) condition implies (1.6), one can not deal with (P ) using the mountain-
pass theorem directly if f(x, t) is of p-asymptotically linear at ∞, i.e.

(1.7) lim
|t|→+∞

f(x, t)

|t|p−2t
= l, uniformly in x ∈ Ω,

where l is a constant. During the past three decades, many results have been obtained
for the existence of nontrivial solutions to (P ) when f(x, t) does not satisfy the (AR)
condition (see e.g. [7] [12] [11] [13] and the references therein). We will mention
several results for the case where f(x, t) is p-superlinear at t = 0 (i.e. (f1) holds).

In [5], Costa and Magalhaes studied (P ) for p = 2 and replaced the (AR) condi-
tion by one of the following conditions:

(F1)q lim sup
|t|→+∞

F (x, t)

|t|q ≤ b < +∞, uniformly in x ∈ Ω;

(F+
2 )µ lim

|t|→+∞
f(x, t)t− pF (x, t)

|t|µ ≥ a > 0, uniformly in x ∈ Ω;

(F−
2 )µ lim

|t|→+∞
f(x, t)t− pF (x, t)

|t|µ ≤ −a < 0, uniformly in x ∈ Ω,

for some constants a, b ∈ R1 and q > p, µ > N/p/(q − p) if N > p and µ > q − p if
1 ≤ N ≤ p. Notice that from (F+

2 )µ, we have

(fF ) lim
|t|→+∞

{f(x, t)t− pF (x, t)} = +∞ uniformly in x ∈ Ω.

In [19], Willem and Zou studied (P ) for p = 2 and replaced the (AR) condition
by the following conditions: H(x, s) , sf(x, s) − 2F (x, s) is nondecreasing in s for
any x ∈ Ω, x ∈ R, sf(x, s) ≥ 0 for (x, s) ∈ Ω × R1, and there exist constants
s0 > 0, µ > 2, c0 > 0 such that

sf(x, s) ≥ c0|s|µ

for (x, s) ∈ Ω×R1 with |s| ≥ s0.
In [17], Schechter and Zou proved that for p = 2, (P ) has at least one nontrivial

weak solution if f(x, t) satisfies (f1)(f2) and either H(x, s) is a convex function of s
for each x ∈ Ω or there are constants c > 0, µ > 0 and r ≥ 0 such that

µF (x, t)− tf(x, t) ≤ C(1 + t2), |t| ≥ r,

together with the following

(F )∞ either lim
s→∞

F (x, s)

s2
= +∞ uniformly in x ∈ Ω,

or lim
s→−∞

F (x, s)

s2
= +∞ uniformly in x ∈ Ω.

In [13], Li and Zhou studied the problem (P ) for the case of p > 1. One of the
main results in [13] is that (P ) has at least one positive solution if f ∈ C0(Ω̄×R1,R1)
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satisfies (f ′5) (f6), f(x, t) = 0 for t ≤ 0 and x ∈ Ω; f(x, t) ≥ 0 for x ∈ Ω, t ≥ 0 and

lim
t→0

f(x, t)

|t|p−2t
= P (x) uniformly in x ∈ Ω where P (x) ∈ L∞(Ω) with

‖P‖∞ < λ1 = inf
u∈W 1,p

0 (Ω)\{0}

ˆ

Ω

|Du|p dx
ˆ

Ω

|u|p dx

.

In [4], Chen, Shen and Yao studied (P ) and obtained the existence of a nontrivial
solution. The assumption in [4] is slightly different from what given in [13]. They
replace (f6) by the following condition: there exist constants s0 ≥ 0, t0 > 0 and
c1, c2 ≥ 0 such that

tpf(x, s)s− pF (x, s) ≤ c1(f(x, s)s− pF (x, s)) + c2 for|s| ≥ s0, 0 ≤ t ≤ t0.

Recently, Miyagaki and Souto studied

(1.8)

{
−∆u = λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

in [14], where Ω ⊂ RN is a bounded domain. They assumed that f(x, t) satisfies
(f1)–(f4) with p = 2 and proved that (1.8) has at least one nontrivial solution for
any λ > 0 (see Theorem 1.1 in [14]). Theorem 1.1 of [14] generalizes the main results
of [3, 8, 27] concerning (1.8). The approach in [14] is similar to that of [7]. The main
idea is to use the mountain-pass theorem under the (PS) condition and to show that
for any λ > 0, there is a sequence {λn}+∞

n=1 ⊂ R1 and a sequence {un}+∞
n=1 ⊂ W 1,p

0 (Ω)
with

λn → λ, cλn → cλ, Iλn(un) = cλn , I ′λn
(un) = 0,

such that the norm of un in W 1,p
0 (Ω) is uniformly bounded, where cλn and cλ are

the so-called mountain-pass levels of Iλn and Iλ respectively, and then prove that the
weak limit u of {un}+∞

n=1 is a critical point of Iλ with Iλ(u) = cλ. In doing so, the
main difficulty is to prove that if cλ is differentiable at µ then there is a sequence
{un}+∞

n=1 ⊂ W 1,p
0 (Ω) with

Iµ(un) → cµ, I ′µ(un) → 0, ‖un‖p ≤ C0,

where C0 = pcµ + pµ(2− c′(µ)) + 1 (see Lemma 2.3 in [14]).
Li and Yang in [10] studied the problem

(P )λ

{
−∆pu = λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where p > 1, λ > 0, Ω ⊂ RN is a bounded domain. And the corresponding functional
possesses the mountain-pass geometric structure. They proved that (P )λ has at least
one nontrivial solution under the hypothesis (f1)–(f4) via the mountain-pass theorem
under the (C)c condition.

In 1978, Rabinowitz proposed the so-called linking theorem in [15] which resulted
in the existence of at least one nontrivial solution to (1.4) when it possesses the linking
geometric structure together with the (AR) condition. A standard existence results
for (1.1) when it possesses the linking geometric structure is that (1.1) possesses
at least a nontrivial solution if f satisfies (f1), (f2), (f5) together with the (AR)
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condition (see e.g. [18]). However, in all the results mentioned above, the existence
of a nontrivial solution for (1.1) when it possesses the linking geometric structure are
obtained when either the (AR) condition holds or f is asymptotically linear at ∞
(i.e. (1.7) holds).

Our purpose in this paper is to study the existence of a nontrivial solution to
problem (1.1) for the case where neither the (AR) condition holds nor f is asymp-
totically linear at ∞. Our main result is as follows:

Theorem 1.1. Suppose that Ω is a bounded domain in RN with N ≥ 3 and
a ∈ L

N
2 (Ω). If f(x, t) satisfies the assumptions (f1)–(f5) with p = 2, then problem

(1.1) has at least one nontrivial weak solution.

Our main result provides an existence result about (1.1) with linking geometric
structure and extends the main result given in [14] where the mountain-pass geometric
structure is assumed. However, we use a different approach which seems easier to
handle compared to the techniques which are used in [14]. Instead of using the
approximating process combining with the linking theorem under the (PS) condition,
which might be possible to carry out, we use a linking theorem under the (C)c

condition. To do so, we have to overcome some difficulties.
In order to prove Theorem 1.1, we first prove that the functional I possesses a

(C)c sequence by a linking theorem without the (C)c condition. Note that the usual
linking theorem under the (PS)c condition in [18] is not good enough to deal with
the problem. The main difficulty consists in that one can not prove that a (PS)c

sequence is bounded in H1
0 (Ω) without the (AR) condition. It seems that there is

not an explicitly available linking theorem under the (C)c condition which can be
directly used for our purpose. Although there is a linking theorem in [9] under the
(C)c condition, it is not convenient for us to verify the assumptions which are required
in the theorem. So we want to look for a linking theorem under the (C)c condition
which we can apply directly. We believe that such a result may exist somewhere but
it is hard for us to trace. So we state and prove it in Section 2 below. The idea to
weaken the (PS) condition to the (C)c condition has existed in some papers (see e.g.
[2, 22] and references therein). To obtain the linking theorem we need, we imitate
the framework given in [18]. The deformation lemma (see e.g. Lemma 2.6 below) is
very crucial in the process of the whole proof. This type of deformation lemma under
the (C)c condition had appeared in [2], but the form given in [2] is not the form we
need. The linking theorem given in [18] is obtained from a general minimax theorem.
We follow the framework given in [18] to establish a general critical point theorem of
minimax type under the (C)c condition first in Section 2 (see Corollary 2.9) and then
obtain the linking theorem under the (C)c condition (see Proposition 2.10 below) as
a direct application of the minimax theorem.

Another difficulty for the proof of Theorem 1.1 is to prove the boundedness of
(C)c sequence without the (AR) condition. As the nonlinear function f(x, t) is no
longer asymptotically linear at∞, the standard method using in [11] is not applicable
directly. So we combine the method in both [11] and [14] to prove the boundedness of
the (C)c sequence. Then, by a standard argument, we show that the (C)c sequence
has a subsequence which converges strongly to a critical point of I (see Lemma 3.4
below).

The paper is organized as follows. In section 2 we present some definitions and
preliminary results. In section 3 we give the proof of our main result Theorem 1.1.
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2. Preliminary results

In this section we give some definitions and preliminary results which will be used
in Section 3 for the proof of our main result.

Throughout this paper, we denote the norm of u in H1
0 (Ω), Lp(Ω), 1 ≤ p < +∞,

and (H1
0 (Ω))∗ (the dual space of H1

0 (Ω)), respectively, by

‖u‖ =
(ˆ

Ω

|∇u|2 dx
) 1

2
, |u|p =

(ˆ

Ω

|u|p dx
) 1

p
, ‖u‖∗ , ‖u‖(H1

0 (Ω))∗ .

We define the energy functional associated to problem (1.1), as

(2.1) I(u) =
1

2

ˆ

Ω

(|∇u|2 − a(x)u2) dx−
ˆ

Ω

F (x, u) dx, u ∈ H1
0 (Ω).

It is easy to see that the functional I ∈ C1(H1
0 (Ω),R) and

〈I ′(u), v〉 =

ˆ

Ω

[∇u · ∇v − a(x)uv] dx−
ˆ

Ω

f(x, u)v dx, ∀u, v ∈ H1
0 (Ω),

where I ′(u) is the Fréchet derivative of I and 〈·, ·〉 denotes the pairing between H1
0 (Ω)

and its dual. The critical points of I are precisely the weak solutions of problem (1.1).

Definition 2.1. Let (X, ‖ · ‖X) be a real Banach space with its dual space
(X ′, ‖ · ‖X′) and I ∈ C1(X,R).

(i) For c ∈ R1, we say that I satisfies the (PS)c condition, if for any sequence
{un} ⊂ X with

I(un) → c, I ′(un) → 0 in X ′,

there is a subsequence {un} such that {un} converges strongly in X.
(ii) For c ∈ R1, we say that I satisfies the (C)c condition, if for any sequence

{un} ⊂ X with

I(un) → c, ‖I ′(un)‖X′(1 + ‖un‖X) → 0,

there is a subsequence {un} such that {un} converges strongly in X.

Suppose that ϕ : [0, +∞)×X 7→ X is continuous and ∀x0 ∈ X, ∀α > 0, ∃r > 0
and L = L(x0, α, r) such that

(2.2) ‖ϕ(t, x)− ϕ(t, y)‖X ≤ L‖x− y‖X , ∀x, y ∈ B(x0, r), t ∈ [0, α].

Consider the following initial value problem

(2.3)

{
dx
dt

= ϕ(t, x),

x(0) = x0 ∈ X.

Lemma 2.2. (Theorem 5.1 of [20]) Suppose that ϕ satisfies the assumption (2.2).
Then there exists a β > 0 such that (2.3) has a unique solution x(t) in [0, β] which
continuously depends on x0. More generally, if ‖ϕ(x, t) − ϕ(y, t)‖X ≤ L‖x − y‖X ,
then

‖x(t)− y(t)‖X ≤ L‖x0 − y0‖XeLt, ∀x, y ∈ X, t ∈ [0, β],

where x(t) and y(t) are the solutions of (2.3) with initial values x0 and y0, respectively.
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Lemma 2.3. (Theorem 5.3 of [20]) Suppose that ϕ satisfies the assumption (2.2).
If there exist a, b > 0 such that

(2.4) ‖ϕ(t, x)‖X ≤ a + b‖x‖X , ∀(t, x) ∈ [0, +∞)×X 7→ X,

then the unique local solution of (2.3) can be extended as a global solution for t ∈
[0, +∞).

Definition 2.4. Let X be a Banach space, ϕ ∈ C1(X,R) and M = {x ∈
X : ϕ′(x) 6= 0}. A pseudogradient vector field for ϕ on M is a locally Lipschitz
continuous vector field g : M → X such that, for every u ∈ M,

‖g(u)‖X ≤ 2||ϕ′(u)||X′ , 〈ϕ′(u), g(u)〉 ≥ ||ϕ′(u)||2X′ ,

where 〈·, ·〉 denotes the pairing between X and its dual X ′.

Lemma 2.5. (Theorem 2.1 of [20]) Suppose that ϕ ∈ C1(X,R1). Then there
exists a pseudogradient vector field for ϕ on M .

Suppose that g is a pseudogradient vector field for ϕ on M , let Φ(u) = g(u)

‖ϕ′(u)‖2
X′

,

then for any u ∈ M we have

(2.5)

{
Φ(u) ≤ 2

‖ϕ′(u)‖X′
,

〈ϕ′(u), Φ(u)〉 ≥ 1.

We consider the following initial value problem

(2.6)

{
dσ(t)

dt
= −Φ(σ(t)),

σ(0) = u0.

Since Φ is locally Lipschitz continuous, for any u0 ∈ M , there exists a unique local
solution of (2.6). Moreover, ϕ decreases along σ(t). In fact, we have

d

dt
ϕ(σ(t)) = 〈ϕ′(σ(t)),

d

dt
σ(t)〉 = −〈ϕ′(σ(t)), Φ(σ(t))〉 ≤ −1.

To guarantee that σ(t) exists on [0, +∞), by Lemma 2.3 it is enough to show
that

‖Φ(u)‖X ≤ a + b‖u‖X , a, b > 0,

which is a direct result of

(2.7) ‖ϕ′(u)‖X′(a + b‖u‖X) ≥ 2, a, b > 0.

For ϕ ∈ C1(X,R) and c ∈ R, we set

ϕc = {u ∈ X | ϕ(u) ≤ c}
and

S2δ = {u ∈ X : ||u− v|| ≤ 2δ, ∀v ∈ S},
where S ⊂ X.

Lemma 2.6. (Deformation Lemma) Let X be a real Banach space, ϕ ∈ C1(X,
R), S ⊂ X, c ∈ R, ε, δ > 0 such that

(2.8) (∀u ∈ ϕ−1([c− 2ε, c + 2ε]) ∩ S2δ) : (1 + ‖u‖X)‖ϕ′(u)‖X′ ≥ 8ε

δ
.

Then there exists η ∈ C([0, 1]×X, X) such that
(i) η(t, u) = u if t = 0 or if u 6∈ ϕ−1([c− 2ε, c + 2ε]) ∩ S2δ,
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(ii) η(1, ϕc+ε ∩ S) ⊂ ϕc−ε,
(iii) η(t, ·) is a homeomorphism of X, ∀t ∈ [0, 1],
(iv) ϕ(η(t, u)) is nonincreasing, ∀u ∈ X.

Remark 2.7. Lemma 2.6 extends Lemma 2.3 of [18], where the assumption was
that ∀u ∈ ϕ−1([c − ε, c + ε]) ∩ S2δ) : ‖ϕ′(u)‖X′ ≥ 8ε

δ
. However, we don’t need all the

conclusions as Lemma 2.3 of [18] states.

Proof. The proof is similar to that of Lemma 2.3 of [18]. By the preced-
ing Lemma 2.5, there exists a pseudogradient vector field g for ϕ′ on M , {u ∈
X : ϕ′(u) 6= 0}. Then by the definition of pseudogradient vector field, we know that

(2.9) ‖g(u)‖ ≤ 2||ϕ′(u)||
and

(2.10) 〈ϕ′(u), g(u)〉 ≥ ||ϕ′(u)||2.
Let us define

A , ϕ−1([c− 2ε, c + 2ε]) ∩ S2δ, B , ϕ−1([c− ε, c + ε]),

ψ(u) , dist(u,X\A)(dist(u,X\A) + dist(u,B))−1,

so that ψ is locally Lipschitz continuous, ψ = 1 on B and ψ = 0 on X\A. Let us
also define the locally continuous vector field

(2.11) f(u) ,
{
−ψ(u)‖ϕ′(u)‖−2g(u), x ∈ A,

0, x ∈ X\A.

Then by (2.8), (2.9) and (2.11), we have

(2.12) ‖f(u)‖ ≤ |ψ(u)|‖g(u)‖
‖ϕ′(u)‖2

≤ 2

‖ϕ′(u)‖ ≤
δ(1 + ‖u‖)

8ε

on X. For each u ∈ X, now we consider the following initial value problem

(2.13)

{
dσ(t,u)

dt
= f(σ(t, u)),

σ(0, u) = u.

Since f is locally Lipschitz continuous, for each initial value u ∈ X, (2.13) pos-
sesses a unique solution σ(·, u) which is defined on R+ = {R : t ≥ 0} by virtue of
Lemma 2.2, Lemma 2.3 and (2.12). Moreover, for every fixed t, σ(t, ·) : X 7→ X is an
homeomorphism. Let us define η on [0, 1]×X by η(t, u) = σ(8εt, u).

Obviously, η(0, u) = σ(0, u) = u. If u 6∈ ϕ−1([c− 2ε, c + 2ε])∩ S2δ, then by (2.11)
and (2.13) we see that η(t, u) = u. So, (i) holds.

For t > 0, by (2.10), (2.11) and (2.13) we have
d

dt
ϕ(σ(t, u)) = 〈ϕ′(σ(t, u)),

d

dt
σ(t, u)〉 = 〈ϕ′(σ(t, u)), f(σ(t, u))〉

= − ψ(σ(t, u))

‖ϕ′(σ(t, u))‖2
〈ϕ′(σ(t, u)), g(σ(t, u))〉 ≤ −ψ(σ(t, u)) ≤ 0.

Hence η(·, u) is nonincreasing, ∀u ∈ X, i.e., (iv) is true. We fix t ∈ [0, 1], since
σ(t, ·) : X → X is an homeomorphism, η(t, ·) : X → X is an homeomorphism.

Let u ∈ ϕc+ε ∩ S. If there is a t ∈ [0, 8ε] such that ϕ(σ(t, u)) < c − ε, then
ϕ(σ(8ε, u)) ≤ ϕ(σ(t, u)) < c − ε and (ii) is satisfied. If there exist u ∈ ϕc+ε ∩ S and
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σ(t, u) 6∈ ϕc−ε, then σ(t, u) ∈ ϕ−1([c− ε, c + ε]), ∀t ∈ [0, 8ε]. So, ψ(σ(t, u)) = 1, ∀t ∈
[0, 8ε].

We obtain from (2.10), (2.11) and (2.13) that

8ε > ϕ(σ(0, u))− ϕ(σ(8ε, u)) = −
ˆ 8ε

0

dϕ(σ(t, u))

dt
dt

= −
ˆ 8ε

0

〈ϕ′(σ(t, u)), f(σ(t, u))〉 dt

= −
ˆ 8ε

0

〈ϕ′(σ(t, u)),− ψ(σ(t, u))

‖ϕ′(σ(t, u))‖2
g(σ(t, u))〉 dt

=
1

‖ϕ′(σ(t, u))‖2

ˆ 8ε

0

〈ϕ′(σ(t, u)), g(σ(t, u))〉 dt ≥ 8ε.

So (ii) is also true. ¤
The following proposition gives a general minimax principle under the (C)c con-

dition which generalizes Theorem 2.8 of [18] and its proof is similar to Theorem 2.8
of [18].

Proposition 2.8. Let X be a Banach space and M a metric space. Let M0 be
a closed subspace of M and Γ0 ⊂ C(M0, X). Define

Γ := {γ ∈ C(M, X) : γ|M0 ∈ Γ0}.
If ϕ ∈ C1(X,R) satisfies

(2.14) ∞ > c := inf
γ∈Γ

sup
u∈M

ϕ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

ϕ(γ0(u)),

then, for every ε ∈ (0, c−a
2

), δ > 0 and γ ∈ Γ such that

(2.15) sup
M

ϕ ◦ γ ≤ c + ε,

there exists u ∈ X such that
a) c− 2ε ≤ ϕ(u) ≤ c + 2ε,
b) dist(u, γ(M)) ≤ 2δ,
c) (1 + ‖u‖X)‖ϕ′(u)‖X′ < 8ε

δ
.

Proof. Suppose that ∃ε ∈ (0, c−a
2

), ∀δ > 0, ∀γ ∈ Γ and sup
M

ϕ ◦ γ ≤ c + ε, for any

u ∈ X, c − 2ε ≤ ϕ(u) ≤ c + 2ε, dist(u, γ(M)) ≤ 2δ but (1 + ‖u‖X)‖ϕ′(u)‖X′ ≥ 8ε
δ
.

We apply Lemma 2.6 with S := γ(M). We assume that

(2.16) c− 2ε > a.

We see that there is a η ∈ C([0, 1] × X, X), we define β(u) = η(1, γ(u)). For
every u ∈ M0, then γ ∈ Γ0. By (2.16) we obtain ϕ(γ0(u)) ≤ a < c − 2ε. Hence,
γ0(u) 6∈ ϕ−1([c− 2ε, c + 2ε]) ∩ S2δ. Then by (ii) of the Lemma 2.6, we get

β(u) = η(1, γ0(u)) = γ0(u),

so that β ∈ Γ. We obtain, from (2.15), γ(u) ∈ γ(M)∩ ϕc+ε = S ∩ ϕc+ε. Then by (ii)
of the Lemma 2.6, we get that

c ≤ sup
u∈M

ϕ(β(u)) = sup
u∈M

ϕ(η(1, γ(u))) ≤ c− ε.

This is impossible. ¤
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Corollary 2.9. Under the assumptions of Proposition 2.8, there exists a se-
quence {un} ⊂ X satisfying

ϕ(un) → c, (1 + ||un||X)‖ϕ′(un)‖X′ → 0.

In particular, if ϕ satisfies the (C)c condition, then c is a critical value of ϕ.

As an application of Proposition 2.8, we have the following result:

Proposition 2.10. (Linking Theorem under the (C)c condition) Let X = Y ⊕Z
be a Banach space with dim Y < ∞. Let ρ > r > 0 and let z ∈ Z be a fixed element
such that ‖z‖ = r. Define

M := {u = y + λz : ‖u‖ ≤ ρ, λ ≥ 0, y ∈ Y },
M0 := {u = y + λz : y ∈ Y, ‖u‖ = ρ, λ ≥ 0 or ‖u‖ ≤ ρ, λ = 0},
Nr := {u ∈ Z : ‖u‖ = r}.

Let ϕ ∈ C1(X,R) be such that

b := inf
Nr

ϕ > a := max
M0

ϕ.

Then c ≥ b and there exists a (C)c-sequence of ϕ where

c := inf
γ∈Γ

max
u∈M

ϕ(γ(u)), Γ := {γ ∈ C(M,X) : γ|M0 = Id}.
In particular, if ϕ satisfies the (C)c condition, then c is a critical value of ϕ.

Remark 2.11. Proposition 2.10 extends Theorem 2.12 of [18], where the con-
clusion was that there was a (PS)c-sequence for ϕ and some c ≥ b.

Proof. The proof is similar to that of Theorem 2.12 of [18]. In order to apply
Proposition 2.8, we first show that: c ≥ b.

Let us prove that, for every γ ∈ Γ, γ(M) ∩Nr 6= ∅. Denote by P the projection
onto Y such that PZ = {0} and by R a retraction from Y ⊕ Rz\{z} to M0. If
γ(M) ∩Nr = ∅, then the map

u 7→ R(Pγ(u) + ‖(1− P )γ(u)‖r−1z)

is a retraction from M to M0. This is impossible since M is homeomorphic to a
finite dimensional ball. In fact, just assume, by contradiction, that R : M → M0 is
a retraction and let U be the interior of M0. For each t ∈ [0, 1], we introduce the
homotopy

H(t, u) = (1− t)u + tR(Pγ(u) + ‖(1− P )γ(u)‖r−1z).

It is easy to check that

∀u ∈ M0, ∀t ∈ [0, 1], H(t, u) = u 6= 0.

Hence, the topological degree deg(H(t, ·), U, 0) is well defined for every t ∈ [0, 1].
By the well-known properties of the topological degree, we deduce

deg(R, U, 0) = deg(H(1, ·), U, 0) = deg(Id|M0 , U, 0) = 1.

We obtain, by existence of the topological degree, that

0 ∈ R(Pγ(u) + ‖(1− P )γ(u)‖r−1z) ⊂ M0.

A contradiction. Hence we obtain, for every γ ∈ Γ, that

max
u∈M

ϕ(γ(u)) = max
u∈γ(M)

ϕ(u) ≥ inf
u∈Nr

ϕ(u) = b.
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Therefore,
c = inf

γ∈Γ
max
u∈M

ϕ(γ(u)) ≥ inf
u∈Nr

ϕ(u) = b,

i.e., c ≥ b.
By Proposition 2.8, if we take ε = 1

n
and let n → ∞, then we know that there

exists a (C)c-sequence of ϕ. ¤

Proposition 2.12. (Lemma 2.14 of [18]) If Ω is a bounded domain in RN ,
N ≥ 3, and a(x) ∈ L

N
2 (Ω), then

λ1 := inf
u∈H1

0 (Ω),|u|2=1

ˆ

Ω

[|∇u|2 − a(x)u2] dx > −∞.

The following result is well-known, for the reader’s convenience we will give the
proof.

Lemma 2.13. Let Ω be a bounded domain in RN and a(x) ∈ L
N
2 (Ω). Then the

sequence of all eigenvalues {λj}+∞
j=1 of the problem

{
−∆u− a(x)u = λu, x ∈ Ω,

u|∂Ω = 0,

satisfies
−∞ < λ1 < λ2 6 λ3 6 · · · ,

and lim
j→∞

λj = +∞.

Proof. By Proposition 2.12, it follows that λ1 > −∞. Therefore, there is a λ0

large enough such that
ˆ

Ω

[|∇u|2 − a(x)u2] dx +

ˆ

Ω

λ0u
2 dx > 0,

for any u ∈ H1
0 (Ω). So we can define an equivalent inner product on H1

0 (Ω) by

(u, v)λ0 =

ˆ

Ω

[∇u · ∇v − a(x)uv] dx +

ˆ

Ω

λ0uv dx, ∀u, v ∈ H1
0 (Ω).

By the Poincaré inequality and the Riesz representation theorem, we know that
for any u ∈ L2(Ω), there exists a unique w ∈ H1

0 (Ω) such that
ˆ

Ω

uv dx = (w, v)λ0 , ∀v ∈ H1
0 (Ω).

For u ∈ H1
0 (Ω), define Kλ0 : L2(Ω) −→ H1

0 (Ω) by w = Kλ0u, then Kλ0 is a bounded
linear operator. If i : H1

0 (Ω) −→ L2(Ω) is the natural embedding operator, then
the Sobelev embedding theorem shows that i is a compact operator and for any
u, v ∈ H1

0 (Ω) we have

(Kλ0 ◦ i(u), v)λ0 =

ˆ

Ω

uv dx.

Since Kλ0◦ i is a compact operator from H1
0 (Ω) to H1

0 (Ω) and (Kλ0◦ i(u), u)λ0 > 0
for u 6= 0, we see that by Hilbert–Schmidt theory (see e.g. Section 4 of Chapter 4
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of [3]), it follows that the sequence of all eigenvalues {µj}+∞
j=1 of Kλ0 ◦ i satisfies

µ1 > µ2 > µ3 > . . . > µn > . . . > 0, µj → 0 (as j → +∞), and

λj =
1

µj

− λ0, (j = 1, 2, 3, . . .)

is the sequence of all eigenvalues of (1.2) and the corresponding eigenfunctions satisfy
ˆ

Ω

eiej dx = δij. ¤

3. The proof of the main result

In this section, we prove our main result Theorem 1.1. According to Lemma 2.13,
let

−∞ < λ1 < λ2 6 λ3 < · · ·λn < λn+1 ≤ λn+2 < · · ·
be the sequence of all eigenvalues of the problem:

{
−∆u− a(x)u = λu, x ∈ Ω,

u|∂Ω = 0,

with lim
j→∞

λj = +∞, and let e1, e2, . . . , en, . . . be all the corresponding eigenvectors

such that ˆ

Ω

eiej dx = δij.

Following the notation in the proof of Lemma 2.13, we denote an equivalent inner
product in H1

0 (Ω) as

(u, v)λ0 =

ˆ

Ω

[∇u · ∇v − a(x)uv] dx +

ˆ

Ω

λ0uv dx, ∀u, v ∈ H1
0 (Ω),

where λ0 + λ1 > 0, and

λ1 = inf
u∈H1

0 (Ω), |u|2=1

ˆ

Ω

[|∇u|2 − a(x)u2] dx.

If
Y := span{e1, e2, . . . , en}

and

Z := {u ∈ H1
0 (Ω):

ˆ

Ω

uv dx = 0, v ∈ Y },
then we know that dim Y < +∞, H1

0 (Ω) = Y ⊕ Z. From the definition of Y, Z and
Lemma 2.13, we have the following lemma.

Lemma 3.1. (Lemma 2.15 of [18])

(3.1) δ := inf
u∈Z, |∇u|2=1

ˆ

Ω

[|∇u|2 − a(x)u2] dx > 0.

Proof. For every u ∈ Z, we have
´
Ω

uei dx = 0 (1 ≤ i ≤ n). Let

u =
+∞∑

i=n+1

ciei,
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where ci =
´

Ω
uei dx (i = n + 1, n + 2, . . .), hence

(u, u)λ0 =
( +∞∑

i=n+1

ciei,

+∞∑
j=n+1

cjej

)
λ0

=
+∞∑

i=n+1

+∞∑
j=n+1

cicj(ei, ej)λ0

=
+∞∑

i=n+1

+∞∑
j=n+1

cicj

[ˆ

Ω

(∇ei · ∇ej − a(x)eiej) dx + λ0

ˆ

Ω

eiej dx
]

=
+∞∑

i=n+1

+∞∑
j=n+1

cicj(λi + λ0)

ˆ

Ω

eiej dx =
+∞∑

i=n+1

c2
i (λi + λ0)

≥ (λn+1 + λ0)
+∞∑

i=n+1

c2
i = (λn+1 + λ0)

ˆ

Ω

u2 dx.

So for every u ∈ Z, we have
ˆ

Ω

[|∇u|2 − a(x)u2] dx ≥ λn+1

ˆ

Ω

u2 dx.

Take a minimizing sequences {un}+∞
n=1 ⊂ Z such that

‖un‖ = |∇un|2 = 1, 1−
ˆ

Ω

a(x)u2
n dx → δ.

Without loss of generality, let

un ⇀ u in H1
0 (Ω).

By the Sobelev’s embedding theorem, we may assume that

un → u in L2(Ω).

So we get

δ = 1−
ˆ

Ω

a(x)u2 dx ≥
ˆ

Ω

[|∇u|2 − a(x)u2] dx ≥ λn+1

ˆ

Ω

u2 dx.

If u = 0, then δ = 1. If u 6= 0, then δ ≥ λn+1

´
Ω

u2 dx > 0. ¤

Lemma 3.2. For every u ∈ Y , we have

(3.2)
ˆ

Ω

[|∇u|2 − a(x)u2] dx ≤ λn

ˆ

Ω

u2 dx.

Proof. If u ∈ Y , then

u =
n∑

i=1

ciei,



The existence of a nontrivial solution to a nonlinear elliptic problem of linking type 475

where ci =
´

Ω
uei dx(i = 1, 2, . . . , n). Hence

(u, u)λ0 =
( n∑

i=1

ciei,

n∑
j=1

cjej

)
λ0

=
n∑

i=1

n∑
j=1

cicj(ei, ej)λ0

=
n∑

i=1

n∑
j=1

cicj

[ ˆ

Ω

(∇ei · ∇ej − a(x)eiej) dx + λ0

ˆ

Ω

eiej dx
]

=
n∑

i=1

n∑
j=1

cicj(λi + λ0)

ˆ

Ω

eiej dx =
n∑

i=1

c2
i (λi + λ0)

≤ (λn + λ0)
n∑

i=1

c2
i = (λn + λ0)

ˆ

Ω

u2 dx.

Thus for u ∈ Y , by the definition of (·, ·)λ0 , it follows thatˆ

Ω

[|∇u|2 − a(x)u2] dx ≤ λn

ˆ

Ω

u2 dx. ¤

Lemma 3.3. Under (f1), (f2), (f3) and (f5) for when p = 2, the functional I
defined by (2.1) possesses the linking geometric structure, i.e. for ρ > r > 0, let
z = en+1

||en+1||r ∈ Z and define

Mρ := {u = y + µz : ‖u‖ ≤ ρ, µ ≥ 0, y ∈ Y },
Mρ

0 := {u = y + µz : y ∈ Y, ‖u‖ = ρ, µ ≥ 0 or ‖u‖ ≤ ρ, µ = 0},
Nr := {u ∈ Z : ‖u‖ = r}, c = inf

γ∈Γ
max
u∈Mρ

I(γ(u)),

Γ = {γ ∈ C(Mρ, H1
0 (Ω)) : γ|Mρ

0
= Id}.

If I ∈ C1(X,R), then
b = inf

Nr

I > a = max
Mρ

0

I.

Proof. We hope to find 0 < r < 1 < ρ such that

b = inf
Nr

I > a = max
Mρ

0

I.

Using (f1) and (f2), we obtain

(3.3) (∀ε > 0)(∃cε > 0) : |F (x, s)| ≤ ε|s|2 + Cε|s|q,
for any x ∈ Ω and s ∈ R1. For every u ∈ Nr, we have that u ∈ Z and ‖u‖ = r. We
deduce from Lemma 3.1, (3.3) and the Sobolev embedding theorem that

I(u) =
1

2

ˆ

Ω

[
|∇u|2 − a(x)u2

]
dx−

ˆ

Ω

F (x, u) dx

≥ δ

2
‖u‖2 − ε

ˆ

Ω

|u|2 dx− Cε|u|qq ≥
δ

2
‖u‖2 − Cε‖u‖2 − C̃ε‖u‖q

≥ δ

2
r2 − o(r2)

(o(r2)

r2
→ 0 as r → 0

)
.

Then there exists r > 0 such that b = inf
‖u‖=r,u∈Z

I(u) > 0.
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For every u ∈ Mρ
0 , if u = y+µz, ‖u‖ ≤ ρ, µ = 0, then u = y ∈ Y . By Lemma 3.2

and hypothesis (f5), we know that

I(u) =
1

2

ˆ

Ω

[
|∇u|2 − a(x)u2

]
dx−

ˆ

Ω

F (x, u) dx

≤ λn

2

ˆ

Ω

|u|2 dx−
ˆ

Ω

F (x, u) dx ≤
ˆ

Ω

[λn

2
u2 − F (x, u)

]
dx ≤ 0.

It follows from (f3) that

(3.4) ∀N, ∃CN such that F (x, s) ≥ Ns2 − CN

for any x ∈ Ω and s ∈1. For u ∈ Mρ
0 , u = y + µz, µ ≥ 0, we have by (3.4) that

I(u) =
1

2

ˆ

Ω

[
|∇u|2 − a(x)u2

]
dx−

ˆ

Ω

F (x, u) dx

≤ 1

2
‖u‖2 + |a|N

2

|u|22∗
2

−
ˆ

Ω

(Nu2 − CN) dx.

Since Mρ
0 = Y ⊕RZ, we have dim(Y ⊕RZ) < ∞.

On the finite dimensional space Y ⊕RZ, all norms are equivalent, so we have

I(u) ≤ 1

2
‖u‖2 + C‖u‖2 −NC̃‖u‖2 + C̃N ≤ (

1

2
+ C −NC̃)‖u‖2 + C̃N .

Fixed N with 1
2

+ C −NC̃ < 0, then

I(u) → −∞ as ‖u‖ = ρ → +∞.

Take ρ large enough, r small enough with ρ > 1 > r > 0. Then

max
Mρ

0

I(u) ≤ 0 ≤ δ

4
r2 ≤ δ

2
r2 − o(r2) ≤ inf

Nr

I(u).

Hence,
b = inf

Nr

I(u) > a = max
Mρ

0

I(u). ¤

Lemma 3.4. If (f2), (f3) and (f4) hold, then the functional I defined by (2.1)
satisfies the (C)c condition for c ∈ R1.

Proof. Suppose that {un} ⊂ H1
0 (Ω) is a (C)c sequence for I(u), that is,

I(un) → c, ‖I ′(un)‖∗(1 + ‖un‖) → 0,

which shows that

(3.5) c = I(un) + o(1), 〈I ′(un), un〉 = o(1),

where o(1) → 0 as n → 0.

(i) (un) is bounded in H1
0 (Ω). For this purpose, we suppose, by contradiction,

that

(3.6) ‖un‖ → +∞,

and let wn = un

‖un‖ . Then wn ∈ H1
0 (Ω) with

‖wn‖ = 1.

Passing to a subsequence, there exists a w ∈ H1
0 (Ω) such that

wn ⇀ w in H1
0 (Ω).
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Since Ω is bounded, by the Sobolev’s embedding theorem we may assume that

(3.7)

{
wn(x) → w(x) a.e. in Ω,

wn → w in Lq(Ω), 2 ≤ q < 2∗.

Let Ω 6= = {x ∈ Ω: w(x) 6= 0}, then

lim
n→+∞

wn(x) = lim
n→+∞

un(x)

‖un‖ = w(x) 6= 0 in Ω6=

and (3.6) implies that

(3.8) |un| → +∞ a.e. in Ω 6=.

By (f3), we see that

lim
n→+∞

F (x, un(x))

|un(x)|2 = +∞ a.e. in Ω6=.

This means that

(3.9) lim
n→+∞

F (x, un(x))

|un(x)|2 |wn(x)|2 = +∞ a.e. in Ω6=.

By (f3), there is an N0 > 0 such that

(3.10)
F (x, s)

|s|2 > 1,

for any x ∈ Ω and s ∈ R1 with |s| ≥ N0. Since F (x, s) is continuous on Ω̄×[−N0, N0],
there is an M > 0 such that

(3.11) |F (x, s)| ≤ M,

for (x, t) ∈ Ω̄× [−N0, N0]. From (3.10) and (3.11), we see that there is a constant C,
such that for any (x, s) ∈ Ω̄×R1, we have

F (x, s) ≥ C,

which shows that
F (x, un(x))− C

‖un‖2
≥ 0.

This means that

(3.12)
F (x, un(x))

|un(x)|2 |wn(x)|2 − C

‖un‖2
≥ 0.

Since by (3.5) we have that

c = I(un) + o(1) =
1

2
‖un‖2 − 1

2

ˆ

Ω

a(x)u2
n dx−

ˆ

Ω

F (x, un) dx + o(1),

which shows that

(3.13) ‖un‖2 −
ˆ

Ω

a(x)u2
n dx = 2c + 2

ˆ

Ω

F (x, un) dx + o(1).

Since ‖wn‖2 = 1 and 2c
‖un‖2 = o(1), n →∞, we have

(3.14)
1

2
− 1

2

ˆ

Ω

a(x)w2
n dx =

ˆ

Ω

F (x, un)

u2
n

w2
n dx + o(1).

We claim that |Ω6=| = 0.
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If |Ω6=| 6= 0, then by the Fatou’s Lemma, (f3) and the Hölder’s inequality, we get

+∞ = (+∞)|Ω6=| =
[ˆ

Ω6=
lim inf
n→+∞

F (x, un(x))

|un(x)|2 |wn(x)|2 dx−
ˆ

Ω6=
lim sup
n→+∞

C

‖un‖2
dx

]

=

ˆ

Ω 6=
lim inf
n→+∞

(F (x, un(x))

|un(x)|2 |wn(x)|2 − C

‖un‖2

)
dx

≤ lim inf
n→+∞

ˆ

Ω6=

(F (x, un(x))

|un(x)|2 |wn(x)|2 − C

‖un‖2

)
dx

≤ lim inf
n→+∞

ˆ

Ω

(F (x, un(x))

|un(x)|2 |wn(x)|2 − C

‖un‖2

)
dx

= lim inf
n→+∞

ˆ

Ω

F (x, un(x))

‖un‖2
dx− lim sup

n→+∞

ˆ

Ω

C

‖un‖2
dx

= lim inf
n→+∞

ˆ

Ω

F (x, un(x))

‖un‖2
dx ≤ 1

2
− 1

2

ˆ

Ω

a(x)w2
n dx + o(1)

≤ 1

2
+ C|a(x)|N

2
+ o(1) < +∞,

which is a contradiction. This shows that

|Ω6=| = 0.

Hence w(x) = 0 a.e. in Ω.
Since I(tun) is continuous in t ∈ [0, 1], there exists tn ∈ [0, 1], n = 1, 2, . . ., such

that
I(tnun) = max

0≤t≤1
I(tun).

As 〈I ′(un), un〉 = o(1), we see that

〈I ′(tnun), tnun〉 = o(1).

By (f4), we then get for t ∈ [0, 1] that

2I(tun) ≤ 2I(tnun) = 2I(tnun)− 〈I ′(tnun), tnun〉+ o(1)

=

ˆ

Ω

[tnunf(x, tnun)− 2F (x, tnun)] dx + o(1)

≤
ˆ

Ω

[unf(x, un)− 2F (x, un) + C∗] dx + o(1).

≤ (‖un‖2 + 2c− ‖un‖2 + o(1)) + C∗|Ω|+ o(1)

≤ 2c + C∗|Ω|+ o(1)

where we use (3.5) and (3.13). On the other hand, since the functional χ : D1,2
0 (Ω) →

R : u 7→ ´
Ω

a(x)u2 dx is weakly continuous when u ∈ L
N
2 (Ω), by (f2) and wn → 0 in

Lq(Ω), we get for any R > 0, that

2I(Rwn) = ‖Rwn‖2 −R2

ˆ

Ω

a(x)w2
n dx− 2

ˆ

Ω

F (x,Rwn) dx = R2 + o(1).

So we have
R2 + o(1) = 2I(Rwn) ≤ 2c + C∗|Ω|+ o(1).
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Letting n →∞ we get

R2 ≤ C∗|Ω|+ 2c.

Letting R →∞ we get a contradiction. This proves that ‖un‖ ≤ C < +∞ for some
constant C.

(ii) {un} has a convergent subsequence in H1
0 (Ω). Since ‖un‖ ≤ C, passing to a

subsequence, we may assume that there exists u0 ∈ H1
0 (Ω) such that

un ⇀ u0 in H1
0 (Ω).

By |Ω| < +∞ and the Sobelev’s embedding theorem, we may assume that

(3.15)

{
un → u0 in Lq(Ω), 2 ≤ q < 2∗,
un → u0 a.e. in Ω.

By (f2)(3.15) and the Lebesgue’s dominated convergent theorem, we have that

(3.16)

{´
Ω

f(x, un)un dx → ´
Ω

f(x, u0)u0 dx,´
Ω

f(x, un)u0 dx → ´
Ω

f(x, u0)u0 dx.

On the other hand,

‖un − u0‖2 = 〈I ′(un)− I ′(u0), un − u0〉+

ˆ

Ω

a(x)(un − u0)
2 dx

+

ˆ

Ω

[f(x, un)− f(x, u0)](un − u0) dx.

By I ′(un) → 0 and un ⇀ u0 in H1
0 (Ω), we know that

〈I ′(un)− I ′(u0), un − u0〉 → 0.

By (3.16), we obtain
∣∣∣
ˆ

Ω

[f(x, un)− f(x, u0)](un − u0) dx
∣∣∣ → 0.

Since the functional χ : D1,2
0 (Ω) → R : u 7→ ´

Ω
a(x)u2 dx is weakly continuous when

u ∈ L
N
2 (Ω), we obtain

∣∣∣
ˆ

Ω

a(x)(un − u0)
2 dx

∣∣∣ → 0.

Hence,

un → u0 in H1
0 (Ω).

Therefore, for any c ∈ R, I(u) satisfies the (C)c condition. ¤
The Proof of Theorem 1.1. Combing the results of Lemma 3.3 and Lemma 3.4,

we will complete the proof by applying Proposition 2.10.

Remark 3.5. If λ1 > 0, then it suffices to use the mountain-pass theorem instead
of the linking theorem to prove the existence of nontrivial solutions of (1.1).
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