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Abstract. We prove that the component P®,(X,Y) of the perturbation class for the up-
per semi-Fredholm operators between Banach spaces X and Y coincide with the strictly singular
operators when every closed infinite dimensional subspace of X contains an infinite dimensional
complemented subspace whose complement is isomorphic to X. Similarly, we prove that the com-
ponent P®_(X,Y) of the perturbation class for the lower semi-Fredholm operators coincide with
the strictly cosingular operators when every infinite codimensional subspace of Y is contained in an
infinite codimensional complemented subspace isomorphic to Y. We also give examples of Banach
spaces satisfying the aforementioned conditions.

1. Introduction

The perturbation classes problem arises in the study of the stability of Fredholm
and semi-Fredholm operators under additive perturbations. Let -Z(X,Y") denote the
(continuous linear) operators between the Banach spaces X and Y. An operator
T € Z(X,Y) is said to be upper semi-Fredholm (T € ®.) if its kernel N(T') is
finite dimensional and its range R(T") is closed; T is said to be lower semi-Fredholm
(T € ®_) if its range is closed and finite codimensional, and 7" is said to be Fredholm
(T € @) if it is both upper and lower semi-Fredholm. Let 7 be any of the classes
®,, &_ or . The perturbation class of o/ is defined by its components in Z(X,Y),
when 7 (X,Y) is non-empty:

PA(X,)Y):={KeL(X,Y): K+Teo(X,Y)forall T € o/ (X,Y)}.

The components P/ (X,Y) were studied in [17] in the case X =Y and in [2]
in the general case. It was proved in [22| that P® coincides with the inessential
operators #n when it is defined, but the perturbation classes P®, and P®_ have
been identified only in a few cases. Kato showed that the strictly singular operators
. are contained in P®, |16, Theorem 5.2|, Vladimirskii proved that the strictly
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cosingular operators % are contained in P®_ [24, Corollary 1], and it is a conse-
quence of the continuity of the index for semi-Fredholm operators that both P®,
and P®_ are contained in .#n (see [5, Theorem 5.6.9]).

Recall that an operator 7: X — Y is in .. if its restriction T'|g is an isomor-
phism for no infinite dimensional subspace E; T € % if QT is surjective for no
infinite codimensional closed subspace F' of Y, where Qp: Y — Y/F' is the quotient
operator, and T' € n if for every A € Z(Y, X), Ix — AT € ®.

The perturbation classes problem asks whether .. and %€ coincide with PP
and P®_ respectively. This problem was formulated by Gohberg, Markus and Feld-
man [11, p. 74]) for the upper semi-Fredholm operators. Later, it was explicitly stated
in [5, page 101], [22, 26.6.12], |23, Section 3| and [3|. Finally, it was proved in [12]
that there exists a complex separable Banach space Z for which P®, (Z) # .. (Z)
and P®_(Z*) # /€ (Z*). However, there is still interest in finding spaces X and
Y for which P®,(X,Y) = S S(X,Y) or PP_(X,Y) = S (X,Y) because these
results provide intrinsic characterizations of the operators K in the respective classes;
i.e., characterizations involving the action of K instead of the properties of the sums
of K with all the operators in &, (X,Y) or &_(X,Y). Moreover, the aforementioned
space Z of [12] is certainly special: it is a finite product of hereditarily indecompos-
able spaces. The existence of hereditarily indecomposable Banach spaces was only
recently proved in [15]. So the perturbation classes problem still remains open for
many classical Banach spaces.

Provided ®,(X,Y) # 0, we have P®,(X,Y) = L7(X,Y) in the following
cases:

Y subprojective [17, 1];

X=Y=L,(n),1<p<oo|25];

X hereditarily indecomposable [1, Theorem 3.14];

X is separable and Y contains a complemented copy of C[0, 1] [3];

X = L,(0,1) when 1 < p < 2 and Y satisfies the Orlicz property [14];

X = Ly(0,1) and Y is weakly sequentially complete [14];

X = L,(0,1) with 2 < p < oo [14].

Also, provided ®_(X,Y") # (), we have P®_(X,Y) = % (X,Y) in the following

(1)
(2)
(3)
(4)
()
(6)
(7)

1

)

)

") Y quotient indecomposable [1, Theorem 3.14];

) X contains a complemented copy of ¢; and Y is separable [3];
)

In this paper, we introduce the notions of strongly subprojective and strongly
superprojective Banach space, which strengthen those of subprojective and superpro-
jective Banach space introduced in [26]. We remark that all known examples of sub-
projective spaces and superprojective spaces are respectively strongly subprojective
and strongly superprojective. Next, we prove that if X is strongly superprojective,
then PP, (X,Y) = S (X,Y) for all spaces Y (Theorem 2.6), and if Y is strongly
superprojective, then P®_(X,Y) = Y€ (X,Y) for all spaces X (Theorem 3.7).

We point out that although Theorem 3.7 is a certain dual form of Theorem 2.6,
its proof does not follow by duality from it. This is because, given T' € Z(X,Y),
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the implications T* € . = T € € and T €¢ Y€ = T € .. hold but
their converses fail. See [21, Examples 1 and 2]. Moreover, the proof of Theorem 3.7
is technically more complicated than that of Theorem 2.6 because the former one
involves quotients instead of subspaces.

2. Operators on strongly subprojective spaces

A Banach space X is said to be subprojective if every infinite dimensional closed
subspace M of X contains an infinite dimensional subspace N complemented in X.
Clearly, a closed subspace of a subprojective space is also subprojective. This concept
was introduced by Whitley [26]. Here we consider a strengthening of it.

Definition 2.1. A Banach space X is said to be strongly subprojective if every
infinite dimensional closed subspace M of X contains an infinite dimensional subspace
N complemented in X with complement isomorphic to X.

The following remark will allow us to show that all the known examples of sub-
projective spaces (see Proposition 2.4) are strongly subprojective.

Remark 2.2. If the subspace N in the definition of subprojective space can be
taken isomorphic to its square (N ~ N x N) then X is strongly subprojective.

Proof. Let M be an infinite dimensional closed subspace of a subprojective space
X. Then there exist closed subspaces N and H of X such that X = N & H and
N C M. By hypothesis, N contains two closed subspaces N; and N, such that
N ~ N; ~ Ny and N = N; @ N,. Therefore, N; is a subspace of M, No ® H ~ X
and
X=N&(N:@H),

which proves that X is strongly subprojective. 0

Remark 2.3. Recall that a compact space K is said to be scattered (or dispersed)
if every non-empty subset of K has an isolated point. As examples, we mention:

(1) Let k be any ordinal. The interval [0, k] = {« ordinal : 0 < a < k}, endowed
with the order topology, is a scattered compact.

(2) Let I" be a set, endowed with the discrete topology. The one-point compact-
ification I', is a scattered compact and C(I') is isomorphic to ¢y(T).

Note that ¢, ~ ¢, x £, for 1 < p < 0o and ¢y =~ ¢y x cy. Therefore, Remark 2.2
can be applied to obtain the following result.

Proposition 2.4. The following Banach spaces are strongly subprojective:

(1) The sequence spaces ¢, for 1 < p < oo and ¢.

(2) The James space J.

(3) The Lorentz sequence spaces d(w,p) for 1 < p < oo and w = (w,) a non-
increasing null sequence with %> w, divergent. This applies to {,, for
1 <p,g<oo.

) The Baernstein spaces B, for 1 < p < 0.

) The Tkirelson space T.

) The function spaces L,(0,1) for 2 < p < oo.

) The function spaces L,(0,00) N Ly(0,00) for 1 <p < 2.

) The Lorentz spaces Aw,,(0,1), L, ,(0,00) and L, ,(0,1) for 2 < p < oo and
1<qg < o0.
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(9) The spaces of continuous functions C(K), with K a scattered compact.
(10) Closed subspaces of the previous examples.

Proof. (1) Denoting by X any of these spaces, every infinite dimensional closed
subspace of X contains a subspace isomorphic to X and complemented in X [4,
Proposition 2.2.1].

(2) Every infinite dimensional closed subspace of J contains a subspace isomor-
phic to ¢, and complemented in J [9, Corollary 2.d.4].

(3) Every infinite dimensional closed subspace of d(w,p) contains a subspace
isomorphic to ¢, and complemented in d(w, p) [18, Proposition 4.e.3].

(4) Every infinite dimensional closed subspace of B, contains a subspace isomor-
phic to ¢, and complemented in B, |7, Theorem 0.15].

(5) Let {t,} denote the unit basis of 7. By [7, Proposition 11.7], every closed
subspace of T' contains a subspace N complemented in 7" and isomorphic to the closed
subspace generated by a subsequence of the basis {t,,}. Moreover, |7, Proposition I.12]
ensures that NV ~ N x N.

(6) Every infinite dimensional closed subspace of L,(0, 1) is either isomorphic to
¢y and complemented, or contains a subspace isomorphic to ¢, and complemented in
L,(0,1) [4, Corollary 6.4.9].

(7) The argument given in (6) applies in this case [8, Theorem 4.1].

(8) The argument given in (6) applies for Aw,(0,1) and L, ,(0,00). See [10,
Remark 5.7] and [6, Theorem 2.5|. For L, ,(0,1), the result follows from (10), since
L,,(0,1) is a closed subspace of L, ,(0, c0).

(9) Every infinite dimensional closed subspace of C(K') contains a subspace iso-
morphic to ¢y and complemented in C'(K) [19, Theorem 11].

(10) Given a pair of closed subspaces M and Z of X with M C Z, if M is
complemented in X, then it is also complemented in Z. 0

The next result will be useful later.

Proposition 2.5. Let X be a strongly subprojective Banach space. Then every
finite codimensional closed subspace of X contains a subspace isomorphic to X.

Consequently, ., (X,Y") is non-empty if and only if Y contains a subspace isomorphic
to X.

Proof. Let Z be a closed subspace of X with dim X/Z = n. Since X is strongly
subprojective, X contains an infinite codimensional subspace X, isomorphic to X.
Let Zy be a closed n-codimensional subspace of X containing X,. Since Z and Z,
are isomorphic, the first assertion is clear.

For the second assertion, note that ®,(X,Y’) is non-empty if and only if Y
contains a closed subspace isomorphic to a finite codimensional subspace of X. [

Let us give the main result of this section.
Theorem 2.6. Let X be a strongly subprojective space and let Y be a Banach
space. If &, (X,Y) # 0 then P® (X,Y) = YL (X,Y).

Proof. Tt is enough to show that, given K € Z(X,Y)\ S (X,Y), there exists
T e d, (X,Y)such that T+ K ¢ &,.

Since K is not strictly singular, there exists an infinite dimensional closed sub-
space V' of X such that K|y is an isomorphism; hence K|y, € & (V,Y). As X is
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strongly subprojective, we may assume that
X =V& X; with X; ~ X.

By Proposition 2.5, Y has a closed subspace L isomorphic to X. Taking into con-
sideration the relative positions of the subspaces K (V') and L inside Y, three cases
may happen:

(a) K(V)N L finite dimensional and K (V') + L closed,;
(b) K(V)N L is infinite dimensional;
(¢) K(V)N L finite dimensional and K (V') + L not closed.

(a) As L is strongly subprojective, by Proposition 2.5, the closed complement of
K(V)NLin L contains a subspace isomorphic to L. Thus we can assume K (V)NL =

{0}.

Let S: X7 — L be a bijective isomorphism. We consider the operator
T:-X=VeXs—KV)®LCY

that maps v + x1 to —K(v) + S(z1), where v € V and x; € X;. Clearly T € ®,.
However (T'+ K)|y =0,s0 T+ K ¢ &, and we are done.

(b) Assume K (V') N L is infinite dimensional. Since L is strongly subprojective,
there exists a closed subspace W contained in V' and a closed subspace L3 in L such
that Ly := K(W)N L is infinite dimensional, L is isomorphic to L and L = L; ® Ls.
Let Vi := (K|yv)"!(L;). By the strong subprojectivity of X, there exist an infinite
dimensional closed subspace V5 of V; and a closed subspace X5 of X such that X5 is
isomorphic to X and X = V5, & Xs. Since K|y, is an isomorphism and K (V3) + Ls is
closed, we are in the conditions of case (a).

(c) As in case (a), we can assume that K(V)NL = {0} and K(V)+ L not closed.
In order to prove that K ¢ P®,(X,Y), it is enough to find a compact operator
K, € Z(X,Y) so that dim (K + K;)(V) N L = oo; indeed, once the operator K; has
been found, since (K+K;)|y € & (V,Y), the operator K + K satisfies the conditions
of case (b), which leads to K + K; ¢ P®,(X,Y), and therefore K ¢ PO, (X,Y).

In order to find that operator Kj, since K (V) + L is not closed, there exists a
normalized sequence (y,) in K (V) with dist (y,, L) — 0. If (y,) has a subsequence
weakly convergent to some y € Y, since y € K(V), we may choose a sequence
(un) C L so that [luy, — yul — 0, so uy % y € L, hence y = 0. Therefore, [4,
Theorem 1.5.6] implies that (y,,) contains a basic subsequence, and taking a bounded
sequence (v,) C V such that y, = K(v,) and passing to a subsequence if necessary,
we may assume that both (y,) and (v,) are basic sequences.

Since the sequence (v,) is basic and inf, ||v,|| > 0, there exists a bounded se-
quence (f,) C X* such that (f;,v;) = d0;;. But dist (yn, L) — 0, so we can pick a

sequence (z,) C L and a subsequence (yg,) of (y,) so that > >°  |lyk, — za] < 0.

Hence, the expression
o @]

Kl(x) = Z<fkn7 I) (Zn - ykn)
n=1
defines a compact operator K; € Z(X,Y) that satisfies (K + K;)(vg,) = z,. Since
(K + Kj)|y is upper semi-Fredholm and z, € (K + K;)(V) N L for every n, (K +
K;1)(V)N L is infinite dimensional, as we wanted to prove. O
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Since all known examples of subprojective spaces are strongly subprojective, the
following result implies that, in most of the cases, Theorem 2.6 is not a consequence
of assertion (1) in the introduction.

Proposition 2.7. Suppose that Y is subprojective and &, (X,Y’) is not empty.
Then X is subprojective.

Proof. Tt is enough to observe that @ (X,Y’) # () implies that a finite codimen-
sional closed subspace of X is isomorphic to a subspace of Y. 0]

3. Operators into strongly superprojective spaces

Superprojectivity is the dual notion to subprojectivity. A Banach space X is
said to be superprojective if every infinite codimensional closed subspace H of X is
contained in an infinite codimensional complemented subspace E of X.

Definition 3.1. A Banach space X is said to be strongly superprojective if every
infinite codimensional closed subspace H of X is contained in an infinite codimen-
sional closed subspace E isomorphic to X and complemented in X.

The proof of the following result is similar to that of Remark 2.2.

Remark 3.2. If the complement of the subspace E in the definition of super-
projective space can be taken isomorphic to its square, then X is strongly superpro-
jective.

Some examples of strongly superprojective Banach spaces are obtained through
duality:

Proposition 3.3. Let X be a reflexive Banach space. Then X is strongly sub-
projective if and only if X* is strongly superprojective.

Proof. Assume X is a reflexive strongly subprojective space and let M be an
infinite codimensional closed subspace of X*. Thus, as M is an infinite dimensional
subspace of X, it contains an infinite dimensional complemented subspace N with
X/N ~ X. Hence N* is an infinite codimensional complemented subspace of X*
isomorphic to X* that contains M. Therefore, X* is strongly superprojective.

The proof of the converse implication is similar. O

Observe that Proposition 3.3 is also true for superprojective and subprojective
spaces.

In the following result, we list some examples of strongly superprojective spaces.
Given 1 < p < 00, p* denotes the only real number satisfying 1/p + 1/p* = 1.

Proposition 3.4. The following Banach spaces are strongly superprojective:

(1) The sequence spaces ¢, for 1 < p < oo and cy.

(2) The dual J* of James’ space.

(3) The dual spaces d(w,p)* of d(w,p) for 1 < p < oo and w = (w,) a non-
increasing null sequence with »>°  w, divergent. This applies to ¢, for
1<p,q<oo.

) The dual spaces B;, of Baernstein’s spaces for 1 < p < oo.

) The dual T* of Tsirelson’s space.

) The function spaces L,(0,1) for 1 <p < 2.

) The function spaces L,(0,00) + Ly(0,00) for 2 < p < oo.
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(8) The dual spaces Aw,,(0,1)*, L, ,(0,00)* and L,,(0,1)* for 2 < p < oo and
1 <q< 0.
(9) The spaces of continuous functions C'(K), with K a scattered compact.
(10) Quotients of the previous examples.

Proof. (1) The result for ¢, follows from Propositions 2.4 and 3.3 and, by Re-
mark 2.3, the result for ¢ is a special case of (9).

(2) Although J is non-reflexive, since J ~ J** and dim J**/J = 1, the arguments
in the proof of Proposition 3.3 allow us to show that J strongly subprojective implies
J* strongly superprojective.

(3) to (8) In these cases we consider dual spaces of reflexive strongly subpro-
jective spaces (see Proposition 2.4); therefore they are strongly superprojective by
Proposition 3.3. Note that

e d(w,p) is reflexive if and only if 1 < p < oo [18, page 178|;

e B, is reflexive for 1 < p < oo |7, Theorem 0.15];

e Tsirelson’s space T is reflexive [18, Theorem 1.c.12| and |7, Theorem 1.8];

e for 2 < p < o0, L,(0,00) + Ly(0,00) is the dual of L, (0,00) N Ly(0, 00) and
these spaces are reflexive |8, Theorem 3.1];

e the spaces Ay, (0,1) and L, ,(0, 00) are reflexive for 1 < p, ¢ < oo [10, p. 406].

(9) Let K be a scattered compact and let M be a closed infinite codimensional
subspace M of C(K). By |20, Theorem 4.2|, C(K)/M has a quotient isomorphic to
co or to ¢5. In other words, C'(K) has a closed subspace A with M C A such that
C(K)/A is isomorphic to ¢y or to . But K is scattered, so C(K)* has no copy of
{5 because C(K)* = {,(K); therefore, C'(K)/A must be isomorphic to co.

Consider the quotient operator Q4: C(K) — C(K)/A. Since C(K) has the
Petczyniski property, there exists a subspace F' of C'(K) isomorphic to ¢y such that
Q) alF is an isomorphism. Observe that Q4(F) is complemented in C'(K)/A ~ ¢q. So
we can write C'(K)/A = Qa(F) @ N for some closed subspace N. Hence C(K) =
Fo Q;l(N ). We have proved that M is contained in a complemented infinite codi-
mensional subspace. Thus C'(K) is superprojective. Since F' is isomorphic to ¢y we
have F' ~ F' x F, so Remark 3.2 shows that C'(K) is strongly superprojective.

(10) It is enough to prove that quotients of superprojective spaces are superpro-
jective. Let M be a closed subspace of X and let Q) : X — X /M be the quotient
map. Given an infinite codimensional closed subspace A of X/M, Q;;(A) is closed
an infinite codimensional in X and A ~ Q,; (A)/M. Moreover, if B is an infinite
codimensional complemented subspace of X containing Q,;(4), then Q)/(B) is an
infinite codimensional complemented subspace of X/M containing A. O

The next two results will be needed later.

Lemma 3.5. Let K € Z(X,Y) be an operator and Yy be a closed subspace of Y
such that Qy, K is surjective. If E is a closed subspace of X such that K—'(Yy) C E,
then Y contains a closed subspace F such that Yy C F and E = K~'(F). Moreover,
if E is infinite codimensional in X then F' is infinite codimensional in Y .

Proof. Consider the surjective isomorphism U: X/N(Qy,K) — Y/Y; induced
by QYOK .

Let F be any closed subspace of X such that £ > K~1(Yy). The desired subspace
Fis Q{,Ol UQr-1(v,)(E). Indeed, the facts that F'is closed, F' contains Y; and £ =
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K~Y(F) are straightforward. Moreover, if E is infinite codimensional in X, then
Q{/Ol U Qk-1(vy)(E) is infinite codimensional in Y. O

Proposition 3.6. Let Y be a strongly superprojective space. Then every quo-
tient of Y by a finite dimensional subspace has a quotient isomorphic to Y. Therefore,
®_(X,Y) is not empty if and only if X has a quotient isomorphic to Y.

Proof. Let Z be a finite dimensional subspace of Y. As Y is strongly superpro-
jective, there is a closed infinite dimensional subspace Yy of Y such that Y/Yy ~ Y.
Let F' be any subspace of Yy with dim F' = dim Z. Then

Y/F Y
Yo/F Yo o
and as Y/Z ~ Y/F, the first assertion follows easily.

For the second assertion, the ‘if’ part is trivial. For the reverse, given T €
®_(X,Y), there exists a finite dimensional subspace N of Y such that

thus, an application of the first assertion finishes the proof. O
Next theorem is the main result of this section.

Theorem 3.7. LetY be a strongly superprojective space and let X be a Banach
space such that ®_(X,Y) # 0. Then P®_(X,Y) = Y€ (X,Y).

Proof. 1t is enough to show that, given K € Z(X,Y) \ /% (X,Y), there exists
T € ®_(X,Y) such that T+ K ¢ ®_. In order to do that, let K: X — Y be a
non-strictly cosingular operator. Thus there exists a closed subspace Yy C Y with
dim Y/Yy = oo such that Qy, K is surjective, where Qy, is the quotient operator onto
Y/Yy. Obviously, R(K)+ Yy, =Y.

Since Y is strongly superprojective, the space Y, can be assumed to be isomorphic
to Y and complemented in Y. Thus Y =Yy, & N with dim N = oc.

Let P: Y — Y be the projection with N(P) =Y, and R(P) = N. Thus

R(PK)=P(R(K)+Y,) = N,
N(PK) = K 1(Yp).

As ®_(X,Y) # 0, Proposition 3.6 provides a closed subspace M of X such that
X/M ~Y. Hence, as Y ~ Yy, there exists S € Z(X,Y) such that N(S) = M and
R(S) =Y.

Taking into account the relative positions of K~1(Yy) and M in X, three cases
occur:

(a) K~Y(Yy) + M is closed and finite codimensional in X,

(b) K=1(Yy) + M is infinite codimensional in X,

(c) K-1(Yy) + M is finite codimensional in X but K~'(Yy) + M is not closed.
(a) Let M; be a subspace of X containing M such that dim M;/M < oo and

K~1(Yy) + M; = X. Since X/M is superprojective, by Proposition 3.6, there exists

a closed subspace M, containing M; such that X/M,; ~ Y. Thus we can assume

K1(Yo)+ M =X.
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Let T:= S — PK. Observe that R(T) =Y. Indeed, given y € Y, decompose
y =y + vy with yo € ¥y and y; € N.
We will show that
(1) Yo = S(z0) for some zy € K *(Y),
(2) y1 = PK(z,) for some z; € M.

In order to prove (1), take z € X such that yo = S(z) and consider any decomposition
x = xg + zf, with g € K~1(Yy) and zj, € M. Thus z}, € N(S), hence yo = S(z).

For (2), as N = R(PK), there exists x € X such that y; = PK(x). Take any
decomposition = xy + o} with 21 € M and 2} € K~(Y}). Since K(z}) € Yy =
N(P), it follows that y; = PK(x;), and (2) is proved.

Finally, formulas (1) and (2) yield that zy € N(PK) and x; € N(S), hence y =
(S — PK)(xzo — x1). We have just proved that T is surjective, hence, '€ ®_(X,Y).

However, R(T+ K) = R(S+ (Ix — P)K) C Yy, so T+ K ¢ &_(X,Y).

(b) Assume K—1(Yy) + M is infinite codimensional. Thus (K—1(Yy) + M)/M is
an infinite codimensional subspace of X/M. But X/M is isomorphic to Y, so it is
strongly superprojective, hence there exists a closed infinite codimensional subspace
X; of X such that K—%(Yy) + M C X3, Xi/M ~Y and

X X, F

MM
for some subspace M C E C X with dim /M = co. Lemma 3.5 provides a closed
subspace Y; of Y such that dimY/Y; = oo, ¥y C Y} and X; = K~(Y}). Thus

K'\Y)+E=X,+E=X.

Moreover,
X/M
X/B = g = Xi/M =Y.

Therefore, using again that Y is strongly superprojective, there exists a comple-
mented infinite codimensional subspace Y5 of Y such that Y1 C Yo C Y and Y5 >~ Y.

Obviously, Qy, K is surjective, X/E ~ Y and K~}(Y3) + E = X so we are in
the conditions of case (a) (using an operator S; € Z(X,Y) with N(S;) = E and
R(Sy) =Y, instead of S).

(c) As in the case (a), we can assume that K ~'(Yy)+ M is dense but not closed in
X. We will find a compact operator K; € Z(X,Y) such that (K + K;)~!(Yp) + M
is infinite codimensional in X. Once K has been found, as R(Qy,(K + K1))) is
finite codimensional in Y/Yj, there exists a finite rank operator Ky € Z(X,Y)
such that Qy,(K + K; + K3) is surjective and (K + K; + K3)~1(Yy) + M is infinite
codimensional in X yet. Hence, applying the argument of (b), we get that K + K7 +
Ky, ¢ PP_(X,Y), and as K+ K5 is compact, we can conclude that K ¢ P®_(X,Y).

In order to find K, since K~(Yy) + M is not closed, it follows K~1(Yy)* + M+

is not closed either; but X = K=1(Yy) + M, so
(3) {0} = K~ (o) n M.

Thus, we may take a normalized sequence (f,) C K~1(Yp)* such that dist (f,, M*) <
1/2". Take also a sequence (h,) in M+ so that ||f, — h,|| < 1/2™
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Note that (f,,) does not have any convergent subsequence; otherwise, if fy,, — f,
then hy, — f too, so f = 0 because of (3), a contradiction.

Let f be a weak* cluster point of (f,). As both subspaces K~(Yy)* and M~ are
weak™ closed, (3) yields that f = 0. Thus, by [13, Lemma 3.1.19|, there is a bounded
sequence (z,) in X and a basic subsequence (fy,) of (f,) such that {fx,, Zm) = Gnm.

As K71(Yy)t = K*(Y3"), we may pick a sequence (g,) in Y5 such that K*(g,) =
[; note that (g,) is bounded because K*|y. is an isomorphism. Let y, := K(zy).
Obviously,

(9i:y5) = (K™(g3), ;) = ;.
Consider the compact operator K;: X — Y given by the expression

o0

Ky(z) =Y (Pky = frns 2)Yn-

n=1

Its conjugate operator is given by Kj(g) = > o (9, yn)(hg, — fr,). Thus (K* +
K})(gn) = hy, € (K*+ K3)(Y5H) N M* for all n, which proves that (K*+ K;)(Y5) N
M+ is infinite dimensional. But

(K* + KDY n MY = (K + Kp) " (o)  n MY =(K + Kp) 1 (Yo) + M~

hence (K + K;)~1(Yy) + M is an infinite codimensional subspace of X, as we wanted
to prove. The proof is done. 0

Since all known examples of superprojective spaces are strongly superprojective,
the following result implies that, in most of the cases, Theorem 3.7 is not a conse-
quence of assertion (1) in the introduction.

Proposition 3.8. Assume that X is superprojective and ®_(X,Y) is not empty.
Then Y is superprojective.

Proof. Tt is enough to note that ®_(X,Y") # () implies that a quotient of Y by a
finite dimensional subspace is isomorphic to a quotient of X. O
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