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Abstract. We construct a mapping with exponentially integrable distortion which attains a
modulus of continuity by Onninen and Zhong, showing that it is sharp.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a connected and open set. A Sobolev mapping f ∈
W 1,1

loc (Ω,Rn) is said to have finite distortion if the Jacobian Jf (x), i.e., the determinant
of the matrix of derivatives Df(x) is locally integrable and there is a measurable
function K(x) ≥ 1 finite almost everywhere such that

|Df(x)|n ≤ K(x)Jf (x) a.e. x ∈ Ω.

Here we have used the operator norm of the differential matrix with respect to the
Euclidean distance.

If we, moreover, require that K(x) ∈ L∞(Ω), we arrive at mappings of bounded
distortion also called quasiregular mappings. In [7] Reshetnyak proved among many
other things that quasiregular mappings are Hölder continuous with the exponent
1/K, where K is the L∞ norm of the distortion. It has been shown recently that
mappings of finite distortion with exponentially integrable distortion

exp(λK(x)) ∈ L1(Ω)

share many nice properties of mappings of bounded distortion. We would like to point
the reader’s attention to the monographs [1] and [3] for the motivation, applications
and the history of the subject.

Our aim is to study the modulus of continuity of the mappings of finite distortion
with exp(λK) ∈ L1(Ω). Let us first recall the history of such estimates. First, it was
shown by Iwaniec, Koskela and Onninen [2] that mappings in this class are continuous
and satisfy

|f(x)− f(y)| ≤ C

log1/n log(ee + 1/|x− y|) .
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This was later improved by Koskela and Onninen [5] to

|f(x)− f(y)| ≤ C

logλ/n−ε(1/|x− y|)
and finally using very delicate arguments it has been shown by Onninen and Zhong
[6] that

(1.1) |f(x)− f(y)| ≤ C

logλ/n(1/|x− y|) .

Extremal mappings for continuity of mappings of finite distortion are usually
radial maps and therefore the natural candidate for the extremal map is

f0(x) =
x

|x|
1

logλ/n(1/|x|) .

Standard computations (see (2.2) below) give us

K(x) =
n

λ
log

1

|x|
and hence ˆ

B(0,
1
2
)

exp(λK(x)) dx =

ˆ

B(0,
1
2
)

1

|x|n dx = ∞.

This elementary computation suggests that there is some room for improvement in the
estimate (1.1) and maybe we can add some supplementary term like log log 1/|x− y|
to some negative power to our estimate. We show that, surprisingly, this is not the
case and the modulus of continuity (1.1) is already sharp.

Theorem 1.1. Given λ > 0, there is a mapping of finite distortion f : B(0, 1
2
) →

Rn such that ˆ

B(0,
1
2
)

exp(λK(x)) dx < ∞

and

|f(x)− f(0)| ≥ C

logλ/n(1/|x|) for all x ∈ B(0, 1
2
).

There have also been studies on mappings of subexponentially integrable distor-
tion (see e.g. [4]). One requires that

(1.2)
ˆ

B

exp
(
A (K(x))

)
dx < ∞

for some Orlicz function A and the above mentioned example corresponds to the
case A (t) = λt. We call an infinitely differentiable and strictly increasing function
A : [0,∞) → [0,∞) with A (0) = 0 and limt→∞ A (t) = ∞ an Orlicz function. As
usual we impose additional condition

(1.3)
ˆ ∞

1

A ′(s)
s

= ∞.
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It is easy to see that the critical functions for this condition are

(1.4)
A1(t) = λt, A2(t) = λ

t

log(e + t)
,

A3(t) = λ
t

log(e + t) log(e + log(e + t))
and so on.

We will also require that

(1.5)

(i) ∃t0 > 0 ∀t > t0 A −1(nt) < t
3
2 ,

(ii) A ′(t) is non-increasing,

(iii) b′(t) is non-increasing for b(t) :=
t

A (t)
,

(iv) b(0) := lim
t→0+

b(t) is finite and positive.

Let us note that the critical functions from (1.4) satisfy these conditions and there-
fore these assumptions are not substantially restrictive. It has been shown in [4]
that a mapping f is continuous under the assumptions (1.2) and (1.3) and that the
assumption (1.3) is sharp.

It was proved in [6] that under the assumptions (1.2) and (1.3) we have

|f(x)− f(y)| ≤ C exp
(
−
ˆ R

|x−y|

dt

tA −1(n log C/t)

)

for |x−y| sufficiently small and B(x, 80R) ⊂ Ω. Note further that if we put A1(t) = λt
we arrive at the modulus given in (1.1). Our result shows the sharpness of this
estimate.

Theorem 1.2. Suppose that an Orlicz function A satisfies (1.3) and (1.5). Then
there is a ball B := B(0, r) and a mapping of finite distortion f : B → Rn such that

ˆ

B

exp
(
A (K(x))

)
dx < ∞

and

(1.6) |f(x)− f(0)| ≥ C exp
(
−
ˆ 1/2

|x|

dt

tA −1(n log 1/t)

)
for all x ∈ B.

2. Proofs of the theorems

To prove Theorem 1.1 we simply set

f(x) =
x

|x|
(log 1/|x|) a

log 1/|x|

logλ/n(1/|x|) ,

where a > 0. The additional term clearly satisfies

lim
|x|→0

(log 1/|x|) a
log 1/|x| = 1

and thus the modulus of continuity of our f is exactly as required in (1.1). On
the other hand, the additional term slightly affects the distortion and the standard
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computation (see the general case below for details) will give us

K(x) ∼ n

λ
log

1

|x| −
n2a

λ2
log log

1

|x| ,

and hence ˆ

B(0,
1
2
)

exp(λK(x)) dx < ∞

for sufficiently large a.
To prove Theorem 1.2, let us put B := B(0, min{exp(−t0), e

−e}) and choose
α > b(0)−1n−2. Without loss of generality we can assume that t0 is big enough such
that

(2.1) t
3
2 <

1

α(α + 1)

t2

log t
for all t > t0.

We define the function f as,

f(x) :=
x

|x| exp
(
−
ˆ 1

2

|x|

1

tA −1(n log 1
t
)
dt

)
(log |x|−1)

α+2
log |x|−1 for x 6= 0.

Note that

lim
|x|→0

(log |x|−1)
α+2

log |x|−1 = lim
|x|→0

exp
((α + 2) log log |x|−1

log |x|−1

)
= 1,

which easily gives that f satisfies the condition given in (1.6).
Let ρ : (0,∞) → (0,∞) be a strictly monotone, differentiable function and let us

consider the mapping
f(x) =

x

|x|ρ(|x|), x 6= 0.

It can be verified by an elementary computation (see e.g. [1, Chapter 2.6.]) that

(2.2)
|Df(x)| = max

{ρ(|x|)
|x| , |ρ′(|x|)|

}
, and thus

K(x) = max
{ ρ(|x|)
|x| |ρ′(|x|)| ,

|x| |ρ′(|x|)|
ρ(|x|)

}
.

It follows that for our mapping we obtain

|Df(x)| = |f(x)|
|x| max

{
1,

( 1

A −1(n log |x|−1)
+ (α + 2)

log log |x|−1 − 1

log2 |x|−1

)}
.

Clearly,

lim
x→0

( 1

A −1(n log |x|−1)
+ (α + 2)

log log |x|−1 − 1

log2 |x|−1

)
= 0,

and therefore the greater element is the first one. From (1.5) (i) and (2.1) we obtain

A −1(nt) < t
3
2 <

1

α(α + 1)

t2

log t
for all t > t0.

This, however, implies that

α(α + 1)
A −1(nt) log t

t2
< 1 for all t > t0.
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Now, by multiplying both sides by A −1(nt) log t
t2

and by substituting t = log |x−1| we
get that

A −1(n log |x|−1)
log log |x|−1

log2 |x|−1
> α(α + 1)

(
A −1(n log |x|−1)

log log |x|−1

log2 |x|−1

)2

for all x ∈ B. Using this fact and because log log |x|−1 > 1 for all x ∈ B, we deduce
that

K(x) =
1(

1
A −1(n log |x|−1)

+ (α + 2) log log |x|−1−1

log2 |x|−1

)

≤ A −1(n log |x|−1)

1 + (α + 1)A −1(n log |x|−1) log log |x|−1

log2 |x|−1

≤ A −1(n log |x|−1)
(
1− αA −1(n log |x|−1)

log log |x|−1

log2 |x|−1

)
=: K̃(x).

Note that

(2.3) A −1(n log |x|−1)− K̃(x) = αn2
(A −1(n log |x|−1)

n log |x|−1

)2

log log |x|−1.

By (1.5) (iii) we obtain that

b(s)− b(0) = b′(ξ)s ≥ b′(s)s

and therefore

(2.4) A ′(s)
( s

A (s)

)2

=
b(s)− sb′(s)

b2(s)
b2(s) ≥ b(0).

From (1.5) (ii) we know that A ′(t) is a non-increasing function and hence

(2.5) A (a− d) = A (a)−A ′(ξ)d ≤ A (a)−A ′(a)d

for some ξ ∈ (a− d, a). We now use (2.5) putting

a := A −1
(
n log

1

|x|
)
, d := A −1

(
n log

1

|x|
)
− K̃(x)

using (2.3) and then (2.4) (where we put s := A −1(n log |x|−1)) to get that

A (K(x)) ≤ A (K̃(x))

≤ A
(
A −1(n log |x|−1)

)−A ′(A −1(n log |x|−1)
)[

A −1
(
n log |x|−1

)− K̃(x)
]

≤ n log |x|−1 − αn2A ′(A −1(n log |x|−1)
)(A −1(n log |x|−1)

n log |x|−1

)2

log log |x|−1

≤ n log |x|−1 − b(0)αn2 log log |x|−1.

But this, for α > b(0)−1n−2, yields
ˆ

B

exp(A (K(x))) dx ≤
ˆ

B

exp
(
n log

1

|x| − b(0)αn2 log log
1

|x|
)

dx

≤
ˆ

B

1

|x|n logb(0)αn2 1
|x|

dx < ∞. ¤
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