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Abstract. We study the measure of weak non-compactness of operators between abstract
interpolation spaces. We prove an estimate of this measure, depending on the fundamental function
of the space. We specialize our results and show applications to weak compactness of operators.

1. Introduction

The behavior of compact linear operators under interpolation has been studied
since the 1960s. First results were established by Krasnosel’skĭı [21], who proved that
under the hypothesis of the Riesz–Thorin interpolation theorem, that is T : Lpi

→ Lqi

is bounded for i = 0, 1 where 1 ≤ pi, qi ≤ ∞, and the additional assumption that
T : Lp0 → Lq0 is compact, q0 < ∞, it follows that T : Lp → Lq is also compact, where
1/p = (1− θ)/p0 + θ/p1, 1/q = (1− θ)/q0 + θ/q1 and 0 < θ < 1.

His results lead to the question whether similar results hold in the abstract in-
terpolation case, when (Lp0 , Lp1) and (Lq0 , Lq1) is replaced by a Banach pair (A0, A1)
and (B0, B1), respectively. The complete answer is still unknown.

The first results for the real interpolation method were obtained in 1964 by Lions
and Peetre [24] for the case when A0 = A1 or B0 = B1, and by Persson [28] for the
general case A0 6= A1 and B0 6= B1 with an approximation condition on the couple
(B0, B1). In these cases, they showed that the operator T : Aθ,q → Bθ,q is compact
for 0 < θ < 1, 1 ≤ q ≤ ∞. We refer to the monograph [5] for a more detailed history
of research.

In 1969 Hayakawa [18] gave the result for the real interpolation method without
approximation hypothesis but with the assumption that T : (A0, A1) → (B0, B1) and
the restrictions T : A0 → B0, T : A1 → B1 are both compact operators and 1 ≤ q <
∞. New approaches to Hayakawa’s result can be found in the paper by Cobos and
Peetre [14] and the references given therein. Finally, in 1992 Cwikel [15] and Cobos,
Kühn and Schonbek [10] showed that the theorem holds whenever T : A0 → B0 is
compact and T : A1 → B1 is bounded.

A similar question for weak non-compactness was raised as well. In 1978 Beauz-
amy proved in [4] that if the inclusion map

A0 ∩ A1 ↪→ A0 + A1 is a weakly compact operator,

then Aθ,q is a reflexive Banach space, for 1 < q < ∞, 0 < θ < 1.
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Next, Heinrich [19] extended this result to closed operator ideals. Generalizations
of Beauzamy’s result for the real method are due to Aizenstein and Brudnyi [6],
Maligranda and Quevedo [25], and Mastyło [26]. The result is the following: if

T : A0 ∩ A1 → B0 + B1 is a weakly compact operator,

then so is
T : Aθ,q → Bθ,q, where 1 < q < ∞, 0 < θ < 1.

It is perhaps worth remarking that applications to reflexivity of the interpolation
spaces were given by Brudny̌ı and Krugljak [6], Mastyło [26] and Cobos, Fernández-
Cabrera, Manzano and Martínez [7].

We recall that the classical interpolation Riesz–Thorin theorem for operators
between Lp-spaces states that

‖T‖Lp→Lq
≤ C ‖T‖1−θ

Lp0→Lq0
‖T‖θ

Lp1→Lq1
.

The similar result holds for the real interpolation spaces Aθ,q, Bθ,q, with a corre-
sponding estimate

‖T‖Aθ,q→Bθ,q
≤ C ‖T‖1−θ

A0→B0
‖T‖θ

A1→B1
.

Note that in both theorems the logarithmically convex function s1−θtθ appears. In
case of abstract real interpolation spaces a general variant of a function was intro-
duced in [30]. The natural version of above theorems takes place, namely

‖T‖AE→BE
≤ CψE(‖T‖A0→B0

, ‖T‖A1→B1
),

where E is an appropriate Banach lattice, AE, BE are abstract real interpolation
spaces and ψE is a corresponding function.

Nowadays we search for quantitative versions of interpolating compactness and
weakly compactness results, using measures of non-compactness. For instance let
us mention β and separation measures. In 1999, Cobos, Fernández-Martínez and
Martínez in their remarkable paper [9] obtained a logarithmic type inequality, namely

β(T : Aθ,q → Bθ,q) ≤ Cβ(T : A0 → B0)
1−θβ(T : A1 → B1)

θ.

In 2006, the above inequality was extended to the abstract real interpolation case
in [30]

β
(
T : AE → BE

) ≤ CψE (β (T : A0 → B0) , β (T : A1 → B1)) .

(see also [8] where an equivalent variant of such estimate was obtained as well).
A well known measure of weak non-compactness ω introduced by De Blasi [16] can

be treated as a counterpart of the Hausdorff measure of non-compactness. In 2000
Kryczka, Prus and Szczepanik (see [23]) introduced a new measure of weak non-
compacness γ, which can be seen as a counterpart of the separation measure of
non-compactness. In general γ and ω are not equivalent. The reason is that the
measure γ appeals directly to the norm topology, while in the definition of ω the
weak topology is involved.

Kryczka, Prus and Szczepanik in [23] showed the logarithmically convex type
estimate for the measure of weak non-compactness γ, i.e.,

γ(T : Aθ,q → Bθ,q) ≤ Cγ(T : A0 → B0)
1−θγ(T : A1 → B1)

θ,

where 1 < q < ∞, 0 < θ < 1.
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We also note that interpolation properties of a different type were established
by Aksoy and Maligranda [2], Cobos, Manzano and Martínez [11], and Cobos and
Martínez [12, 13] for the real method and Fernández-Cabrera and Martínez [17] for
the abstract real method.

The main aim of this paper is to show an analogue of the above inequality for
abstract real interpolation methods, namely

γ
(
T : AE → BE

) ≤ CψE

(
γ(T : A0 → B0), γ(T : A1 → B1)

)
.

2. Preliminaries and notation

We use the standard notations from the interpolation theory (see [5, 6] for more
details). Let A = (A0, A1) be a Banach couple. As usual we let ∆(A) := A0 ∩ A1

and Σ(A) := A0 + A1. For all t > 0 the K-functional is defined by

K(t, a; A) := inf
a=a0+a1

{‖a0‖A0
+ t ‖a1‖A1

}
for all a ∈ Σ(A)

and the J-functional by

J(t, a; A) := max
{‖a‖A0

, t ‖a‖A1

}
for all a ∈ ∆(A).

A real sequence w = {wn}n∈Z is called a weight sequence if each wn is positive.
If E is a Banach sequence lattice modelled on Z and w = {wn} is a weight sequence,
we define the weighted Banach sequence lattice E(w) := {{xn} : {xnwn} ∈ E}. The
space E(w) is equipped with the norm ‖x‖E(w) := ‖{xnwn}‖E.

Following the terminology from [27], the space E is said to be K-non-trivial
(resp., J-non-trivial) when `∞ ∩ `∞(2−n) ⊂ E (resp., E ⊂ `1 + `1(2

−n)).
For a J-non-trivial Banach sequence lattice E, the J-method space AE;J :=

(A0, A1)E;J consists of all elements a ∈ Σ(A) which can be represented in the form

a =
∞∑

n=−∞
an (convergence in Σ(A))

such that
{
J(2n, an; A)

}
n∈Z

∈ E with the associated norm

‖a‖ := inf

{
∥∥{

J(2n, an; A)
}∥∥

E
: a =

∞∑
n=−∞

an

}
.

For a K-non-trivial Banach sequence lattice E, we define the K-method space
AE;K := (A0, A1)E;K which contains all elements a ∈ Σ(A) with the property that{
K(2n, a; A)

} ∈ E, equipped with the norm

‖a‖ :=
∥∥{

K(2n, a; A)
}∥∥

E
.

It is well known from [27] that if E is a parameter of the real method (i.e.,
`∞ ∩ `∞(2−n) ⊂ E ⊂ `1 + `1(2

−n)) then for any Banach couple A

AE;K ↪→ AE;J

and the norm of the inclusion map is less than 4. If the Calderón operator Ω defined
on `1 + `1(2

−n) by

Ω {ξn} :=

{ ∞∑

k=−∞
min

{
1, 2n−k

} |ξk|
}

n

, {ξn} ∈ `1 + `1(2
−n)
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is bounded on E, then AE;J = AE;K with equivalence of the norms. In this case we
put AE instead of AE;J or AE;K .

Let us note that from the point of view of applications the classical interpolation
spaces play an important role. For this recall that if ρ is a function parameter, i.e.,
ρ : (0,∞) → (0,∞) is a quasi-concave function (t 7→ ρ(t) increases and t 7→ ρ(t)/t
decreases) and

sρ(t) = o(1) as t → 0 and sρ(t) = o(t) as t →∞,

where sρ(t) = sup {ρ(tu)/ρ(u) : u > 0} for every t > 0. Now, if we take E =
`q(1/ρ(2m)) with 1 ≤ q ≤ ∞, then we have

(A0, A1)`q(1/ρ(2m));K = (A0, A1)`q(1/ρ(2m));J = (A0, A1)ρ,q.

If ρ(t) = tθ, θ ∈ (0, 1), we get the classical real interpolation spaces (A0, A1)θ,q (see,
e.g., [5, 6]).

Let ω(Z) be the space of all real sequences on Z. For all ν ∈ Z, the shift operator
τν : ω(Z) → ω(Z) is defined by τν {ξm} := {ξm+ν}.

Throughout the rest of the paper we consider Banach lattices E modelled on Z
such that the shift operator τν is bounded in E for all ν ∈ Z. For such E we define
a function ϕE : (0,∞)× (0,∞) → (0,∞) by

ϕE(2m, 2n) := 2m ‖τn−m‖E→E for all m,n ∈ Z

and
ϕE(s, t) := ϕE

(
2[log2 s], 2[log2 t]

)
for all s, t > 0,

where [·] denotes the greatest integer function.
Further, we will need to work with a function ψE : [0,∞)× [0,∞) → [0,∞] which

is an extension of ϕE. The function ψE is defined by the following:

ψE(0, 0) := 0, ψE(s, 0) := lim inf
v→0+

ϕE(s, v) for all s > 0,

ψE(0, t) := lim inf
u→0+

ϕE(u, t) for all t > 0,

and ψE(s, t) := ϕE(s, t) if s, t > 0.

The following technical lemma shows some fundamental properties of ψE.

Lemma 2.1. Let E be a Banach sequence lattice on Z such that the shift op-
erator τn is bounded in E for all n ∈ N. Then the function ψE has the following
properties:

(i) ψE(2ms, 2nt) ≤ ψE(2m, 2n)ψE(s, t) for all m,n ∈ Z and s, t ≥ 0.
(ii) There exists a constant C1 = C1(E) > 0 such that

ψE(su, tv) ≤ C1ψE(s, t)ψE(u, v)

for every s, t, u, v > 0.
(iii) If lim(s,t)→(0,0) ψE(s, t) < ∞, then there exists C2 = C2(E) > 0 such that

ψE(s, t) ≤ C2ψE(u, v)

for all s ≤ u, t ≤ v.
(iv) ψE(s, s) ≤ s ≤ 2ψE(s, s) for every s ≥ 0
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Proof. Properties (i)–(iii) are proved in [30, Lemma 2.3]. (iv) follows immediately
from inequalities 2[log2 s] ≤ s < 2 · 2[log2 s] for every s > 0. ¤

Let us note that condition (iii) from the previous lemma, can be reformulated in
the following way:

Lemma 2.2. Let E be a Banach sequence lattice on Z such that the shift oper-
ator τn is bounded in E for all n ∈ N. The following conditions are equivalent:

(i) sups,t∈(0,1] ψE(s, t) < ∞.
(ii) sups∈(0,1] ψE(s, 1) < ∞ and supt∈(0,1] ψE(1, t) < ∞.
(iii) There exists a constant C > 0 such that

ψE(s, t) ≤ C max {s, t} for every s, t ≥ 0.

Proof. Implications (iii)⇒(i)⇒(ii) are straightforward. Assume that condition
(ii) holds. Then by Lemma 2.1 there exists a constant C1 > 0 such that

ψE(s, t) ≤ C1ψE(s, 1)ψE(1, t)

for every s, t ≥ 0. Therefore (i) holds. Suppose that (i) is satisfied. It follows by
Lemma 2.1 that there exists a constant C2 > 0 such that

ψE(s, t) ≤ C2ψE(max {s, t} , max {s, t}) ≤ C2 max {s, t}
for every s, t ≥ 0, which gives (iii). ¤

The significance of the function ψE to interpolation is due to the following. Let
T be a bounded operator from the Banach couple A = (A0, A1) to the Banach couple
B = (B0, B1). If E is K-non-trivial, then

‖T‖AE;K→BE;K
≤ 2ψE(‖T‖A0→B0

, ‖T‖A1→B1
).

Similarly, if E is J-non-trivial, then

‖T‖AE;J→BE;J
≤ 2ψE(‖T‖A0→B0

, ‖T‖A1→B1
).

(see [30, Lemma 2.4]). To use these estimates we need to impose some growth
conditions on ψE; specifically, we will say that a Banach sequence lattice E on Z is
admissible if it satisfies condition (iii), hence also conditions (i) and (ii), of Lemma 2.2.
In what follows, we will only be interested in admissible Banach lattices.

Proposition 2.3. If E is an interpolation Banach lattice with respect to a couple
(`p, `p(2

−n)) for some 1 ≤ p ≤ ∞, then E is admissible.

Proof. Let E be an interpolation space between `p and `p(2
−n), with a constant

C > 0. Since τν has bounded norms ‖τν‖`p→`p
= 1 and ‖τν‖`p(2−n)→`p(2−n) = 2ν , we

have ‖τν‖E→E ≤ C max {1, 2ν}, for each ν ∈ Z. Therefore

ϕE(s, t) = 2[log2 s]
∥∥τ[log2 t]−[log2 s]

∥∥
E→E

≤ C2[log2 s] max
{
1, 2[log2 t]−[log2 s]

}

= C max
{
2[log2 s], 2[log2 t]

} ≤ C max {s, t} ,

for all s, t > 0. We thus get ψE(s, t) ≤ C max {s, t} for all s, t ≥ 0. ¤
The following result is an obvious observation (cf. [8, Example 4.5] or [30, Corol-

lary 3.6]).

Lemma 2.4. Let ρ be a function parameter, 1 ≤ q ≤ ∞ and E = `q

(
1

ρ(2m)

)
.

Then ‖τn‖E→E ≤ sρ (2n) for all n ∈ Z.
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For the sake of completeness, we also include a short proof.

Proof. Since 1/ρ(2m) ≤ ρ(2n)/ρ(2m+n) for all m,n ∈ N, we have

‖τn {ξm}‖E =

(∑
m∈Z

(
|ξm+n| 1

ρ(2m)

)q
)1/q

≤ sρ (2n)

(∑
m∈Z

(
|ξm+n| 1

ρ(2m+n)

)q
)1/q

= sρ (2n) ‖{ξm}‖E

for every {ξm} ∈ E. ¤

Lemma 2.5. Let ρ be a function parameter, 1 ≤ q ≤ ∞ and E = `q(
1

ρ(2m)
).

Then there exists a constant C > 0 such that

ψE(s, t) ≤ C max {s, t} for every s, t ≥ 0.

Moreover,

ψE(s, 0) = ψE(0, t) = 0 for every s, t ≥ 0.

Proof. It follows from Lemma 2.2 that it suffices to show that

lim
s→0+

ψE(s, 1) = 0 and lim
t→0+

ψE(1, t) = 0.(2.1)

By the definition of a function parameter ρ we get

lim
m→−∞

sρ(2
m) = 0 and lim

m→∞
sρ(2

m)/2m = 0.

Thus Lemma 2.4 gives

lim
m→−∞

ψE(2m, 1) = 0 and lim
m→−∞

ψE(1, 2m) = 0,

and the proof is complete by Lemma 2.1. ¤
The equivalence of

lim
n→∞

2n ‖τn‖E→E = 0 and lim
n→∞

‖τ−n‖E→E = 0,

and (2.1) follows by the definition of ψ. In particular this implies that E is admissible.
The above condition was considered in [8, 17, 30].

3. Norms of Lions–Peetre type

In this section we will look more closely at another equivalent norms in abstract
real interpolation spaces. Some of them were defined in the well-known paper by
Lions and Peetre [24]. In particular, we derive Theorem 3.3, which is useful for
calculation of ‖·‖AE;K

and ‖·‖AE;J
norms.

Let E be a Banach lattice and X be a Banach space. Denote by E(X) the
Köthe–Bochner space

E(X) :=

{
{xn}n∈Z ∈

∞∏
n=−∞

X : {‖xn‖X}n∈Z ∈ E

}
,

equipped with the norm ‖{xn}‖ := ‖{‖xn‖X}‖E
.

In spaces AE;K and AE;J we define the following norms:
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(i) For a K-non-trivial Banach lattice E

|||a|||AE;K
:= inf

{a}={a0
n}+{a1

n}
max

{∥∥{
a0

n

}∥∥
E(A0)

,
∥∥{

2na1
n

}∥∥
E(A1)

}
,

where the infimum is taken over all sequences {a0
n} ⊂ A0 and {a1

n} ⊂ A1 such
that a = a0

n + a1
n for each n ∈ Z.

(ii) For a J-non-trivial Banach lattice E

|||a|||AE;J
:= inf

a=
∑

an

max
{
‖{an}‖E(A0) , ‖{2nan}‖E(A1)

}
,

where the infimum is taken over all sequences {an} ⊂ A0 ∩ A1 such that the
series

∑
n∈Z an converges to a in A0 + A1.

Lemma 3.1. Let E be a Banach lattice.
(i) If E is K-non-trivial, then |||·|||AE;K

∼ ‖·‖AE;K
.

(ii) If E is J-non-trivial, then |||·|||AE;J
∼ ‖·‖AE;J

.

Proof. (i) It is easy to check that |||a|||AE;K
≤ ‖a‖AE;K

≤ 2 |||a|||AE;K
.

(ii) Similarly, it follows easily that |||a|||AE;J
≤ 2 ‖a‖AE;J

≤ 4 |||a|||AE;J
. ¤

Theorem 3.2. Let E be a Banach lattice.
(i) If E is K-non-trivial, then

|||a|||AE;K
≤ 2 inf

{a}={a0
n}+{a1

n}
ψE

(∥∥{
a0

n

}∥∥
E(A0)

,
∥∥{

2na1
n

}∥∥
E(A1)

)
,

where the infimum is taken over all sequences {a0
n} ⊂ A0 and {a1

n} ⊂ A1 such
that a = a0

n + a1
n for each n ∈ Z.

(ii) If E is J-non-trivial, then

|||a|||AE;J
≤ 2 inf

a=
∑

an

ψE

(
‖{an}‖E(A0) , ‖{2nan}‖E(A1)

)
,

where the infimum is taken over all sequences {an} ⊂ A0 ∩ A1 such that the
series

∑
n∈Z an converges to a in A0 + A1.

Proof. (i) Fix a ∈ AE;K and choose sequences {a0
n} ∈ E(A0) and {a1

n} ∈ E(A1)
satisfying decompositions a = a1

n + a0
n for each n ∈ Z. Fix εj ≥ 0 for j = 0, 1, where

εj > 0 if and only if ‖{2jnaj
n}‖E(Aj)

= 0. Let 2kj−1 ≤ ‖{2jnaj
n}‖E(Aj)

+ εj < 2kj ,
j = 0, 1 and let ν = k1 − k0. Hence

∥∥{
2jnaj

n+ν

}∥∥
E(Aj)

=
∥∥∥
{

2jn
∥∥aj

n+ν

∥∥
Aj

}∥∥∥
E

= 2−jν
∥∥∥
{

2j(n+ν)
∥∥aj

n+ν

∥∥
Aj

}∥∥∥
E

= 2−jν
∥∥∥τν

{
2jn

∥∥aj
n

∥∥
Aj

}∥∥∥
E
≤ 2−jν

∥∥{
2jnaj

n

}∥∥
E(Aj)

‖τν‖E→E ,

for j = 0, 1. Thus

|||a||| ≤ max
{∥∥{

a0
n+ν

}∥∥
E(A0)

,
∥∥{

2na1
n+ν

}∥∥
E(A1)

}
≤ 2k0 ‖τν‖E→E

= 2 · 2k0−1 ‖τk1−1−k0+1‖E→E = 2ψE

(∥∥{
a0

n

}∥∥
E(A0)

+ ε0,
∥∥{

2na1
n

}∥∥
E(A1)

+ ε1

)
.

In consequence

|||a||| ≤ 2ψE

(∥∥{
a0

n

}∥∥
E(A0)

,
∥∥{

2na1
n

}∥∥
E(A1)

)
,
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which completes the proof.
(ii) It is obvious that (ii) holds for a = 0. Choose 0 6= a ∈ AE;J and a sequence

{an} ⊂ A0 ∩ A1 such that {an} ∈ E(A0) and {2nan} ∈ E(A1) for each n ∈ Z, and
a =

∑
n∈Z an is convergent in A0 +A1. Clearly ‖{an}‖E(A0) > 0 and ‖{2nan}‖E(A1) >

0. Let 2kj−1 ≤ ‖{2jnan}‖E(Aj)
< 2kj , j = 0, 1 and let ν = k1 − k0. Hence

∥∥{
2jnan+ν

}∥∥
E(Aj)

=
∥∥∥
{

2jn ‖an+ν‖Aj

}∥∥∥
E

= 2−jν
∥∥∥
{

2j(n+ν) ‖an+ν‖Aj

}∥∥∥
E

= 2−jν
∥∥∥τν

{
2jn ‖an‖Aj

}∥∥∥
E
≤ 2−jν

∥∥{
2jnan

}∥∥
E(Aj)

‖τν‖E→E ,

for j = 0, 1. We thus get

|||a||| ≤ max
{
‖{an+ν}‖E(A0) , ‖{2nan+ν}‖E(A1)

}
≤ 2k0 ‖τν‖E→E

= 2 · 2k0−1 ‖τk1−1−k0+1‖E→E = 2ψE

(
‖{an}‖E(A0) , ‖{2nan}‖E(A1)

)
,

and the theorem follows. ¤

Theorem 3.3. Let E be an admissible Banach lattice.
(i) If E is J-non-trivial, then

|||a|||AE;K
∼ inf

{a}={a0
n}+{a1

n}
ψE

(∥∥{
a0

n

}∥∥
E(A0)

,
∥∥{

2na1
n

}∥∥
E(A1)

)
,

where the infimum is taken over all sequences {a0
n} ⊂ A0 and {a1

n} ⊂ A1 such
that a = a0

n + a1
n for each n ∈ Z.

(ii) If E is K-non-trivial, then

|||a|||AE;J
∼ inf

a=
∑

an

ψE

(
‖{an}‖E(A0) , ‖{2nan}‖E(A1)

)
,

where the infimum is taken over all sequences {an} ⊂ A0 ∩ A1 such that the
series

∑
n∈Z an converges to a in A0 + A1.

Proof. By the definition of |||·|||AE;K
we get

inf
{a}={a0

n}+{a1
n}

ψE

(∥∥{
a0

n

}∥∥
E(A0)

,
∥∥{

2na1
n

}∥∥
E(A1)

)

≤ C inf
{a}={a0

n}+{a1
n}

max
{∥∥{

a0
n

}∥∥
E(A0)

,
∥∥{

2na1
n

}∥∥
E(A1)

}
= C |||a|||AE;K

,

where infimum is taken over all sequences {a0
n} ⊂ A0 and {a1

n} ⊂ A1 such that
a = a0

n + a1
n for each n ∈ Z, which establishes the formula.

Similarly we obtain

inf
a=

∑
an

ψE

(
‖{an}‖E(A0) , ‖{2nan}‖E(A1)

)

≤ C inf
a=

∑
an

max
{
‖{an}‖E(A0) , ‖{2nan}‖E(A1)

}
= |||a|||AE;J

,

where the infimum is taken over all sequences {an} ⊂ A0 ∩ A1 such that the series∑
n∈Z an converges to a in A0 + A1. The opposite inequality in (i) and (ii) follows

from Theorem 3.2. This completes the proof. ¤
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4. Measure of weak non-compactness

Throughout the rest of the paper we consider Banach spaces over the real num-
bers. We say that a Banach lattice E has an order continuous norm, if ‖xn‖E → 0
for every {xn} ⊂ E such that 0 ≤ xn ↓ 0. The Köthe dual space E ′ of the Banach
lattice E is defined to be the space of all {yn} such that {xnyn} ∈ `1(Z) for every
{xn} ∈ E, equipped with the norm

‖{yn}‖E′ := sup

{∑
n∈Z

|xnyn| : ‖{xn}‖E ≤ 1

}
.

We recall that a Banach lattice E is reflexive if and only if both E and E ′ have order
continuous norms and E = E ′′ (see [20]). It is well-known (see [22]) that if a Banach
lattice E has an order continuous norm, then the operator x∗ = {x∗n} 7→ φx∗ defined
by

φx∗(x) :=
∑
n∈Z

x∗n(xn) for every x = {xn} ∈ E(X),

is an isometric isomorphism acting from the Köthe–Bochner space E ′(X∗) onto
(E(X))∗. Therefore E(X)∗ ' E ′(X∗).

For any n ∈ N, we denote by Pn, Q+
n , Q−

n the operators on the Banach sequence
lattice E, defined as follows

Pn {um} = {. . . , 0, 0, u−n, u−n+1, . . . , un−1, un, 0, 0, . . .} ,

Q+
n {um} = {. . . , 0, 0, un+1, un+2, . . .} ,

Q−
n {um} = {. . . , u−n−2, u−n−1, 0, 0, . . .} .

The following properties of the above operators are obvious:
• I = Pn + Q+

n + Q−
n , where I denotes the identity operator on E.

• Operators Pn, Q+
n , Q−

n , Q+
n + Q−

n have on E the norm ≤ 1.
In a similar way, we define on the Köthe dual E ′ of E the operators Rn, S+

n , S−n .
We follow the notation used in [23]. Let {xn} be a sequence in a Banach space

X. We say that {yn} is a sequence of successive convex combinations (in short scc)
if there exists a sequence {pn}∞n=1 ⊂ Z such that

0 = p1 < p2 < p3 < . . . and yn ∈ conv {xi}pn+1

i=pn+1 for all n ∈ N.

Vectors u1, u2 are said to be a pair of scc for {xn} if

u1 ∈ conv {xi}p
i=1 and u2 ∈ conv {xi}∞i=p+1 for some p ∈ N.

In the sequel the following useful theorem from [23] will be used.

Theorem 4.1. Let {xn} be a bounded sequence in a Banach space X. For every
ε > 0 there exists a sequence {yn} of scc for xn such that if u1, u2 and v1, v2 are any
pairs of scc for {yn}, then

∣∣ ‖u1 − u2‖ − ‖v1 − v2‖
∣∣ < ε.

Following [3], we recall an axiomatic approach to the notion of a measure of
weak non-compactness. Let µ be a real-valued function defined on the family of all
bounded and nonempty subsets of a Banach space X. We call µ a measure of weak
non-compactness, if the following conditions are satisfied for any subsets A, B ⊂ X
and c ∈ R:

(1) µ(A) = 0 ⇐⇒ A is a relatively weakly compact set.
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(2) if A ⊂ B, then µ(A) ≤ µ(B).
(3) µ(convA) = µ(A).
(4) µ(A ∪B) = max

{
µ(A), µ(B)

}
.

(5) µ(A + B) ≤ µ(A) + µ(B).
(6) µ(cA) = |c|µ(A).

Definition 4.2. Let X be a Banach space and let ∅ 6= A ⊂ X be a bounded set.

γ(A) := sup {csep {xn} : {xn} ⊂ convA} ,

where
csep {xn} := inf {‖y1 − y2‖ : y1, y2 is a pair of scc for {xn}} .

γ is a measure of weak non-compactness (see [23, Theorem 2.3] for more details).
Moreover, an alternative formula for the measure γ was established in [23].

Theorem 4.3. Let A be nonempty and bounded subset of a Banach space X.
Then

γ(A) = sup dist(x∗∗, conv {xn}),
where the supremum is taken over all sequences {xn} ⊂ convA and all ω∗-cluster points
x∗∗ ∈ X∗∗ of a sequence {xn}.

Throughout the rest of the paper for given Banach spaces X and Y and every
operator T : X → Y , we define the measure of weak non-compactness of T by

γ(T ) := γ(T (BX)).

To deal with the measure γ, the ultrafilter notion will be used (for more details
concerning filters we refer the reader to [1, 29]). We recall the following useful fact.

Lemma 4.4. Let U be a free ultrafilter on N and M ∈ U . If f : M → N is the
bijection given by f(nk) = k, then UM = {f(M ∩ A) : A ∈ U} is a free ultrafilter on
N. Moreover, if

x = lim
U

xn, then x = lim
UM

xnk
.

Proof. Since an ultrafilter U is free if and only if U does not contain a finite set,
the proof is straightforward. ¤

The following lemma is a fairly straightforward generalization of [23, Lemma 3.4]

Lemma 4.5. Let Y be a Banach space and let E be a reflexive Banach lattice
modelled on Z. If y = {yn}, yn = {yn,m}m∈Z ∈ E(Y ∗∗) for all n ∈ N and

y = ω∗ − lim
U

yn

over some free ultrafilter U on N, then

ym = ω∗ − lim
U

yn,m for each m ∈ N.

Proof. Let m ∈ Z and take v = {0, . . . , 0, vm, 0, . . . , 0} ∈ E ′(Y ∗). From represen-
tation of the dual of E ′(Y ∗), the functional given by

fv(z) = z(v) = zm(vm) for z ∈ E(Y ∗∗)

is ω∗-continuous. It follows that fv(yn) = yn,m(vm) and

ym(vm) = fv(y) = ω∗ − lim
U

yn,m(vm)
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for each vm ∈ Y ∗, hence that ym = ω∗ − limU yn,m. ¤
Let X, Y be Banach spaces, T ∈ L(X, Y ) and E be a Banach lattice. The

operator T̃ : E(X) → E(Y ) is defined by T̃ {xn} := {Txn} for x = {xn} ∈ E(X).

Theorem 4.6. Let X, Y be Banach spaces and let E be a reflexive Banach
lattice modelled on Z. Then for every bounded operator T : X → Y

γ(T̃ : E(X) → E(Y )) = γ(T : X → Y ).

Proof. Since T̃ {. . . , 0, 0, x, 0, 0 . . .} = {. . . , 0, 0, Tx, 0, 0 . . .}, we have γ(T̃ ) ≥
γ(T ). If γ(T̃ ) = 0, we have γ(T ) = 0. Let γ(T̃ ) > 0. Choose 0 < ε < γ(T̃ ). By
Theorem 4.3, there exists {xn} ⊂ BE(X) such that for yn = Txn we obtain

0 < γ(T̃ )− ε ≤ dist {y, conv {yn}} ≤ dist {y, {yn}} ,

where y ∈ E ′′ (Y ∗∗) is a ω∗-cluster point of {yn}, and hence y = ω∗ − limU yn over
some free ultrafilter U in N. By the separation theorem there exists

φ = {φm} ∈ E ′ (Y ∗∗∗) with ‖φ‖E′(Y ∗∗∗) ≤ 1

such that for all z ∈ y − conv {yn}, we have φ(z) ≥ γ(T̃ )− ε. Since E ′ has an order
continuous norm, there exists M ∈ N satisfying

∥∥(
S+

M + S−M
) {‖φm‖Y ∗∗∗}

∥∥
E′ < ε.

The boundedness of y − conv {yn} gives constant c > 0 such that

γ(T̃ )− ε ≤
M∑

m=−M

φm (ym − yn,m)

+
∥∥(

S+
M + S−M

) {‖φm‖Y ∗∗∗}
∥∥

E′
∥∥(

Q+
M + Q−

M

) {‖ym − yn,m‖Y ∗∗
}∥∥

E

≤
M∑

i=−M

φm (ym − yn,m) + εc.

for all n ∈ N, where by Lemma 4.5 ym = ω∗ − limU yn,m for all m ∈ Z. Taking
I = {m ∈ Z : −M ≤ m ≤ M and φm 6= 0} and

ψm =
φm

‖φm‖Y ∗∗∗
, αm = lim

U
‖xn,m‖X ,

υm =
ym

αm + ε/‖PM {1}‖E

, υn,m =
yn,m

αm + ε/‖PM {1}‖E

by the definition of the norm in the Köthe dual E ′, we get

γ(T̃ )− ε(1 + c) ≤
∑
m∈I

‖φm‖Y ∗∗∗

(
αm +

ε

‖PM {1}‖E

)
ψm (υm − υn,m)

≤ ‖RM {‖φm‖Y ∗∗∗}‖E′

∥∥∥∥PM

{
αm +

ε

‖PM {1}‖E

}∥∥∥∥
E

max
m∈I

ψm (υm − υn,m)

≤ (1 + ε) max
m∈I

ψm (υm − υn,m) .
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For each m ∈ {−M, . . . , M}, denote by Zm the set of all integers n which satisfy the
following inequality(

γ(T̃ )− ε(1 + c)
)

(1 + ε)−1 ≤ ψm (υm − υn,m) .

Since
⋃

m Zm = Z, therefore Zj ∈ U for some j. Denote by

M = Zj ∩
{

n ∈ Z :
∣∣‖xn,j‖X − αj

∣∣ <
ε

‖Pm {1}‖E

}
= {nk} ∈ U .

Lemma 4.4 applied for the set M, yields a new free ultrafilter UM. By the above(
γ(T̃ )− ε(1 + c)

)
(1 + ε)−1 ≤ ψj (υj − υnk,j) ,

for all k ∈ N. Hence(
γ(T̃ )− ε(1 + c)

)
(1 + ε)−1 ≤ dist {υj, conv {υnk,j}} ,

where {υnk,j} ⊂ T (BX) and υj = ω∗−limUM υnk,j. This implies(
γ(T̃ )− ε(1 + c)

)
(1 + ε)−1 ≤ γ(T ).

Since ε > 0 was taken arbitrarily, the required inequality γ(T̃ ) ≤ γ(T ) follows. ¤

5. Main results

Theorem 5.1. Let A = (A0, A1) and B = (B0, B1) be Banach couples. Let E
be an admissible J-non-trivial reflexive Banach lattice. Then there exists a constant
D = D(E) > 0 such that for every bounded operator T : A → B

γ
(
T : AE;J → BE;J

) ≤ DψE

(
γ(T : A0 → B0), γ(T : A1 → B1)

)
.

Proof. Fix ε > 0. Choose a sequence {an} ⊂ BAE;J
. For each an, there exists a

sequence {an,m} ⊂ A0 ∩ A1 such that

{an,m}m∈Z ∈ (1 + ε)BE(A0) and {2man,m}m∈Z ∈ (1 + ε)BE(A1),

where the series
∑

m∈Z an,m converges to an in A0 + A1. Set

b0
n = {Tan,m}m∈Z , b1

n = {2mTan,m}m∈Z , bn = Tan.

By Theorem 4.1, there exists a sequence {b0
k
′} of scc for {b0

n} satisfying

(5.1)
∣∣∣‖u1 − u2‖E(B0) − ‖v1 − v2‖E(B0)

∣∣∣ < ε

for every pairs u1, u2 and v1, v2 of scc for {b0
k
′}. Hence

b0
k
′ =

nk+1∑
j=nk+1

µjb
0
j , where µj ≥ 0 and

nk+1∑
j=nk+1

µj = 1.

Define sequence {b1
k
′} by

b1
k
′ =

nk+1∑
j=nk+1

µjb
1
j for all k ∈ N.

Similarly, as shown above, there exists a sequence {b1
l
′′} of scc for {b1

k
′} such that

(5.2)
∣∣∣‖w1 − w2‖E(B1) −

∥∥b1
1
′′ − b1

2
′′∥∥

E(B1)

∣∣∣ < ε
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for each pair w1, w2 of scc for {b1
l
′′}. It is easy to see that {b1

l
′′} is also a sequence of

scc of {b1
l }, say

b1
l
′′ =

ml+1∑
j=ml+1

λjb
1
j , where λj ≥ 0 and

ml+1∑
j=ml+1

λj = 1.

Setting

b0
l
′′ =

ml+1∑
j=ml+1

λjb
0
j for all l ∈ N,

any pair of scc for {b0
l
′′} is also a pair of scc for {b0

k
′}, thus, by (5.1),

(5.3)
∣∣∣‖u1 − u2‖E(B0) −

∥∥b0
1
′′ − b0

2
′′∥∥

E(B0)

∣∣∣ < ε

for all scc pairs u1, u2 for {b0
l
′′}. From (5.2), (5.3), and the definition of csep {·}, we

obtain
∥∥bi

1
′′ − bi

2
′′∥∥

E(Bi)
≤ csep

{
bi
n
′′} + ε for i = 0, 1.(5.4)

Set

b′′1 =

n2∑
j=1

λjbj and b′′2 =

n3∑
j=n2+1

λjbj.

Obviously b′′1, b
′′
2 are a pair of scc for {bn}. From this equality

b′′1 − b′′2 =
∑
m∈Z

T

(
n2∑

j=1

λjaj,m −
n3∑

j=n2+1

λjaj,m

)
,

where the corresponding series is convergent in B0 + B1, it follows that

csep {bn} ≤ 2 |||b′′1 − b′′2|||BE;J
≤ 4ψE

(∥∥b0
1
′′ − b0

2
′′∥∥

E(B0)
,
∥∥b1

1
′′ − b1

2
′′∥∥

E(B1)

)
.

Since
{
bi
n
′′} ∈ T̃

(
(1 + ε)BE(Ai)

)
for i = 0, 1,

the estimate (5.4) and Theorem 4.6 show that for i = 0, 1 we have
∥∥bi

1
′′ − bi

2
′′∥∥

E(Bi)
≤ γ

(
T̃

(
(1 + ε)BE(Ai)

))
+ ε = (1 + ε)γ(T : Ai → Bi) + ε.

By the properties of ψE (see Lemma 2.1), there exists a constant C2 satisfying

csep {bn} ≤ 4C2ψE

(
(1 + ε)γ(T : A0 → B0) + ε, (1 + ε)γ(T : A1 → B1) + ε

)
.

Finally, an arbitrary choice of ε implies

csep {bn} ≤ DψE (γ(T : A0 → B0), γ(T : A1 → B1)) ,

where D = D(E) > 0. The assertion follows from the definition of γ(T : AE;J →
BE;J). ¤

The following result may be proved in the same way as Theorem 5.1.
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Theorem 5.2. Let A = (A0, A1) and B = (B0, B1) be Banach couples. Let E
be an admissible K-non-trivial reflexive Banach lattice. Then there exists a constant
D = D(E) > 0 such that for every bounded operator T : A → B

γ
(
T : AE;K → BE;K

) ≤ DψE

(
γ(T : A0 → B0), γ(T : A1 → B1)

)
.

Proof. Fix ε > 0. Choose a sequence {an} ⊂ BAE;K
. For each an, there exist

sequences
{
a0

n,m

}
and

{
a1

n,m

}
such that

{
a0

n,m

}
m∈Z

∈ (1 + ε)BE(A0) and
{
2ma1

n,m

}
m∈Z

∈ (1 + ε)BE(A1)

where a0
n,m + a1

n,m = an for all m ∈ Z. Set

b0
n =

{
Ta0

n,m

}
m∈Z

, b1
n =

{
2mTa1

n,m

}
m∈Z

, bn = Tan.

Analysis similar to that in the proof of Theorem 5.1 shows that there exist sequences
{b0

n
′′} and {b1

n
′′} of scc for {b0

n} and {b1
n} respectively, such that we have for i = 0, 1∥∥bi

1
′′ − bi

2
′′∥∥

E(Bi)
≤ csep

{
bi
n
′′} + ε.(5.4)

In the same manner, we can see that b′′1 = b0
1
′′ + b1

1
′′, b′′2 = b0

2
′′ + b1

2
′′ are pairs of scc

for {bn}. Therefore
csep {bn} ≤ 2 |||b′′1 − b′′2|||BE;K

≤ 4ψE

(∥∥b0
1
′′ − b0

2
′′∥∥

E(B0)
,
∥∥b1

1
′′ − b1

2
′′∥∥

E(B1)

)
.(5.5)

Applying Theorem 4.6 and (5.4), similarly as in the proof of Theorem 5.1, we obtain
for i = 0, 1

∥∥bi
1
′′ − bi

2
′′∥∥

E(Bi)
≤ γ

(
T̃

(
(1 + ε)BE(Ai)

))
+ ε = (1 + ε)γ(T : Ai → Bi) + ε.

By the above and (5.5) we have

csep {bn} ≤ 4ψE

(∥∥b0
1
′′ − b0

2
′′∥∥

E(B0)
,
∥∥b1

1
′′ − b1

2
′′∥∥

E(B1)

)

≤ 4C2ψE((1 + ε)γ(T : A0 → B0) + ε, (1 + ε)γ(T : A1 → B1) + ε).

The rest of the proof runs as in Theorem 5.1, with γ
(
T : AE;J → BE;J

)
replaced by

γ
(
T : AE;K → BE;K

)
. ¤

From Theorems 5.1 and 5.2 the following corollaries follow.

Corollary 5.3. Let A = (A0, A1) and B = (B0, B1) be Banach couples. Let E
be an admissible J-non-trivial reflexive Banach lattice. If T : A → B, then

T : AE;J → BE;J is a weakly compact operator

provided one of the following conditions holds:
(i) T : A0 → B0 is weakly compact and ψE(0, 1) = 0.
(ii) T : A1 → B1 is weakly compact and ψE(1, 0) = 0.

In particular, if A0 is reflexive and ψE(0, 1) = 0, or A1 is reflexive and ψE(1, 0) = 0,
then AE;J is reflexive.

Corollary 5.4. Let A = (A0, A1) and B = (B0, B1) be Banach couples. Let E
be an admissible K-non-trivial reflexive Banach lattice. If T : A → B, then

T : AE;K → BE;K is a weakly compact operator

provided one of the following conditions holds:
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(i) T : A0 → B0 is weakly compact and ψE(0, 1) = 0.
(ii) T : A1 → B1 is weakly compact and ψE(1, 0) = 0.

In particular, if A0 is reflexive and ψE(0, 1) = 0, or A1 is reflexive and ψE(1, 0) = 0,
then AE;K is reflexive.

It is worth remarking that Corollaries 5.3 and 5.4 do not allow to show sufficient
conditions on E such that weak compactness of the interpolated operator follows from
the fact that T : A0 ∩ A1 → B0 + B1 is weakly compact. An additional assumption
imposed on E is required. We refer to [7, Corollary 4.4] or [17, Section 5] for such
results.

Proposition 5.5. Let A = (A0, A1) and B = (B0, B1) be Banach couples and
let T : A → B be a bounded operator. Let ρ be a function parameter and 1 < q < ∞.

(i) If T : A0 → B0 and T : A1 → B1 are weakly non-compact, then there exists a
constant C > 0, such that

γ(T : Aρ,q → Bρ,q) ≤ Cγ(T : A0 → B0)sρ

(
γ(T : A1 → B1)

γ(T : A0 → B0)

)
.

(ii) If T : A0 → B0 or T : A1 → B1 is weakly compact, then operator

T : Aρ,q → Bρ,q is weakly compact.

In particular, if A0 or A1 is reflexive then space Aρ,q is reflexive.

Proof. In the light of Lemmas 2.4 and 2.5, it is sufficient to use Theorem 5.1 and
Corollary 5.3. ¤

We note that above result for the case ρ(t) = tθ, θ ∈ (0, 1) was proved in [23,
Theorem 3.8].
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