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Abstract. In this paper, we investigate the properties of two classes of planar harmonic map-
pings. First, we discuss the equivalent norms on Lipschitz-type spaces of harmonic K-quasiregular
mappings and then we study the relationship between the harmonic area functions and the harmonic
Hardy classes. We also establish Landau’s theorem for a class of harmonic Hardy mappings.

1. Introduction and preliminaries

A complex-valued function f(z) = u(z) + iv(z) defined on a simply connected
domain D of C is called a harmonic mapping if and only if it is twice continuously
differentiable and ∆f = 0. That is the components u and v are real harmonic in D,
where ∆ represents the complex Laplacian operator

∆ = 4
∂2

∂z∂z
=

∂2

∂x2
+

∂2

∂y2
.

Every harmonic mapping f defined in D has a canonical decomposition f = h+g,
where h and g are analytic in D (see [3] or [4]). Since the Jacobian Jf (z) of f is
given by

Jf (z) = |fz(z)|2 − |fz(z)|2 = |h′(z)|2 − |g′(z)|2,
f is locally univalent and orientation-preserving if and only if |g′(z)| < |h′(z)| in
D; or equivalently h′(z) 6= 0 and the dilatation ω = g′/h′ has the property that
|ω(z)| < 1 in D. For a ∈ C, let D(a, r) = {z : |z − a| < r}. In special, we denote
D(0, r) = Dr and D = D(0, 1). Because a composition f ◦g with an analytic function
g remains harmonic, the Riemann mapping theorem allows us to assume that D = D.
Throughout this paper, we consider harmonic mappings in D unless specially stated.

A continuous increasing function ω : [0,∞) → [0,∞) with ω(0) = 0 is called a
majorant if ω(t)/t is non-increasing for t > 0. Given a subset Ω of C, a function
f : Ω → C is said to belong to the Lipschitz space Λω(Ω) if there is a positive constant
C such that

(1) |f(z)− f(w)| ≤ Cω(|z − w|) for all z, w ∈ Ω.
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For δ0 > 0, let

(2)
ˆ δ

0

ω(t)

t
dt ≤ C · ω(δ), 0 < δ < δ0,

and

(3) δ

ˆ +∞

δ

ω(t)

t2
dt ≤ C · ω(δ), 0 < δ < δ0,

where ω is a majorant and C is a positive constant. A majorant ω is said to be
regular if it satisfies the conditions (2) and (3) (see [5, 16]).

Let G be a proper subdomain of C or R2. We say that a function f belongs
to the local Lipschitz space loc Λω(G) if (1) holds, with a fixed positive constant C,
whenever z ∈ G and |z−w| < 1

2
d(z, ∂G), where d(·, ·) denotes the Euclidean distance

(cf. [6, 10]). Moreover, G is said to be a Λω-extension domain if Λω(G) = loc Λω(G).
The geometric characterization of Λω-extension domains was first given by Gehring
and Martio [6]. Then Lappalainen [10] extended it to the general case and proved
that G is a Λω-extension domain if and only if each pair of points z, w ∈ G can be
joined by a rectifiable curve γ ⊂ G satisfying

(4)
ˆ

γ

ω(d(z, ∂G))

d(z, ∂G)
ds(z) ≤ Cω(|z − w|)

with some fixed positive constant C = C(G,ω), where ds stands for the arc length
measure on γ. Furthermore, Lappalainen [10, Theorem 4.12] proved that Λω-extension
domains exist only for majorants ω satisfying (2).

Dyakonov [5] characterized the holomorphic functions of class Λω in terms of
their modulus. Later in [16, Theorems A], Pavlović came up with a relatively simple
proof of the results of Dyakonov. Recently, many authors considered this topic and
generalized Dyakonov’s results to pseudo-holomorphic functions and real harmonic
functions of several variables for some special majorant ω(t) = tα, where α > 0 (see
[9, 11, 12, 13, 14]). In this paper, we first extend [16, Theorems A and B] to planar
K-quasiregular harmonic mappings as follows, where K ≥ 1.

Theorem 1. Let ω be a majorant satisfying (2), and let G be a Λω-extension
domain. If f is a planar K-quasiregular harmonic mapping of G and continuous up
to the boundary ∂G, then

f ∈ Λω(G) ⇐⇒ |f | ∈ Λω(G) ⇐⇒ |f | ∈ Λω(G, ∂G),

where Λω(G, ∂G) denotes the class of continuous functions f on G∪∂G which satisfy
(1) with some positive constant C, whenever z ∈ G and w ∈ ∂G.

For any z1, z2 ∈ G ⊂ C, let

dω,G(z1, z2) := inf

ˆ

γ

ω(d(z, ∂G))

d(z, ∂G)
ds(z),

where the infimum is taken over all rectifiable curves γ ⊂ G joining z1 to z2. We say
that f ∈ Λω,inf(G) whenever for any z1, z2 ∈ G,

|f(z1)− f(z2)| ≤ Cdω,G(z1, z2),

where C is a positive constant which depends only on f (see [8]).
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Theorem 2. Let ω be a majorant satisfying (2). If f is a planar K-quasiregular
harmonic mapping in G, then

f ∈ Λω,inf(G) ⇐⇒ |f | ∈ Λω,inf(G).

Many authors discussed the relationships between Hardy classes of holomorphic
functions and integral means (see [7, 15]). In order to derive an analogous result
of [7, Theorem 1] for the setting of harmonic mappings, we need to introduce some
notation.

For a harmonic function f in D, for p > 0 and 0 ≤ r < 1, we define

(5) Ip(r, f) =
1

2π

ˆ 2π

0

|f(reiθ)|p dθ

and say that f belongs to the harmonic Hardy class H p
h if

‖f‖p = sup
0<r<1

(Ip(r, f))1/p < +∞.

For a harmonic mapping f in D, the generalized harmonic area function Ah(r, f) is
defined by

Ah(r, f) =

ˆ

Dr

|∇f(z)|2 dA(z),

where dA denotes the normalized Lebesgue measure on D and

|∇f | = (|fz|2 + |fz|2)1/2.

The following theorem is an analogous result of [7, Theorem 1].

Theorem 3. Let f be harmonic in D and δ > 0. Then, if 1 < p ≤ 2,

(6) f ∈ H p
h (D) ⇒

ˆ 1

0

A
p
2
h (r, f)(1− r)

δ(2−p)
2 dr < +∞,

while if p > 2,

(7)
ˆ 1

0

A
p
2
h (r, f)(1− r)

δ(2−p)
2 dr < +∞⇒ f ∈ H p

h (D).

Theorem 4. Let f ∈ H p
h (D) and δ > 0. If 1 < p ≤ 2, then

lim
r→1−

(1− r)
δ(2−p)+2

p Ah(r, f) = 0.

Finally, we prove a Landau’s theorem for a class of harmonic Hardy mappings.

Theorem 5. Let f be a harmonic in D with ‖f‖p ≤ M and f(0) = λf (0)−1 = 0,
where M is a positive constant, λf (z) =

∣∣|fz(z)| − |fz(z)|
∣∣ and p ≥ 1. Then f is

univalent in Dρ0 , where

ρ0 = ϕ(r0) = max
0<r<1

ϕ(r), ϕ(r) = r

(
1−

√
t

1 + t

)
,

with

t =
4

π
· 2

1
p M

r(1− r)
1
p

.
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Moreover, f(Dρ0) contains a univalent disk DR0
with

R0 =
r0ϕ(r0)

2r0 − ϕ(r0)
.

In Theorem 5, we remark that max0<r<1 ϕ(r) does exist, since

lim
r→0+

ϕ(r) = lim
r→1−

ϕ(r) = 0.

The proofs of these theorems are presented in the following sections. We end this
section with the following problem which is suggested by the referee: Does Theorem 1
still hold if the hypothesis “mappings being harmonic” is dropped?

2. Harmonic Lipschitz classes

In order to prove our main results, we need the following result.

Theorem A. [1, Theorem 7] If f is a K-quasiregular harmonic mapping of D
into itself, then

|fz(z)|+ |fz(z)| ≤ 4K

π

cos(|f(z)π/2|)
1− |z|2

holds for z ∈ D.

Proof of Theorem 1. The implications f ∈ Λω(G) ⇒ |f | ∈ Λω(G) ⇒ |f | ∈
Λω(G, ∂G) are obvious. We only need to prove |f | ∈ Λω(G, ∂G) ⇒ f ∈ Λω(G). For a
fixed point z ∈ G, let

F (η) = f(z + d(z)η)/Mz, η ∈ D,

where d(z) := d(z, ∂G) and Mz := sup{|f(ζ)| : |ζ − z| < d(z)}. By a simple calcula-
tion, we obtain that

|Fη(η)|+ |Fη(η)|
|Fη(η)| − |Fη(η)| =

|fξ(ξ)|+ |fξ(ξ)|
|fξ(ξ)| − |fξ(ξ)|

≤ K,

where ξ = z + d(z)η. Then F is a K-quasiregular harmonic mapping of D into itself.
By Theorem A, we have

|Fη(0)|+ |Fη(0)| ≤ 4K(1− |F (0)|2)
π

which in turn gives

(8) d(z)(|fξ(z)|+ |fξ(z)|) ≤ 8K

π
(Mz − |f(z)|).

Without loss of generality, we let ζ ∈ ∂G with |ζ − z| = d(z), and let w ∈
D(z, d(z)). Then

|f(w)| − |f(z)| ≤
∣∣|f(w)| − |f(ζ)|

∣∣ +
∣∣|f(ζ)| − |f(z)|

∣∣
≤ Cω(d(z)) + Cω(2d(z)) ≤ 3Cω(d(z))

and so,
sup

w∈D(z,d(z))

(|f(w)| − |f(z)|) ≤ 3Cω(d(z)),

which implies that

(9) Mz − |f(z)| ≤ 3Cω(d(z)).
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Thus, by (8) and (9), we have

(10) |fξ(z)|+ |fξ(z)| ≤ 24CK

π
· ω(d(z))

d(z)
, z ∈ G.

Finally, given any two points z1, z2 ∈ G, let γ ⊂ G be a curve which joins z1, z2

satisfying (4). Integrating (10) along γ, we obtain that

(11) |f(z1)− f(z2)| ≤
ˆ

γ

(|fz(z)|+ |fz(z)|) ds(z) ≤ 24CK

π

ˆ

γ

ω(d(z))

d(z)
ds(z).

Therefore, (4) and (11) yield

|f(z1)− f(z2)| ≤ C1 · ω(|z1 − z2|),
where C1 is a positive constant. This completes the proof. ¤

Proof of Theorem 2. The implication f ∈ Λω,inf(G) ⇒ |f | ∈ Λω,inf(G) is obvious.
We need only to prove that |f | ∈ Λω,inf(G) ⇒ f ∈ Λω,inf(G). For a fixed point z ∈ G,
let

F (η) = f(z + d(z)η)/Mz, η ∈ D,

where d(z) := d(z, ∂G) and Mz := sup{|f(ζ)| : |ζ − z| < d(z)}. From the proof of
Theorem 1, it follows that

(12) d(z)(|fξ(z)|+ |fξ(z)|) ≤ 8K

π
(Mz − |f(z)|),

where ξ = z + d(z)η. For w ∈ D(z, d(z)), there exists a positive constant C such
that

(13) |f(w)| − |f(z)| ≤ Cdω,G(w, z) ≤ C

ˆ

[w,z]

ω(d(ζ, ∂G))

d(ζ, ∂G)
ds(ζ),

where [w, z] denotes the straight segment with endpoints w and z. We observe that
if ζ ∈ [w, z], then one has [w, z] ⊂ D(z, d(z)) ⊂ G and therefore

d(ζ, ∂G) ≥ d(ζ, ∂D(z, d(z))),

which gives that

(14)
ω(d(ζ, ∂G))

d(ζ, ∂G)
≤ ω(d(ζ, ∂D(z, d(z))))

d(ζ, ∂D(z, d(z)))
.

For any w ∈ D(z, d(z)), (13) and (14) imply that

|f(w)| − |f(z)| ≤ C

ˆ

[w,z]

ω(d(ζ, ∂G))

d(ζ, ∂G)
ds(ζ) ≤ C

ˆ

[w,z]

ω(d(ζ, ∂D(z, d(z))))

d(ζ, ∂D(z, d(z)))
ds(ζ)

= C

ˆ

[w,z]

ω(d(z)− |ζ − z|)
d(z)− |ζ − z| ds(ζ) ≤ C

ˆ d(z)

0

ω(t)

t
dt ≤ Cω(d(z)).

From this we obtain that

(15) Mz − |f(z)| ≤ Cω(d(z)).

Again, for any z1, z2 ∈ G, by (12) and (15), there exists a positive constant C1 such
that

|f(z1)− f(z2)| ≤ C1dω,G(z1, z2)

and the proof of this theorem is completed. ¤
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3. Harmonic Hardy classes

It is worth to remark that the standard technologies of analytic functions are
not useful to prove Theorem 3 and therefore, we use Green’s Theorem in its proof.
Green’s theorem states that if g ∈ C2(D), then

(16)
1

2π

ˆ 2π

0

g(reiθ) dθ = g(0) +
1

2

ˆ

Dr

∆g(z) log

(
r

|z|
)

dA(z), 0 ≤ r < 1.

Proof of Theorem 3. First we prove the implication (7). Let f ∈ H p
h (D) and

δ > 0. For 0 ≤ r < 1, by the Poisson integral formula, we have

f(z) =
1

2π

ˆ 2π

0

r2 − |z|2
|z − reiθ|2f(reiθ) dθ, z ∈ Dr.

Using Jensen’s inequality, we have

|f(z)|p ≤ 1

2π

ˆ 2π

0

r2 − |z|2
|z − reiθ|2 |f(reiθ)|p dθ ≤ 2rIp(r, f)

r − |z| ,

and so

(17) |f(z)|p(r − |z|) ≤ 2rIp(r, f),

where Ip(r, f) is defined by (5). It follows that

(18)
ˆ r

0

(r − ρ)δMp(ρ, f) dρ ≤ 2rIp(r, f)

ˆ r

0

dρ

(r − ρ)1−δ
≤ 2r1+δIp(r, f)

δ
,

where M(r, f) = sup{|f(z)| : |z| = r}. By (16), we have

Ip(r, f) = |f(0)|p +
1

2

ˆ

Dr

∆(|f(z)|p) log
r

|z| dA(z)

and therefore

r
d

dr
Ip(r, f) =

1

2

ˆ

Dr

∆
(|f(z)|p) dA(z)

= p

ˆ

Dr

[(p

2
− 1

)|f(z)|p−4|fz(z)f(z) + f(z)fz(z)|2

+ |f(z)|p−2|∇f(z)|2
]
dA(z)

≤ p(p− 1)

ˆ

Dr

|f(z)|p−2|∇f(z)|2 dA(z)

≤ p(p− 1)Mp−2(r, f)

ˆ

Dr

|∇f(z)|2 dA(z)

= p(p− 1)Ah(r, f)Mp−2(r, f).
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By integration, Hölder’s inequality and (18), we have

Ip(r, f) ≤ |f(0)|p + p(p− 1)

ˆ r

0

Ah(ρ, f)

ρ
Mp−2(ρ, f) dρ

≤ |f(0)|p + p(p− 1)

[ˆ r

0

(r − ρ)δMp(ρ, f) dρ

] p−2
p

·
[ˆ r

0

(Ah(ρ, f)

ρ

) p
2
(r − ρ)

δ(2−p)
2 dρ

] 2
p

≤ |f(0)|p + p(p− 1)
(2

δ

) p−2
p

I
p−2

p
p (r, f)

·
[ˆ r

0

(Ah(ρ, f)

ρ

) p
2
(r − ρ)

δ(2−p)
2 dρ

] 2
p

.

Without loss of generality, we may now assume that f(0) 6= 0. Then we have

I
2
p
p (r, f) ≤ |f(0)| p

2−p+2
p + p(p− 1)

(2

δ

) p−2
p

[ˆ r

0

(Ah(ρ, f)

ρ

) p
2
(r − ρ)

δ(2−p)
2 dρ

] 2
p

which shows thatˆ 1

0

A
p
2
h (r, f)(1− r)

δ(2−p)
2 dr < +∞⇒ f ∈ H p

h (D).

Next, we prove the implication (6). By a simple calculation, we get

r
d

dr
Ip(r, f) = p

ˆ

Dr

[(p

2
− 1

)
|f(z)|p−4|fz(z)f(z) + f(z)fz(z)|2

+ |f(z)|p−2|∇f(z)|2
]
dA(z)

≥ p(p− 1)

ˆ

Dr

|f(z)|p−2|∇f(z)|2 dA(z)

and

Ah(r, f) =

ˆ

Dr

|∇f(z)|2 dA(z) ≤ M2−p(r, f)

ˆ

Dr

|f(z)|p−2|∇f(z)|2 dA(z),

which implies that

p(p− 1)Ah(r, f) ≤ r
d

dr
Ip(r, f)M2−p(r, f).

By (18) and Hölder’s inequality, we see that
[
p(p− 1)

] p
2

ˆ r

0

[
Ah(ρ, f)

ρ
(r − ρ)

δ(2−p)
p

] p
2

dρ

≤
ˆ r

0

(r − ρ)
δ(2−p)

2 M
p(2−p)

2 (r, f)

(
d

dr
Ip(r, f)

) p
2

dρ

≤
[ˆ r

0

(r − ρ)δMp(r, f)dρ

] 2−p
2

(Ip(r, f)− Ip(0, f))
p
2

≤
(2

δ

) 2−p
2

Ip(r, f),
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which yields

f ∈ H p
h (D) ⇒

ˆ 1

0

A
p
2
h (r, f)(1− r)

δ(2−p)
2 dr < +∞.

The proof of the theorem is completed. ¤
Proof of Theorem 4. It is not difficult to see that

A
p
2
h (r, f)

ˆ 1

r

(1− ρ)
δ(2−p)

2 dρ ≤
ˆ 1

r

(1− ρ)
δ(2−p)

2 A
p
2
h (ρ, f) dρ

which implies that

2

2 + δ(2− p)
(1− r)

2+δ(2−p)
2 A

p
2
h (r, f) ≤

ˆ 1

r

(1− ρ)
δ(2−p)

2 A
p
2
h (ρ, f) dρ.

By Theorem 3, we conclude that
ˆ 1

0

(1− ρ)
δ(2−p)

2 A
p
2
h (ρ, f) dρ < +∞

which gives

lim
r→1−

(1− r)
δ(2−p)+2

p Ah(r, f) = 0

and the proof of the theorem is completed. ¤

4. Landau’s theorem

Proof of Theorem 5. By assumption and the inequaltiy (17), we have

|f(z)| ≤ 2
1
p M

(1− |z|) 1
p

, z ∈ D.

Set f(z) =
∑∞

n=1 anz
n +

∑∞
n=1 bnzn, and, for ζ ∈ D, let F (ζ) = f(rζ)/r so that

F (ζ) =
∞∑

n=1

Anζ
n +

∞∑
n=1

Bnζ
n
,

where An = anr
n−1 and Bn = bnr

n−1. Then F (0) = λF (0)− 1 = 0 and

|F (ζ)| ≤ 2
1
p M

r(1− r)
1
p

= M(r) for ζ ∈ D.

By [2, Lemma 1], for n ∈ {2, 3, · · · }, we have

(19) |An|+ |Bn| ≤ 4M(r)

π
.

To prove the univalence of F , we choose two distinct points ζ1, ζ2 ∈ Dρ1(r) and
let ζ1 − ζ2 = |ζ1 − ζ2|eiθ, where

ρ1(r) = 1−
√

t

1 + t
,
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with t = 4M(r)
π

. Then (19) yields that

|F (ζ2)− F (ζ1)| =
∣∣∣∣
ˆ

[ζ1,ζ2]

Fζ(ζ) dζ + Fζ(ζ) dζ

∣∣∣∣

≥
∣∣∣∣
ˆ

[ζ1,ζ2]

Fζ(0) dζ + Fζ(0) dζ

∣∣∣∣

−
∣∣∣∣
ˆ

[ζ1,ζ2]

(Fζ(ζ)− Fζ(0)) dζ + (Fζ(ζ)− Fζ(0)) dζ

∣∣∣∣

> |ζ1 − ζ2|
[
λF (0)−

∞∑
n=2

(|An|+ |Bn|)nρn−1
1 (r)

]

≥ |ζ1 − ζ2|
[
1− 4M(r)

π
· ρ1(r)(2− ρ1(r))

(1− ρ1(r))2

]
≥ 0.

Here in the last step we use the fact that

1− 4M(r)

π
· ρ1(r)(2− ρ1(r))

(1− ρ1(r))2
= 0, i.e. ρ1(r) =

ϕ(r)

r
.

Thus, F (ζ2) 6= F (ζ1). The univalence of F follows from the arbitrariness of ζ1 and
ζ2. This implies that f is univalent in Drρ1(r).

Now, for any ζ ′ = ρ1(r)e
iθ ∈ ∂Dρ1(r), we easily obtain that

|F (ζ ′)| ≥ ρ1(r)−
∞∑

n=2

(|An|+ |Bn|)ρn
1 (r) ≥ ρ1(r)−

∞∑
n=2

4M(r)

π
ρn

1 (r)

= ρ1(r)

[
1− 4M(r)

π

ρ1(r)

1− ρ1(r)

]
=

R0

r
,

where the last step is a consequence of the expression for ρ1 given by ρ1(r) = r−1ϕ(r).
Therefore, f(Drρ1(r)) contains a univalent disk of radius R0. ¤
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