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Abstract. We study some relationships between holomorphic motions, continuous motions,
and monodromy. We also study extensions of holomorphic motions over Riemann surfaces and char-
acterize the extendability of holomorphic motions over some planar regions in terms of monodromy.

1. Introduction

Holomorphic motions, which are holomorphic families of injections on a subset
of the Riemann sphere, were first introduced in a paper by Mañe, Sad and Sullivan
([10]). Since its inception, it has been a useful tool in complex analysis, in particular,
complex dynamics and Teichmüller theory. A fundamental topic in the study of holo-
morphic motions has been the question of extending holomorphic motions. Namely,
the main concern is to understand conditions under which a holomorphic motion of
a closed set in the Riemann sphere Ĉ can be extended to a holomorphic motion of
Ĉ.

In the famous paper [15], Slodkowski gave a complete answer to this question for
holomorphic motions when the parameter space is the open unit disk in the complex
plane C. He showed that in this case, every holomorphic motion can be extended to
a holomorphic motion of Ĉ. Later, Chirka ([3]) claimed some conditions for extend-
ability of a holomorphic motion, when the parameter space is a Riemann surface.
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For higher dimensional parameter spaces, it is known that there exist holomorphic
motions which cannot be extended to Ĉ, even if the parameter space is simply con-
nected; see the papers [5], [7], and [9] for some examples. Therefore, a natural
problem is to clarify conditions under which a holomorphic motion of a subset of Ĉ

can be extended to a holomorphic motion of Ĉ. This is our main motivation.
In this paper, we obtain some new results on extensions of holomorphic motions.

The main idea is to study the relationship between extending holomorphic motions
and monodromy of holomorphic motions (see §2 for the definitions). As spin-offs of
our first theorem, we answer a question of Earle (see Remark 1 in §2.5), strengthen a
part of Theorem 1 in Earle’s paper [5] (see Theorem 4.2), and prove one direction of
a claim in Chirka’s paper [3] (see Remark 2 in §2.4). We also study the extendability
of holomorphic motions over Riemann surfaces. In particular, we characterize the ex-
tendability of holomorphic motions over some planar regions in terms of monodromy
(Theorems D and E).

Acknowledgement. We want to thank the referee for his/her valuable suggestions
and comments, which helped us to improve our paper. We also thank Zhe Wang for
helping us with the picture in Lemma 8.1.

2. Basic definitions and statements of the main results

2.1. Holomorphic motions.

Definition 2.1. Let V be a connected complex manifold with a basepoint x0

and let E be a subset of the Riemann sphere Ĉ. A holomorphic motion of E over V
is a map φ : V × E → Ĉ that has the following three properties:

(1) φ(x0, z) = z for all z in E,
(2) the map φ(x, ·) : E → Ĉ is injective for each x in V , and
(3) the map φ(·, z) : V → Ĉ is holomorphic for each z in E.

We say that V is the parameter space of the holomorphic motion φ. We will
always assume that φ is a normalized holomorphic motion; i.e. 0, 1, and ∞ belong
to E and are fixed points of the map φ(x, ·) for every x in V . We sometimes write
the map φ(x, ·) as φx(·) for x in V .

Definition 2.2. Let V andW be connected complex manifolds with basepoints,
and f be a basepoint preserving holomorphic map ofW into V . If φ is a holomorphic
motion of E over V its pullback by f is the holomorphic motion

(2.1) f ∗(φ)(x, z) = φ(f(x), z) ∀(x, z) ∈ W × E
of E over W .

Holomorphic motion of Ĉ. LetM(C) denote the open unit ball of the complex
Banach space L∞(C) and let 0 be its basepoint. For each µ in M(C) let wµ be the
unique quasiconformal homeomorphism of Ĉ onto itself that fixes the points 0, 1,
and ∞ and has Beltrami coefficient µ. We can define a map ΨĈ : M(C) × Ĉ → Ĉ
as follows:

ΨĈ(µ, z) = wµ(z) for all z ∈ Ĉ.

By Theorem 11 in [1], this is a holomorphic motion of Ĉ over M(C). This holomor-
phic motion has the following universal property; see Theorem 4 in [5].
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Theorem 2.3. Let φ : V × Ĉ → Ĉ be a holomorphic motion where V is a
connected complex manifold with a basepoint. Then there exists a (unique) basepoint
preserving holomorphic map f : V →M(C) such that f ∗(ΨĈ) = φ.

If E is a proper subset of Ẽ, and φ : V × E → Ĉ and φ̃ : V × Ẽ → Ĉ are two
maps, we say that φ̃ extends φ if φ̃(x, z) = φ(x, z) for all (x, z) in V × E.

2.2. Quasiconformal motions. In their paper [16], Sullivan and Thurston in-
troduced the idea of quasiconformal motions. In what follows, ρ denotes the Poincaré
metric on Ĉ \ {0, 1,∞}.

Let V be a connected Hausdorff space with a basepoint x0. For any map φ : V ×
E → Ĉ, x in V , and any quadruplet a, b, c, d of points in E, let φx(a, b, c, d) denote
the cross-ratio of the values φ(x, a), φ(x, b), φ(x, c), and φ(x, d), for x in V . As in
§2.1, we will write φ(x, z) as φx(z) for x in V and z in E. So we have:

(2.2) φx(a, b, c, d) =
(φx(a)− φx(c))(φx(b)− φx(d))

(φx(a)− φx(d))(φx(b)− φx(c))
for each x in V .

Remark 2.4. For each x ∈ V , φx(a, b, c, d) takes values in Ĉ \ {0, 1,∞} if and
only if the map φx : E → Ĉ is injective.

Definition 2.5. A quasiconformal motion is a map φ : V ×E → Ĉ of E over V
such that

(1) φ(x0, z) = z for all z in E,
(2) for each x ∈ V , the map φx : E → Ĉ is injective, and
(3) given any x in V and any ε > 0, there exists a neighborhood Ux of x such

that for any quadruplet of distinct points a, b, c, d in E, we have

ρ
(
φy(a, b, c, d), φy′(a, b, c, d)

)
< ε for all y and y′ in Ux.

As usual, we will always assume that φ is a normalized quasiconformal motion;
i.e. 0, 1, and ∞ belong to E and are fixed points of the map φx(·) for every x in V .

We will need the following property of quasiconformal motions of Ĉ. See [12] for
a complete proof.

Theorem 2.6. Let φ : V × Ĉ→ Ĉ be a map such that φ(x0, z) = z for all z in
Ĉ, and for each x in V , φx fixes the points 0, 1, and ∞. Then, φ is a quasiconformal
motion of Ĉ if and only if it satisfies:

(1) the map φx : Ĉ→ Ĉ is quasiconformal for each x in V , and
(2) the map that sends x in V to the Beltrami coefficient of φx, for each x in V ,

is continuous.

2.3. Continuous motions.

Definition 2.7. Let V be a path-connected Hausdorff space with a basepoint
x0. A normalized continuous motion of Ĉ over V is a continuous map φ : V ×Ĉ→ Ĉ
such that:

(1) φ(x0, z) = z for all z in Ĉ, and
(2) for each x in V , the map φx : Ĉ → Ĉ is a homeomorphism, that fixes the

points 0, 1, and ∞.
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The following facts were proved in [12].

Proposition 2.8. A quasiconformal motion φ : V × Ĉ→ Ĉ is also a continuous
motion.

Theorem 2.9. Let φ : V × E → Ĉ be a holomorphic motion where V is a
connected complex Banach manifold with a basepoint, and E is a closed subset of Ĉ
(that contains the points 0, 1, and ∞). Then the following are equivalent:

(1) There exists a continuous motion φ̂ : V × Ĉ→ Ĉ that extends φ.
(2) There exists a quasiconformal motion φ̃ : V × Ĉ→ Ĉ that extends φ.

We also note the following result. See Corollary 6.1 in [12].

Proposition 2.10. Let φ : V × E → Ĉ be a holomorphic motion where V is a
simply connected complex Banach manifold with a basepoint. Then there exists a
quasiconformal motion φ̃ : V × Ĉ→ Ĉ such that φ̃ extends φ.

Remark 2.11. In the above proposition, for each x in V , φ̃x : Ĉ → Ĉ is a
(normalized) quasiconformal map; this follows from Theorem 2.6. Furthermore, there
exists a basepoint preserving continuous map f : V → M(C), where, for each x in
V , f(x) is the Beltrami coefficient of the quasiconformal map φ̃x. Thus, for each z
in E and x in V , we have φ(x, z) = φ̃(x, z) = wf(x)(z).

2.4. Monodromy. Let φ : V × E → Ĉ be a holomorphic motion of E over a
connected complex Banach manifold V with basepoint x0. For each z ∈ E\{0, 1,∞},
we have a holomorphic map φz(·) := φ(·, z) on V . Being a continuous map, it
induces a homomorphism (φz)∗ : π1(V )→ π1(Ĉ \ {0, 1,∞}). We call (φz)∗ the trace
monodromy of φ for z ∈ E. The trace monodromy is called trivial if it maps every
element of π1(V ) to the identity of π1(Ĉ \ {0, 1,∞}).

Let π : Ṽ → V be a holomorphic universal covering, with the cover transformation
group GV . We take a point x̃0 ∈ Ṽ so that π(x̃0) = x0.

Let Φ = π∗(φ). Then, Φ: Ṽ ×E → Ĉ is a holomorphic motion of E over Ṽ with
x̃0 as the basepoint. By Remark 2.11, there exists a basepoint preserving continuous
map f : Ṽ →M(C) such that

(2.3) Φ(x, z) = wf(x)(z) for each x ∈ Ṽ and each z ∈ E.

For each z ∈ E and for each g ∈ GV , we have

wf◦g(x̃0)(z) = Φ(g(x̃0), z) = φ(π ◦ g(x̃0), z) = φ(x0, z) = z.

Therefore, wf◦g(x̃0) keeps every point of E fixed.
We claim that the homotopy class for wf◦g(x̃0) relative to E is well-defined.

Lemma 2.12. The homotopy class for wf◦g(x̃0) relative to E does not depend
on the choice of continuous mappings f .

Proof. Let f1, f2 : Ṽ → M(C) be basepoint preserving continuous maps which
are obtained from the given holomorphic motion φ : V × E → Ĉ. For each g ∈ GV ,
take a path cg : [0, 1]→ Ṽ which connects x̃0 and g(x̃0) and write

H(z, t) := wf1◦g(x̃0) ◦ {wf1◦cg(t)}−1 ◦ wf2◦cg(t)(z)
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for (z, t) ∈ Ĉ × [0, 1]. Then, we see that H(·, ·) gives a homotopy from wf1◦g(x̃0) to
wf2◦g(x̃0) relative to E. Hence, we conclude that wf1◦g(x̃0) and wf2◦g(x̃0) belong to the
same homotopy class relative to E, as claimed. �

We now assume that E is a finite set and it contains n(> 3) points including
0, 1 and ∞. Let φ : V × E → Ĉ be a holomorphic motion. The map wf◦g(x̃0)

is a quasiconformal selfmap of the Riemann surface XE := Ĉ \ E. Therefore, it
represents a mapping class of XE, and by Lemma 2.12, we have a homomorphism
ρφ : π1(V, x0)→ Mod(0, n) given by

(2.4) ρφ(c) = [wf◦gc(x̃0)]

where Mod(0, n) is the mapping class group of the n-times punctured sphere, gc ∈ GV

is an element corresponding to c ∈ π1(V, x0), and [w] denotes the mapping class of
XE for w. We call the homomorphism ρφ the monodromy of the holomorphic motion
φ of the finite set E. The monodromy is called trivial if it maps every element of
π1(V, x0) to the identity of Mod(0, n).

If φ extends to a holomorphic motion of Ĉ, then it represents a holomorphic
family of quasiconformal mappings with the parameter space V . In fact, by Theorem
2.3, there exists a basepoint preserving holomorphic map f : V → M(C) such that
for all (x, z) ∈ V × E, we have φ(x, z) = wf(x)(z). Hence, we have the following

Proposition 2.13. Let φ : V × E → Ĉ be a holomorphic motion of a finite set
E. If φ can be extended to a holomorphic motion of Ĉ over V , then the monodromy
ρφ is trivial.

2.5. Statements of the main results. In what follows, we will always assume
that E is a closed subset of Ĉ, such that 0, 1, and ∞ belong to E. As usual, let
En = E× · · · ×E (n times). Let V be a connected complex Banach manifold with a
basepoint x0. Let φ : V × E → Ĉ be a holomorphic motion. Let X be a topological
space. Let Y1 := C \ {0, 1}, and, for n ≥ 2,

Yn = {z = (z1, · · ·, zn) : zi 6= zj for 1 ≤ i 6= j ≤ n and zi 6= 0, 1 for all i}.

Let Fn : Yn → X be a continuous map. Define φn : V × (En ∩ Yn)→ Ĉ as follows:

φn(x, z) = (φ(x, z1), · · ·, φ(x, zn))

where z = (z1, · · ·, zn) ∈ En ∩ Yn.
Next, we define Gn : V × (En ∩ Yn)→ X as follows: Gn = Fn ◦ φn.
Let γ be a closed curve in V . For any z in En ∩ Yn, we define

Gn(γ, z) := {Gn(x, z) : x ∈ γ}.
We now state our first theorem.

Theorem A. If φ : V ×E → Ĉ can be extended to a continuous motion φ̂ : V ×
Ĉ→ Ĉ, then Gn(γ, z) is homotopic to Gn(x0, z) in X.

The following special cases are important and have independent interests.

Case 1. When n = 4, X = C \ {0, 1}, and let F4 be the cross-ratio map

F4(a, b, c, d) =
(a− c)(b− d)

(a− d)(b− c)
,

where a, b, c, d are distinct points in E.
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Corollary 1. Let φ : V × E → Ĉ be a holomorphic motion. For each z in
E4 ∩ Y4, define Hz(x) := G4(x, z) = F4 ◦ φ4. If φ extends to a continuous motion
φ̃ : V × Ĉ → Ĉ, then the map Hz is null-homotopic, which means the induced
homomorphism

Hz∗ : π1(V )→ π1(C \ {0, 1})
is trivial.

Remark 1. Corollary 1 gives a positive answer to the following question asked
by Earle (e-mail communication). We thank him for this question. Let φ : V ×E → Ĉ

be a holomorphic motion. If φ extends to a continuous motion of Ĉ, then for any
distinct points a, b, c, d in E, and any closed curve γ in V , is it true that the closed
curve t 7→ φγ(t)(a, b, c, d) is null-homotopic, where φγ(t) is the cross-ratio of the points
φγ(t)(a), φγ(t)(b), φγ(t)(c), φγ(t)(d).

Case 2. When n = 1; X = C \ {0, 1}, F (z) = z. For each z ∈ E \ {0, 1,∞}, we
consider the the trace monodromy (φz)∗ of φ for z ∈ E.

Corollary 2. Let φ : V × E → Ĉ be a holomorphic motion that extends to a
continuous motion φ̃ : V × Ĉ → Ĉ. Then, the trace monodromy (φz)∗ is trivial for
every point z in E.

Case 3. When n = 2; X is the set of all integers. For any two smooth closed
curves δ1, δ2 : [0, 1]→ C in C, we still continue with the notation F2, which is defined
as follows:

F2(δ1, δ2) =
1

2π

ˆ 1

0

d (arg(δ1(t))− (δ2(t))) ,

if δ1(t) 6= δ2(t) for any t ∈ [0, 1]. Note that F2 takes values in X and it is the winding
number of a closed curve δ1 − δ2 defined by

(δ1 − δ2)(t) := δ1(t)− δ2(t)

for t ∈ [0, 1].
In fact, F2 is not exactly defined as a map on Y2. It is defined on the product of

the spaces of closed curves in C. However, as we will see in the proof of Corollary 3,
this slight abuse of notations will not be relevant.

Corollary 3. Let φ : V ×E → Ĉ be a holomorphic motion. For any z1, z2 in E
(z1 6= z2), and a closed curve γ in V , we define

(2.5) H(γ) := F2 (φ(γ(t), z1), φ(γ(t), z2)) .

If φ extends to a continuous motion φ̃ : V × Ĉ→ Ĉ, then H(γ) is zero. In particular,
the winding number of the closed curve t 7→ φ(γ(t), z1)− φ(γ(t), z2) about the origin
is zero.

Remark 2. This proves one direction of Chirka’s claim (see [3]).

Let φ : V ×E → Ĉ be a holomorphic motion. The statements of Proposition 2.13
and Corollary 2 lead to the following question.

Question. If the trace monodromy (φz)∗ is trivial for every z in E or if the
monodromy is trivial for holomorphic motion of any finite subset of E, does φ have
an extension as a holomorphic motion (or a continuous motion) to the whole of Ĉ
over V ?
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If the set E consists of four points, it is a special case; we have an affirmative
answer.

Theorem B. Let φ : V×E → Ĉ be a holomorphic motion, where E = {0, 1, a,∞}
for some a 6= 0, 1,∞. Then, the following are equivalent.

(1) The holomorphic motion φ can be extended to a holomorphic motion φ̂ : V ×
Ĉ→ Ĉ;

(2) the trace monodromy (φa)∗ : π1(V )→ π1(C \ {0, 1}) is trivial;
(3) the monodromy ρφ : π1(V )→ Mod(0, 4) is trivial.

We shall give an answer to the above question if the parameter space V is certain
kind of planar domains. Before giving the answer, we state a general theorem on the
extendability of holomorphic motions.

Theorem C. Let φ : R × E → Ĉ be a holomorphic motion, where R is a hy-
perbolic Riemann surface (with a basepoint). Suppose the restriction of φ to R×E ′
extends to a holomorphic motion of Ĉ, whenever {0, 1,∞} ⊂ E ′ ⊂ E and E ′ is finite.
Then, φ can be extended to a holomorphic motion of Ĉ.

Remark 3. A weaker version of this result was proved in [12] for holomorphic
motions over infinite-dimensional parameter spaces; see Theorem 3 in that paper.

Definition 2.14. Let ∆ denote the open unit disk {z ∈ C : |z| < 1}. A compact
subset K of ∆ is called AB-removable if every bounded holomorphic function on
∆ \K can be extended to a holomorphic function on ∆.

In [13], the following theorem was proved.

Theorem 2.15. Let K be a compact subset of ∆. Suppose that K is AB-
removable. For a holomorphic motion φ : (∆ \ K) × E → Ĉ, the following are
equivalent:

(1) φ can be extended to a continuous motion φ̃ : (∆ \K)× Ĉ→ Ĉ.
(2) φ can be extended to a holomorphic motion φ̂ : (∆ \K)× Ĉ→ Ĉ.
(3) φ can be extended to a holomorphic motion φ0 : ∆× E → Ĉ.

Statement (3) means that φ0(t, z) = φ(t, z) for all (t, z) ∈ (∆ \K)× E.

Let K be any AB-removable subset of ∆. For a holomorphic motion of a finite
subset E over ∆K := ∆ \K, we give an answer to the question for monodromy:

Theorem D. Let K ⊂ ∆ be an AB-removable compact subset of ∆ and E ⊃
{0, 1,∞} a finite subset of Ĉ. Let φ : ∆K × E → Ĉ be a holomorphic motion of E
over ∆K . Then φ can be extended to a holomorphic motion of Ĉ over ∆K if and
only if the monodromy ρφ is trivial.

From Theorems C and D, we have the following;

Corollary 4. Let K ⊂ ∆ be an AB-removable compact subset of ∆ and E ⊃
{0, 1,∞} a closed subset of Ĉ. Let φ : ∆K × E → Ĉ be a holomorphic motion.
Suppose that the monodromy of the restriction of φ to ∆K×E ′ is trivial for any finite
subset E ′ of E, containing 0, 1 and ∞. Then, φ can be extended to a holomorphic
motion of Ĉ.
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As for the trace monodromy, we give an answer to the question when V is the
complement of an AB-removable compact subset of ∆.

Theorem E. Let E be a closed subset of Ĉ; 0, 1,∞ belong to E. Suppose that
E contains at least five points and K is a nonempty AB-removable compact subset of
∆. We write ∆K := ∆ \K, and the punctured unit disk ∆∗ = {z ∈ C : 0 < |z| < 1}.

(1) If there exists a connected component of Ĉ \E such that it is neither simply
connected nor conformally equivalent to ∆∗, then there exists a holomorphic
motion φ0 of E over ∆K such that the trace monodromy (φz0)∗ of φ0 is trivial
for every z in E but φ0 has no extension as a holomorphic motion of Ĉ over
∆K .

(2) If every connected component of Ĉ \ E is simply connected or conformally
equivalent to ∆∗, then every holomorphic motion of E over ∆K can be ex-
tended to a holomorphic motion of Ĉ over ∆K .

3. Proof of Theorem A

Let V be a connected complex Banach manifold with a basepoint x0. Take any
closed curve γ in V . By Theorem 2.9, there exists a quasiconformal motion φ̃ : V ×
Ĉ → Ĉ, such that φ̃ extends φ. By Theorem 2.6, φ̃x : Ĉ → Ĉ is a quasiconformal
map, for each x in V . Hence there exists a µ(x) ∈ M(C) for each x in V , which
is the Beltrami coefficient of the quasiconformal map φ̃x. Furthermore, by Theorem
2.6, the map x 7→ µ(x) is continuous on V . Thus, for any z in E, we have φ̃x(z) =
φx(z) = wµ(x)(z).

For any z = (z1, · · ·, zn) ∈ En ∩ Yn, define a map Γ: I × I → X as follows: (here,
I denotes the unit interval)

Γ(s, t) := Fn(wsµ(γ(t))(z1), · · ·, wsµ(γ(t))(zn)).

Clearly, Γ is a continuous map.
Next, note that

Γ(0, t) = Fn(z1, · · ·, zn) = Gn(x0, z)

and
Γ(1, t) = Fn(wµ(γ(t))(z1), · · ·, wµ(γ(t))(zn)) = Gn(γ(t), z).

It follows that Gn(γ, z) is homotopic to Gn(x0, z). �

Proof of Corollary 1. Here, Hz(γ) = G4(γ, z) is homotopic to G4(x0, z) =
F4(φ4(x0, z)) = φx0(z1, z2, z3, z4) (see the notation in Equation (2.2)), which is equal
to F4(z1, z2, z3, z4). �

Proof of Corollary 2. This follows from Case 1, noting that F4(z, 1, 0,∞) = z. �

Proof of Corollary 3. Arguing as in the proof of Theorem A, if φ can be extended
to a continuous motion φ̃ : V × Ĉ→ Ĉ, we have φ̃x(z) = φx(z) = wµ(x)(z) for each z
in E. For 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, define

Γ(s, t) = F2

(
φsγ(t)(z1), φsγ(t)(z2)

)
= F2

(
wsµ(γ(t))(z1), wsµ(γ(t))(z2)

)
which is obviously continuous.

We have
Γ(0, t) = F2(z1, z2) = F2(φx0(z1), φx0(z2)) = H(x0)
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and
Γ(1, t) = F2(φγ(t)(z1), φγ(t)(z2)) = H(γ).

So, H(γ) is homotopic to H(x0) in X. But H(x0) = 0 and X is discrete. Therefore,
H(γ) = 0. �

4. An application of Theorem A

We first note the following fact that was proved in [13]. A holomorphic motion
φ : V × E → Ĉ is trivial if φ(x, z) = z for all (x, z) ∈ V × E.

Theorem 4.1. Let V be a connected complex Banach manifold with a basepoint.
Then there exists a non-trivial holomorphic motion of Ĉ over V if and only if there
is a non-constant bounded holomorphic function on V .

See Theorem 1 in [13].
In this section we discuss an example of Douady, and a theorem of Earle ([5]). A

partial generalization of Theorem 1 in [5] is an easy consequence of Corollary 2. In
§2 of [5], Earle discusses an example of Douady of a holomorphic motion of a four-
point set over C \ {0, 1}, that cannot be extended to a holomorphic motion of Ĉ.
That fact follows as an easy consequence of our Theorem A. Let V = C \ {0, 1} and
E = {0, 1,∞, a} (where a 6= 0, 1,∞). Define φ : V ×E → Ĉ as: φ(t, 0) = 0, φ(t, 1) =
1, φ(t,∞) = ∞, and φ(t, a) = t for all t in V . We choose an arbitrary point x0 in
V as the basepoint. Then, it is clear that φ is a holomorphic motion of E over V
with x0 as a basepoint. Now, for the point a, we have φa(t) = φ(t, a) = t. Therefore,
the induced homomorphism (φa)∗ from π1(V ) to itself is the identity, which is not
trivial. Hence, by Corollary 2, φ cannot be extended to a continuous motion of Ĉ,
and hence cannot be extended to a holomorphic motion of Ĉ.

Since V = C \ {0, 1} admits no non-constant bounded holomorphic functions,
Theorem 4.1 gives an alternative proof for the non-extendability of the above holo-
morphic motion φ.

Here, we show the following generalization; it also gives an example for which
Theorem 4.1 cannot apply.

Theorem 4.2. Let V = C\{0, 1} and E = {0, 1,∞, a} (where a 6= 0, 1,∞). Let
φ : V ×E → Ĉ be the holomorphic motion given by φ(t, 0) = 0, φ(t, 1) = 1, φ(t,∞) =
∞, and φ(t, a) = t for all t in V . (Let an arbitrary point x0 ∈ V be a basepoint.)
Let W be any connected complex manifold such that there exists a holomorphic
map f : W → V satisfying the condition f∗ : π1(W ) → π1(V ) is nontrivial. Then,
there exists a holomorphic motion ψ : W × E → Ĉ which cannot be extended to a
continuous motion of Ĉ.

Proof. Without loss of generality, we can assume that f(W ) contains x0. Choose
y0 ∈ W such that f(y0) = x0. Define ψ = f ∗(φ). Then, ψ is the required holomorphic
motion of E over W with basepoint y0. We have ψa(s) = f ∗(φ)(s, a) = φ(f(s), a) =
f(s). Therefore, (ψa)∗ = f∗, which is nontrivial by hypothesis. Hence, by Corollary 2,
we are done. �

An example. Let R be a Belyi surface. That is, the Riemann surface R is
defined over Q as an algebraic curve. Then it follows from a theorem of Belyi ([2])
that there exists a holomorphic covering f : R→ Ĉ such that it is branched over only
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the points 0, 1, and ∞. Taking mutually disjoint simply connected neighborhoods
U0, U1 and U∞ of 0, 1 and ∞, respectively, we choose W = R \ f−1(U0 ∪ U1 ∪ U∞).
Then, W and f satisfy the conditions in Theorem 4.2. Obviously, W admits a non-
constant bounded holomorphic function. Thus, we cannot apply Theorem 4.1 for
this example.

Remark 4.3. In Theorem 1 of [5], Earle discusses three particular examples
for W ; when W is the punctured disk, an annulus, an once-punctured annulus.
For these cases, he shows the non-extendability of the holomorphic motion ψ. Our
Theorem 4.2 strengthens that part of Theorem 1 of [5]. For the above three cases
for W , Earle actually proves more. He shows that the holomorphic motions are
maximal. The same is true for Douady’s example. See [5] for the definition of maximal
holomorphic motions. Theorem 4.2 of our paper shows only the non-extendability of
the holomorphic motion ψ to a holomorphic motion of Ĉ. In fact, we show that ψ
cannot be extended even to a continuous motion of Ĉ.

5. Proof of Theorem B

Let E = {0, 1,∞, a} where a 6= 0, 1,∞ and (φa)∗ : π1(V ) → π1(C \ {0, 1}) the
trace monodromy for a holomorphic motion φ : V × E → Ĉ.

If φ can be extended to a holomorphic motion φ̂ : V × Ĉ→ Ĉ, then by Proposi-
tion 2.13 and Corollary 2, both ρφ and (φa)∗ are trivial. For the other direction, we
follow the argument in the first part of the proof of Theorem 2 of [5].

Suppose that (φa)∗ is trivial. Let π : ∆→ C \ {0, 1} be a holomorphic universal
covering such that π(0) = a. Since φa : V → C \ {0, 1} has the property that (φa)∗ is
trivial, then (φa)∗(π1(V )) ⊆ π∗(π1(∆)). Therefore, φa can be lifted to a holomorphic
map φ̃a : V → ∆. Clearly, φ̃a is basepoint preserving. Let ψ : C \ {0, 1} × E → Ĉ
be the holomorphic motion defined as follows: ψ(t, 0) = 0, ψ(t, 1) = 1, ψ(t,∞) =∞,
and ψ(t, a) = t for all t in C \ {0, 1}. Define ψ̂ = π∗(ψ); then, ψ̂ : ∆ × E → Ĉ is a
holomorphic motion. By Slodkowski’s theorem (see [15]) there exists a holomorphic
motion ψ̃ : ∆ × Ĉ → Ĉ, such that ψ̃ extends ψ̂. Finally, define φ̂ = (φ̃a)∗(ψ̃). It is
easy to see that φ̂ : V × Ĉ→ Ĉ is a holomorphic motion, that extends φ.

For the case when the monodromy ρφ is trivial, the proof is similar. We leave
the proof to the reader.

6. Proof of Theorem C

Let R be a hyperbolic Riemann surface with a basepoint p0, and let φ : R×E → Ĉ
be a holomorphic motion. Let {En} be a sequence of finite subsets of E, with the
following property:

{0, 1,∞} ⊂ E1 ⊂ · · · ⊂ En · ··

and
⋃∞
n=1En is dense in E. We are given a holomorphic motion φ : R× E → Ĉ.

Suppose that the restricted holomorphic motion φn of φ on En can be extended
to a holomorphic motion of Ĉ over R. We use the same letter φn for the extended
holomorphic motion. For each z ∈ Ĉ \ {0, 1,∞}, we set F z

n(·) := φn(·, z). Then,
F z
n : R→ Ĉ \ {0, 1,∞} is a holomorphic function on R. Since F z

n does not take 0, 1,
∞, {F z

n}∞n=1 is a normal family.
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Now, we consider a countable dense subset Ê of Ĉ with En ⊂ Ê (n = 1, 2, · · ·)
and put Ê = {zk}∞k=1. Since {F z1

n }∞n=1 is a normal family, we may find a subsequence
{n1

j} of N such that {F z1
n1

j
}∞j=1 converges to a holomorphic function on R. We also find

a subsequence {n2
j} of {n1

j} so that {F z2
n2

j
}∞j=1 converges to a holomorphic function on

R. By using the same method and the diagonal process, we find a subsequence {np}
such that {F z

np
} converges to a holomorphic function F z on R for z ∈ Ê.

Note that for each p ∈ R and z ∈ En, we have

F z(p) = lim
np→∞

F z
np

(p) = lim
np→∞

φnp(p, z) = φ(p, z).

On the other hand, φn(p, ·) is a normalized K-quasiconformal map for some K ≥ 1
if p belongs to a compact subset of R. Therefore, limnp→∞ φnp(p, ·) = wp(·) is also a
K-quasiconformal map. Obviously, wp(z) = F z(p) for z ∈ Ê and p ∈ R.

We now put, for (p, z) ∈ R× Ê,

Φ(p, z) := F z(p).

Note that:
(1) For the basepoint p0 ∈ R, φn(p0, z) = z for any z ∈ Ĉ. Thus, Φ(p0, z) = z for

any z ∈ Ê.
(2) Φ(·, z) is holomorphic on R.
(3) Φ(p, z) 6= Φ(p, z′) if z 6= z′ because Φ(p, ·) = wp(·) is a K-quasiconformal

map.

It follows that Φ: R× Ê → Ĉ is a holomorphic motion of Ê. Finally, since Ê is
dense in Ĉ, Φ can be extended to a holomorphic motion of Ĉ by the λ-lemma (see,
for example, Lemma 14.1 in [11].) �

7. Proof of Theorem D

Let E = {z1, . . . , zn} and let φ : ∆K × E → Ĉ be a holomorphic motion.
Suppose that the holomorphic motion φ : ∆K × E → Ĉ can be extended to a

holomorphic motion φ̂ of Ĉ over ∆K . Then, by Proposition 2.13, the monodromy is
trivial.

Conversely, suppose that the monodromy ρφ : π1(∆K) → Mod(0, n) is trivial.
Let ΓK be a Fuchsian group acting on ∆ which represents ∆K and π : ∆ → ∆K a
holomorphic universal covering, with π(0) = x0. We define a holomorphic motion
Φ: ∆× E → Ĉ by Φ = π∗(φ). So, we have

Φ(x, z) = φ(π(x), z) for all (x, z) ∈ ∆× E.

By Slodkowski’s theorem ([15]), there exists a holomorphic motion Φ̃ : ∆ × Ĉ → Ĉ

such that Φ̃ extends Φ. Therefore, by Theorem 2.3, there exists a basepoint preserving
holomorphic map f : ∆→M(C) such that

Φ̃(x, z) = Φ(x, z) = wf(x)(z) for (x, z) ∈ ∆× E.

The correspondence ∆ 3 x 7→ [wf(x)] defines a holomorphic map F̃ from ∆ to the
Teichmüller space T (0, n) (the Teichmüller space of Ĉ with n punctures). Since the
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monodromy ρφ is trivial, the holomorphic map F̃ satisfies

F̃ ◦ g = F̃

for any g ∈ ΓK . Hence, it can be projected to a holomorphic map F from ∆K = ∆/ΓK
to T (0, n). Then, the holomorphic map F can be extended a holomorphic map of
∆. Indeed, for any point ξ ∈ K there exists a sequence {xk}∞k ⊂ ∆K such that
limk→∞ xk = ξ (since K is compact AB- removable, it has no interior points). Since
K is AB-removable, the Carathéodory distance c∆K

on ∆K which is defined by the
space of bounded holomorphic functions, is equal to c∆|∆K

, which is the restriction of
the Carathéodory distance on ∆ to ∆K . Therefore, the sequence {xk}∞k=1 is a Cauchy
sequence with respect to c∆K

. By the distance decreasing property, we have

cT (0,n)(F (xk), F (x`)) ≤ c∆K
(xk, x`) (k, ` ∈ N),

where cT (0,n) is the Carathéodory distance on T (0, n). Thus, {F (xk)}∞k=1 is also
a Cauchy sequence in T (0, n) and it converges to a point in T (0, n) because of the
completeness of the Carathéodory distance in the Teichmüller space ([4], [14]). There-
fore, F can be extended to a holomorphic map of ∆. Since the extended holomorphic
map gives a holomorphic motion of E over ∆ which extends φ, it follows from The-
orem 2.15 that φ can be extended to a holomorphic motion of Ĉ over ∆K . �

8. Proof of Theorem E

Proof of (1). We prove the statement by constructing a concrete example.
Let K be an AB-removable compact subset of ∆. We may assume that K

contains the origin. Let Ω be a connected component of Ĉ \ E which is neither
simply connected nor conformally equivalent to the punctured disk. Since E contains
at least five points, there exists a simply connected domain D such that ∂D ⊂ Ω,
D contains at least two points of E, say z1, z2, and Dc ∩ E contains at least three
points. We may assume that 0, 1 and ∞ are not in D. We take z0 in D \ E.

Let h : ∆→ D be a Riemann map with h(0) = z0. Then, there exists a positive
number r < 1 such that h({r < |x| < 1}) ∩ E = ∅. We construct a holomorphic
motion φ0 of E over ∆∗ as follows; for x ∈ ∆∗,

(8.1) φ0(x, z) =

{
z, z ∈ E \D,
h(xh−1(z)/r), z ∈ E ∩D.

It is easy to see that φ0 is a holomorphic motion of E over ∆∗ with basepoint r ∈ ∆∗

and the trace monodromy (φz0)∗ : π1(∆∗)→ π1(Ĉ\{0, 1,∞}) is trivial for any z ∈ E.
On the other hand, the holomorphic motion does not satisfy the winding number
condition in Corollary 3.

Indeed, let γ be a simple closed curve in ∆∗ such that the winding number
of γ about the origin is one and h(γ) 3 z1, z2. Then, for a holomorphic function
f(x) := h(xh−1(z1)/r)−h(xh−1(z2)/r), H(γ) defined by (2.5) is the winding number
of f(γ) about the origin. Hence, by the argument principle we see that it is the
number of zeros of f inside γ and it is one since h is a conformal map on ∆.

If we restrict the holomorphic motion φ0 over ∆K ⊂ ∆∗, we obtain the desired
holomorphic motion. �

Proof of (2). Let E be a closed subset of Ĉ such that every connected component
of Ĉ \E is either simply connected or conformally equivalent to the punctured disk.
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Let φ : ∆K × E → Ĉ be a holomorphic motion of E over ∆K with a base-
point x0. By Lemma 2.12, we have a quasiconformal mapping wc : Ĉ → Ĉ for each
c ∈ π1(∆K , x0) which represents ρφ(c) as in Equation (2.4). Since wc keeps every
point of E fixed, it also fixes every component of Ĉ \ E (cf. [7] Lemma 2.5). By
using the hypothesis that every component of the complement of E is simply con-
nected or conformally equivalent to the punctured disk, we will see from the following
Lemma 8.1, that wc is isotopic to the identity relative to E. Therefore, if we restrict
the holomorphic motion of any finite subset E ′ of E, the monodromy of the restricted
holomorphic motion must be trivial. Thus, from Corollary 4, we conclude that φ can
be extended to a holomorphic motion of Ĉ over ∆K . �

Lemma 8.1. Let w be a quasiconformal self map of Ĉ and D a subdomain of Ĉ
which is simply connected or conformally equivalent to the punctured disk. Suppose
that w keeps every point of ∂D fixed. Then, w|D is isotopic to the identity relative
to ∂D.

Proof. First, we consider the case where D is simply connected. We may assume
that D 6= C, Ĉ (otherwise, the statement of the lemma is trivial). Take a point
z0 ∈ D as a basepoint. If w(z0) 6= z0, then we take a simply connected subregion U
of D bounded by a smooth Jordan curve in D. It is not hard to see there exists a
quasiconformal selfmap w0 of Ĉ such that w0 is the identity in Ĉ\U , w0(w(z0)) = z0

and w0|D is isotopic to the identity relative to ∂D in D. By considering w0 ◦ w
instead of w, we may assume that w(z0) = z0.

Let f : ∆→ D be a Riemann map with f(0) = z0 and put ω := f−1 ◦ w|D ◦ f :
∆→ ∆. To show the statement we use a result by Earle–McMullen.

Proposition 8.2. (cf. [6], Corollary 2.4) Let X be a hyperbolic planar region
and w : X → X a quasiconformal map. We consider the unit disk as the universal
covering of X. Let ω : ∆ → ∆ denote a lift of w to the universal covering ∆. Then
the following are equivalent.

(1) ω is the identity on ∂∆.
(2) w is isotopic to the identity relative to ∂X.

f-1(c) c

f
D

z0

I

Figure.

Now, we take a point ζ ∈ ∂D which is accessible from D. Then, there exists a
Jordan curve c in D which connects z0 and ζ. We may assume that ∂D is a bounded
subset of C. Then, f is bounded near ∂∆. Classical results of bounded holomorphic
functions guarantee that f−1(c) lands at a single point on ∂∆.
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Indeed, if the set of the accumulation points of f−1(c) on ∂∆ consists of more
than one points, it contains an open interval Iζ on ∂∆ with positive length. Then,
for almost all points x ∈ Iζ we may find a sequence {pn}∞n=1 on f−1(c) such that it
converges to x non-tangentially (See Figure).

Since pn ∈ f−1(c), we have limn→∞ f(pn) = ζ. On the other hand, it is well
known that f has non-tangential limits almost everywhere on ∂∆ (cf. [8]; Chapter
1, Theorem 5.3). Thus, we conclude that the non-tangential limit of f at x ∈ Iζ is
ζ, if the limit exists. Since Iζ has positive length, it follows from F. and M. Riesz
Theorem (cf. [8]; Chapter 2, Corollary 4.2) that f must be a constant and that is a
contradiction. Therefore, f−1(c) lands at a single point on ∂∆.

We claim that the two Jordan curves f−1(c) and ω(f−1(c))(= f−1(w(c))) termi-
nate at the same point on ∂∆.

Suppose that f−1(c) and ω(f−1(c)) terminate at distinct points x1 and x2 on
∂∆, respectively. Then, there exists a Jordan domain Ω0 in ∆ bounded by subarcs of
f−1(c), ω(f−1(c)) and a subarc I1 of ∂∆ between x1 and x2. Write L := f(∂Ω0 ∩∆).
Then, L̂ := L ∪ {ζ} is a simple closed curve in Ĉ. Let D0 be a simply connected
domain bounded by L̂ with D0 ⊃ f(Ω0).

Since ω is a quasiconformal selfmap of ∆, the map can be homeomorphically
extended to ∆ and it is orientation preserving. Hence, there exists a small arc
δ1 ⊂ I1 near x1 such that ω(δ1) ∩ I1 = ∅. Noting that that f has non-tangential
limits almost everywhere on ∂∆, we may find a point x0 ∈ δ1 so that f has a limit
along the radius `0 from the origin to x0. In other words, f(`0) terminates at a point
ζ0 ∈ ∂D. Since f(ω(`0)) = w(f(`0)) and w keeps every point of ∂D fixed, f(ω(`0))
also terminates at ζ0. This implies that f(ω(`0)) eventually belongs to f(Ω0) ⊂ D0.
However, it is absurd because ω(`0) terminates at ω(ζ0) ∈ ω(δ1). Thus, we verify
that f−1(c) and ω(f−1(c)) terminate at the same point on ∂∆.

The above argument shows that ω(x) = x if for the radius `x from the origin to
x ∈ ∂∆, f(`x) ends at a single point of ∂D. Since f(`x) ends at a single point for
almost every x ∈ ∂∆ and ω is a homeomorphism on ∆ ∪ ∂∆, ω fixes every point on
∂∆. Hence, it follows from Proposition 8.2 that w is isotopic to the identity relative
to ∂D.

Next, we assume that D is conformally equivalent to the punctured disk ∆∗. Let
a be the puncture of D. Then, D is represented by H/ < g >, where H is the upper
half plane and g(z) = z+1. Let π : H→ D be a canonical projection and ω : H→ H
a lift of w.

Let ζ ∈ ∂D\{a} be an accessible point. We take a Jordan arc c in D connecting a
and ζ. By using the same argument as above, we see that any connected component
c̃ of π−1(c) is a Jordan arc in H connecting∞ and some point on R. Furthermore, we
also see that c̃ and ω(c̃) end the same points and we conclude that ω is the identity
on R∪{∞}. Hence, it follows from Proposition 8.2 that w is isotopic to the identity
relative to ∂D. �

Remark 4. In this lemma, it is crucial that the map w is quasiconformal on
Ĉ. In fact, there exists a simply connected domain D and an orientation preserving
homeomorphism w : D → D such that ω : ∆→ ∆ given in the above proof is homo-
topic to the identity relative to ∂∆ while w does not have a continuous extension to
D (cf. [6]).
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Example 8.3. Let R be a Riemann surface. Suppose that there exists a holo-
morphic map f : R→ ∆∗ such that f∗(π1(R)) is non-trivial. Then, for any closed set
E satisfying the condition of Theorem E(1) there exists a holomorphic motion φ of
E over R such that the trace monodromy (φz)∗ is trivial for any z ∈ E but φ cannot
be extended to a holomorphic motion of Ĉ over R. Indeed, we define a holomorphic
motion φ0 of E over ∆∗ by (8.1) and φ = f ∗(φ0). Since f∗(π1(R)) is not trivial, there
exists a closed curve c in R such that f(c) is not trivial in ∆∗. Therefore, by the same
argument as in the proof of Theorem E(1), we can verify that φ cannot be extended
to a holomorphic motion of Ĉ.
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