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Abstract. In the study of Teichmüller spaces the second variation of the logarithm of the
geodesic length function plays a central role. So far, it was accessible only in a rather indirect
way. We treat the problem directly in the more general framework of the deformation theory of
Kähler–Einstein manifolds. For the first variation we arrive at a surprisingly simple formula, which
only depends on harmonic Kodaira–Spencer forms. We also compute the second variation in the
general case and then apply the result to families of Riemann surfaces. Again we obtain a simple
formula depending only on the harmonic Beltrami differentials. As a consequence a new proof for
the plurisubharmonicity of the geodesic length function on Teichmüller space and its logarithm
together with upper estimates follow. The results also apply to the previously not known cases of
Teichmüller spaces of weighted punctured Riemann surfaces, where the methods of Kleinian groups
are not available. We use our methods from [A-S], where the result was announced.

1. Introduction

In the study of Teichmüller spaces geodesic length functions play an important
role, in particular under the aspect of the theory of several complex variables.

In [K] Kerckhoff showed that for a finite number of closed geodesics, which fill up
a Riemann surface, the sum of the geodesic length functions provides a proper exhaus-
tion of the corresponding Teichmüller space. In [WO3] Wolpert proved that this func-
tion is actually convex along Weil–Petersson geodesics and plurisubharmonic. Later
it turned out that the logarithm of a sum of geodesic length functions is plurisubhar-
monic as well [WO4, WO5]. In [Ye] Yeung constructed a bounded plurisubharmonic
exhaustion function together with estimates. The Levi form of the geodesic length
functions also played an important role in McMullen’s proof of the Kähler hyperbol-
icity of the moduli space [M].

We want to base our study of geodesic length functions solely upon the hyper-
bolic geometry of Riemann surfaces and use the methods of Kähler geometry. From
this point of view it is desirable to express results in terms of harmonic Beltrami
differentials, which are to be considered as harmonic Kodaira–Spencer forms.

This approach avoids entirely methods involving Fuchsian groups. In particular
our results extend to cases where uniformization theory is not available, such as
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Teichmüller and moduli spaces of weighted punctured Riemann surfaces, equipped
with conical hyperbolic metrics.

Infinitesimal deformations, i.e. complex tangent vectors of Teichmüller space will
be represented by harmonic Beltrami differentials on hyperbolic Riemann surfaces.
For Kähler–Einstein manifolds X of constant negative Ricci curvature these corre-
spond to harmonic Kodaira–Spencer forms representing elements of H1(X, TX).

Theorem 1.1. [A-S, Theorem 3.2] Given a holomorphic family X → S of Käh-
ler–Einstein manifolds with negative Ricci curvature, the first variation of the length
in a family of closed geodesics γs is a geodesic integral of the harmonic Kodaira–
Spencer form

Ai = Aα
iβ

∂

∂zα
dzβ

associated to a complex tangent vector ∂/∂si, namely

(1)
∂`(γs)

∂si
=

1

2

ˆ

γs

Ai.

In [A-S] we announced that the second variation of the geodesic length function
could be treated with our methods.

Our Main result is Theorem 5.4, which provides a formula for the second vari-
ation of the length of closed geodesics in a holomorphic family of Kähler–Einstein
manifolds. All further results are corollaries drawn from this theorem.

When dealing with tensors of higher order like curvature, which involve second
order derivatives of metric tensors, certain integral operators arise in a natural way.
In the context of automorphic forms the operator

(¤ + 1)−1,

where ¤ denotes the (complex) Laplacian, was extensively studied (cf. [E]), and
Wolpert used it in [WO2]. Later it played a major role in Siu’s study of Kähler–Ein-
stein manifolds [SIU] and also in [SCH1, SCH].

Its counterpart for geodesic integration rather than integration over the whole
manifold is the operator

(− D2

dt2
+ c

)−1
, c = 1, 2,

where D/dt denotes covariant differentiation along a geodesic.
Specializing our Theorem 5.4 to the case of families of Riemann surfaces we

obtain the following theorem:

Theorem 1.2. Let f : X → S be a holomorphic family of hyperbolic Riemann
surfaces together with a differentiable family of closed geodesics γs. Then

∂2 log `(γs)

∂si∂s
=

1

2`(γs)

ˆ

γs

(
(¤ + 1)−1(AiA) +

(− D2

dt2
+ 2

)−1
(Ai) · A

)
.

In the meantime our Theorem 1.1 was proved again in the case of Riemann
surfaces in [W]. Also in [W] there is a computation of the second variation of the
geodesic length function on Teichmüller space.

Let P1 stand for a certain positive function depending on the diameter (precisely,
a lower bound for the resolvent kernel), and recall that a finite set of closed geodesics
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in a hyperbolic Riemann surface X with no boundary is said to fill up the surface if
each component of the complement of their union is a cell.

Corollary 1.3. The following estimate holds for the second variation:

∂2 log `(γs)

∂si∂s
≥ 1

2
P1(d(Xs)) ·

ˆ

Xs

AiA g dV +
1

4`(γs)2

ˆ

γs

Ai

ˆ

γs

A.

In particular, log `(γs) is strictly plurisubharmonic.
Assume that the closed geodesics ην fill up the given Riemann surface. Then

log
∑

ν

`ν

is a strictly plurisubharmonic exhaustion function.

(Inequalities ”≥” and ”>” for matrices are used in the sense that the difference
is positive semi-definite and positive definite resp.)

Observe that the integral ˆ

Xs

AiA g dV

is just the Weil–Petersson inner product of the tangent vectors ∂/∂si and ∂/∂sj.
In the view of Theorem 1.1 the above estimate implies the following fact.

Corollary 1.4.

(2)
∂2 log `(γs)

∂si∂s
− ∂ log `(γs)

∂si

∂ log `(γs)

∂s
> 0.

Let a nodal complex curve represent a point at the boundary of the moduli
space. If the node is given locally by the equation z ·w = 0, then the opening-up of a
node is a plumbing construction with a holomorphic paramenter s for a degenerating
holomorphic family, given by the equation z · w = s. The holomorphic parameter s
corresponds to a closed geodesic γ, whose length tends to zero, when approaching
the node.

The following estimate is known (cf. [WO5]):

`(γs) ' 1/log(1/|s|2).
If we insert the right-hand side into the expression (2) instead of `(γs), we obtain the
value zero. The estimate (2) implies:

Corollary 1.5. Let
`(γs) = 1/log(1/ψ(s))

for some positive function ψ. Then log ψ is strictly plurisubharmonic.

We consider the CR-submanifold given by the equation `γs = const. According to
our theorem on the first variation of the geodesic length function, the complex tangent
spaces L with tangent vectors corresponding to harmonic Beltrami differentials A are
given by the equation ˆ

γs

A = 0.

This fact implies the following Corollary:
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Corollary 1.6. The Levi form on the complex tangent spaces L of the CR-
submanifold given by the equation `γs = const. satisfies

∂2 log `(γs)

∂si∂s

∣∣∣
L
≥ 1

2`(γs)

ˆ

γs

(¤ + 1)−1(AiA).

We have upper estimates:

Corollary 1.7. Let dim S = 1. Denote by ‖As‖0 the maximum of the pointwise
norm of the harmonic Beltrami differential taken over the fiber Xs. Then

∂2`(γs)

∂s∂s
≤ `(γs)‖As‖2

0 and
∂2 log `(γs)

∂s∂s
≤ 3

4
‖As‖2

0.

Further applications are given in Section 6.

2. Families of Kähler–Einstein Manifolds

We compute the second variations of the geodesic length function in the general
setting of Kähler–Einstein manifolds of negative Ricci curvature.

A Kähler form on a complex manifold X of dimension n will be denoted by

ωX =
√−1gαβ dzα ∧ dzβ.

We use the summation convention together with the ∇-notation for covariant deriva-
tives. A |-symbol will denote an ordinary derivative. Also, ∂α and ∂β will stand for
∂/∂zα and ∂/∂zβ respectively. The raising and lowering of indices is defined as usual.
We also use the semi-colon notation for covariant derivatives. For the Ricci tensor
Rαβ on X we use the sign convention

(3) Rαβ = − log(g(z))|αβ,

where g(z) = det(gαβ(z)). Furthermore (gβα) = (gαβ)−1.
Let {Xs}s∈S be a holomorphic family of canonically polarized compact complex

manifolds parameterized by a (connected) complex space S. It is given by a proper,
smooth, holomorphic mapping f : X → S such that Xs = f−1(s) for all s ∈ S. For
simplicity we will assume that the base S is smooth, although our results can also
be given a meaning for possibly non-reduced singular base spaces.

Local coordinates on S will be denoted by si, i = 1, . . . , N . We use these as
local coordinates on the total space X together with further local coordinates zα,
α = 1, . . . , n, where n is the fiber dimension, satisfying f(z, s) = s.

The fibers Xs are equipped with Kähler–Einstein forms

ωXs =
√−1gαβ(z, s) dzα ∧ dzβ

depending smoothly upon the parameter s and having constant negative Ricci cur-
vature −1 . We write g(z, s) = det(gαβ(z, s)) and have Rαβ(z, s) = −gαβ(z, s).

We consider the real (1, 1)-form

(4) ωX =
√−1∂∂ log g(z, s)

on the total space X . The fiberwise Kähler–Einstein equation (3) implies that

ωX |Xs = ωXs

for all s ∈ S. In particular ωX , restricted to any fiber, is positive definite. We will
use the above notations introduced for the absolute case of a manifold X concerning
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covariant derivatives, raising and lowering of indices, inverse of the metric tensor etc.
also for the fibers in a holomorphic family.

The following fact is known:

Theorem. [SCH] Let f : X → S be nowhere infinitesimally trivial. Then ωX is
a Kähler form on the total space.

Let
ρ : TsS → H1(Xs, TXs)

be the Kodaira–Spencer map for the deformation f : X → S at a point s ∈ S.
The Kähler–Einstein metric ωXs on Xs induces a natural inner product on the

space H1(Xs, TXs) of infinitesimal deformations of Xs and thus on TsS via the map ρ;
this is the Weil–Petersson Hermitian inner product on TsS. Namely, given tangent
vectors u, v ∈ TsS, we denote by Au = Aα

uβ
∂αdzβ and Av the harmonic representatives

of ρ(u) and ρ(v) respectively. Then the inner product of u and v equals

〈u, v〉WP =

ˆ

Xs

Aα
uβ

Aδ
vγgαδg

βγg dV,

where Av denotes the adjoint (conjugate) tensor of Av, and g dV the volume element.
We note that the Weil–Petersson inner product is positive definite at a given

point of the base, if the induced deformation is effective.
We set Aj = A∂/∂sj . Then the Weil–Petersson form on S equals

ωWP =
√−1GWP

i (s) dsi ∧ ds,

where we use the notation

GWP
i (s) =

〈
∂/∂si, ∂/∂sj

〉
WP

=

ˆ

Xs

Aα
iβ

Aδ
γgαδg

βγg dV.

The short exact sequence

0 → TX/S → TX → f ∗TS → 0

induces the Kodaira–Spencer map via the edge homomorphism for direct images. A
lift of a tangent vector ∂/∂si at a point s of S is a differentiable vector field on Xs

with values in TX . It has the form

∂/∂si + bα
i ∂α.

Its exterior ∂-derivative Bα
iβ

∂α dzβ, where Bα
iβ

= ∇βbα
i , is interpreted as a ∂-closed

(0, 1)-form on Xs with values in the tangent bundle of Xs. Its cohomology class

(5) ρ(∂/∂si) = [Bα
iβ

∂αdzβ] ∈ H1(Xs, TXs).

equals the obstruction against the existence of a holomorphic lift of the given tangent
vector, i.e. the infinitesimal triviality of the deformation in the direction of the tangent
vector.

We now introduce notations that will be used in the rest of the paper.
The horizontal lift of ∂/∂si, i.e. the lift that is perpendicular to the fibers with

respect to ωX from (4), will be denoted by

(6) vi = ∂/∂si + aα
i ∂α.
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Note that the quantities aα
i are in general not tensors. It follows from the definition

that

(7) aα
i = −gβαgiβ.

We set

(8) Aα
iβ

= ∇βaα
i .

The following properties of the tensors Aα
iβ

are known (cf. [SCH1]) and will be used
in the sequel:

Proposition 2.1. The horizontal lifts of tangent vectors with respect to ωX
induce the harmonic representatives of Kodaira–Spencer classes in the sense that
Aα

iβ
∂αdzβ is the harmonic representative of ρ(∂/∂si). The coefficients satisfy the

following properties

∇δA
α
iβ

= ∇βAα
iδ
,(9)

∇γA
α
iβ

gβγ = 0,(10)

Aiβδ = Aiδβ.(11)

The conditions (9) and (10) above correspond to harmonicity, whereas condition
(11) reflects the relationship with the metric tensor.

We use the notation cβ = cβ for (locally defined) tensors.
Later we will need the following fact:

Lemma 2.2. The partial derivatives of the Christoffel symbols with respect to
the base parameter satisfy the identities

Γα
γσ|si = −aα

i;γσ,(12)

Γα
γσ|s = −gβαaγ;βσ.(13)

3. Families of closed geodesics

Let (f : X → S, ωX ) be a family of Kähler–Einstein manifolds with constant
negative Ricci curvature −1, where ωX is given by (4).

We denote by γs a differentiable family of closed geodesics in the fibers Xs, and by
`(s) the length of γs. In order to compute first and second variations, it is sufficient
to assume that S is a disk in the complex plane centered at 0 with coordinate s (it
is even sufficient to assume that the embedding dimension equals one). The general
formulas follow from this case by polarization.

In local coordinates (z, s) the closed geodesic curves γs are solutions of the dif-
ferential equation

(14) üα(t, s) + Γα
γσ(u(t, s))u̇γ(t, s)u̇σ(t, s) = 0.

The solution is unique up to an affine change of the parameter. In particular we may
prescribe any positive constant value of its speed

‖u̇(t, s)‖2 = gαβ(u(t, s), s)u̇α(t, s)u̇β(t, s).

For s = 0 we choose ‖u̇‖ = 1, for the remaining values of s the value of ‖u̇‖ will
be determined by the fact that the parameter t assumes values in the interval [0, `0],
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where `0 is the length of γ0. Hence the family of geodesics is given by a map

(15) u : S × [0, `0] → X
such that f ◦ u is the projection onto the first factor. Now

(16) u∗(∂s) = ∂s + uα
s ∂α + uβ

s ∂β

with partial derivatives
uα

s := uα
|s and uβ

s := (uβ)|s.

Note that the (1, 0)- and (0, 1)-components ∂s + uα
s ∂α and uβ

s ∂β of u∗∂s are tensors
along the geodesics with values in TX and TX/S ⊂ TX respectively. In a similar way
the tensor

(17) u̇ = u∗(d/dt) = u̇α∂α + u̇β∂β

along the family of geodesics has a type decomposition. The difference of two lifts of
tangent vectors from the base is a tangent vector along the geodesics (with values in
the relative tangent bundle). For dim S = 1 we have the horizontal lift

vs = ∂s + aα∂α.

The difference of u∗(∂s) and the horizontal lift has the components

uα
s − aα

s = uα
s (s, t)− aα

s (u(s, t), s),(18)

uβ
s = uβ

s (s, t).(19)

For any tensor along the geodesic γs on a fiber Xs we denote by D/dt the covariant
derivative along γs. In particular

(20)
D

dt
u̇ = 0.

Let wα(t)∂α be any vector field along γs. Then

(21)
D

dt
wα(t) = ẇa(t) + Γα

γσ(u(t))wγ(t)u̇σ(t).

If wα(t) is of the form w̃α(u(t)), then (21) implies

(22)
D

dt
wα(t) = w̃α(u(t));κu̇

κ(t) + w̃α(u(t));λu̇
λ(t).

Corresponding equations hold for tensors of type (0, 1) and contravariant tensors.

Lemma 3.1. We have
D

dt
(uα

s − aα
s ) = u̇α

s + Γα
γσu

γ
s u̇

σ − aα
s;γu̇

γ − Aα
sβ

u̇β,(23)

D2

dt2
(uα

s − aα
s ) = Rα

σγλ
u̇σu̇λ(uγ

s − aγ
s )−Rα

σγλ
uλ

s u̇
γu̇σ − 2Aα

sδ;γ
u̇γu̇δ − Aα

sδ;τ
u̇δu̇τ ,(24)

D

dt
(uβ

s ) = u̇β
s + Γβ

δτ
uδ

su̇
τ ,(25)

D2

dt2
(uβ

s ) = gβαAsδτ ;αu̇δu̇τ −Rβ

δτσ
(uσ

s − aσ
s )u̇τ u̇δ + Rβ

δτσ
u̇σu̇τuδ

s.(26)
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Proof. The equations (23) and (25) follow immediately from the definition. The
remaining proofs are rather computational: To prove (24) we apply D/dt to (23)
and differentiate (14) with respect to s. In this way we can eliminate üα

s . We use
(12), and finally we have (24). Observe that we need to consider both ordinary and
covariant derivatives of Christoffel symbols. We prove (26) in the same way. ¤

In order to describe the variation of the length of closed geodesics in a family, we
use the notion of integrating a tensor along a geodesic. Exemplarily we define:

Definition 3.2. Let C = Cβδ be a tensor on the Kähler manifold X, and γ be a
geodesic of length `, parameterized by u(t) = (u1(t), . . . , un(t)), such that ‖u̇(t)‖ = 1.
Then ˆ

γ

C =

ˆ

γ

Cβδ dzβ dzδ :=

ˆ `

0

Cβδ(u(t))u̇βu̇δ dt.

For contravariant tensors of order one this notation coincides with the integration
of a differential form along the curve γ. For covariant tensors the geodesic integral
is defined after lowering indices with respect to the metric tensor.

4. First variation of the geodesic length function

Given a holomorphic family of Kähler–Einstein manifolds with one dimensional
base space like in the previous section together with a differentiable family of closed
geodesics γs with parametrization (15), the length of these is equal to

`(s) =

ˆ `0

0

‖u̇(t, s)‖ dt

so that

(27)
d`(s)

ds

∣∣∣∣
s=0

=
1

2

ˆ `0

0

d

ds
‖u̇(t, s)‖2 dt.

We will compute
d

ds
‖u̇(t, s)‖2 =

d

ds

(
gαβu̇αu̇β

)
.

We denote by 〈 , 〉X the inner product with respect to ωX .

Lemma 4.1. We have

(28)
d

ds

(
gαβu̇αu̇β

)
− d

dt

〈
u∗∂s, u̇

〉
ωX

= Asβδu̇
βu̇δ.

In the computational proof one uses (20), (12), (23), and (25).
An immediate consequence of the above Lemma is Theorem 1.1.

5. Second variation of the geodesic length function

An important function is given by the inner product of harmonic lifts of tangent
vectors. In terms of local holomorphic coordinates si on S (or coordinates of a smooth
ambient space of minimal dimension at a given point of the base) we have:

Definition 5.1. Let vi be the horizontal lift of ∂/∂si. We put

(29) ϕi = 〈vi, vj〉X ,

where the inner product is taken pointwise.
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We list basic properties of the function ϕi on X :

ϕi = gi − aα
i aβ

 gαβ,(30)

(¤ + 1)ϕi = 〈Aiβδ, Ajλτ 〉 = Aα
iβ

Aβ
α,(31)

ˆ

Xs

ϕi = GWP
i ,(32)

ωn+1
X =

√−1ϕidsi ∧ ds ∧ ωn
X .(33)

The first of these equalities follows from the definition. For the second equality cf.
[SCH, Proposition 2]. The equation (32) follows from (31). The last equation (33) is
Lemma 6 from [SCH].

We will apply the following fact:

Theorem. [SCH] The relative canonical bundle KX/S equipped with the hermit-
ian metric induced by the relative Kähler–Einstein forms is positive, i.e. the matrix
(ϕi) is positive definite.

The lower estimates for (ϕi) from [SCH] will be applied below.
Again, it is sufficient to do computations for a base space S of dimension one

with coordinate s. By abuse of notation, we use s and s as indices instead of i and
, where i, j can only take the value 1.

Lemma 5.2. We have

Asβδ|s = −ϕss;βδ − Asτβ;δa
τ
s − Asτβaτ

s;δ
− Asτδa

τ
s;β

.

Proof. We compute

Asβδ|s =
(
asβ|δ + asτΓ

τ
βδ

)
s
= asβ|s;δ + asτΓ

τ
βδ|s.

Now the claim follows from (12) and (30). ¤
From here we immediately obtain the following identity.

Lemma 5.3. We have
∂

∂s

(
Asβδu̇

βu̇δ
)

= (−ϕss;βδ − Asτβ;δa
τ
s − 2Asτβaτ

s;δ
)u̇βu̇δ

+ Asβδ|τu
τ
s u̇

βu̇δ + Asβδ;γu
γ
s u̇

βu̇δ + 2Asβδu̇
β
s u̇δ.

We need to eliminate mixed derivatives in the parameters t and s. We define a
function χ along the geodesics by the formula

(34) χ =
〈
Aκ

sλ
u̇λ∂κ, u∗(∂s)

〉
ωX

= Asβδ(u
β
s − aβ

s )u̇δ

and obtain
d

dt
χ =

D

dt

(
Asβδ

)
(uβ

s − aβ
s )u̇δ + Asβδ

D

dt

(
uβ

s − aβ
s

)
u̇δ.

A straightforward calculation using the identities (22) and (23) shows that
∂

∂s

(
Asβδu̇

βu̇δ
)− 2χ̇ +

d

dt
(ϕss;βu̇β) = (ϕss;αβ + 2AsβδA

δ
sα)u̇αu̇β

− (Asβδ;τ u̇
τ + Asβδ;γu̇

γ)(uβ
s − aβ

s )u̇δ

+ Asβδ;γu̇
δ
(
uγ

s u̇
β − (uβ

s − aβ
s )u̇γ

)
.

(35)
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This concludes the first part of the computation. Altogether we obtained:

Theorem 5.4. Let X → S be a holomorphic family of Kähler–Einstein man-
ifolds of constant negative Ricci curvature together with a differentiable family of
closed geodesics. Then the second variation of the geodesic length function equals

∂2`(s)

∂s∂s
=

1

2

ˆ

γs

(
(ϕss;αβ + 2AsβδA

δ
sα)u̇αu̇β − (Asβδ;τ u̇

τ + Asβδ;γu̇
γ)(uβ

s − aβ
s )u̇δ

+ Asβδ;γu̇
δ
(
uγ

s u̇
β − (uβ

s − aβ
s )u̇γ

))
.

(36)

An intrinsic version will be given in Section 10.

6. Second variation of the geodesic length function on Teichmüller spaces

From now on we assume that fibers of f : X → S are one dimensional. We set
z = z1 and also use z and z as indices. The preceding formulas and the notation
remain valid, if the fibers are equipped with the hyperbolic metric of constant Ricci
curvature −1, i.e. on a fiber Xs with coordinate function z we have

ds2 = g(z, s)
√−1 dz ∧ dz

where g(z, s) satisfies the equation

g(z, s) =
∂2 log g(z, s)

∂z∂z
.

Free homotopy classes of simple closed curves are represented by closed geodesics γs

with parameterization u(s, t), which depend in a differentiable way upon the param-
eter s.

According to our general index convention we have g = gzz. Observe that the
harmonic Kodaira–Spencer form

Az
sz(z)∂z dz =: µ(z)∂z dz

is exactly a harmonic Beltrami differential. Likewise

Aszz(z) = gzz(z)Az
sz(z) = gzzµ(z)

defines a holomorphic quadratic differential. The statement of Theorem 5.4 now
reads as follows:

Proposition 6.1. We have

∂2`(γs)

∂s∂s
=

1

2

ˆ

γs

(
(ϕss + gzzAsz̄z̄A

z
sz)−

D

dt
Asz̄z̄u̇

z(uz
s − az

s)
)
.(37)

Proof. In dimension one, the term that involves the function ϕ can be interpreted
as a complex Laplacian and (31) is applicable. We use gu̇u̇ = 1. The harmonicity of
the Kodaira–Spencer tensor is equivalent to

Asz̄z̄;z = 0

so that the latter terms in (36) vanish. ¤
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Theorem 6.2. Let f : X → S be a holomorphic family of hyperbolic Riemann
surfaces together with a differentiable family of closed geodesics γs. Then

∂2`(γs)

∂si∂s
=

1

2

ˆ

γs

(
(¤ + 1)−1(Ai · A) +

(− D2

dt2
+ 2)−1(Ai) · A

)

+
1

4`(γs)

ˆ

γs

Ai ·
ˆ

γs

A.

(38)

This statement, together with Theorem 1.1 implies our Theorem 1.2. The com-
putation [W, Theorem 1.1] seems to be related.

We prove the above theorem in Section 8.
We estimate the integrand in (38) from below:

Definition 6.3. Given any two Hermitian symmetric matrices Mi and Ni, we
write Mi ≥ Ni, if the difference is a positive semi-definite matrix.

Corollary 6.4. We have the inequality

∂2`(γs)

∂si∂s
≥ 1

2

(ˆ

γs

(¤ + 1)−1(Ai · A) +
1

`(γs)

ˆ

γs

Ai

ˆ

γs

A

)

in the sense of Definition 6.3. In particular the geodesic length function is strictly
plurisubharmonic.

Again we apply Theorem 1.1 and obtain the following statement.

Corollary 6.5. The logarithm of the geodesic length function is strictly plurisub-
harmonic: The inequality

∂2 log `(γs)

∂si∂s
≥ 1

2`(γs)

ˆ

γs

(¤ + 1)−1(Ai · A) +
1

4`(γs)2

ˆ

γs

Ai

ˆ

γs

A

=
1

2`(γs)

ˆ

γs

(¤ + 1)−1(Ai · A) +
∂ log `(γs)

∂si

∂ log `(γs)

∂s

holds in the sense of Definition 6.3.

A lower estimate for the functions ϕi = (¤ + 1)−1(Ai · A) is known:

Proposition. (cf. [F]) There exists a positive function P1(d(Xs)), which depends
on the diameter of Xs, such that for any solution

(¤ + 1)ϕ = χ,

with χ ≥ 0 the inequality

ϕ(z) ≥ P1(d(Xs))

ˆ

Xs

χg dV

holds for all z ∈ Xs.

The above proposition implies the following estimate, which can be used together
with Corollary 6.4 and Corollary 6.5 to obtain further inequalities like Corollary 1.3:

ˆ

γs

(¤ + 1)−1(Ai · A) ≥ `(γs) · P1(d(Xs)) ·GWP
i .
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Lemma 6.6. (cf. [SCH2, Lemma 3]) Let `j be positive functions on a complex
manifold. Then the following estimate of closed hermitian (1, 1)-forms holds:

√−1∂∂ log
( ∑

j

`j

) ≥ 1∑
k `k

∑
j

(
`j

√−1∂∂ log `j

)
.

The above Lemma implies that estimates for the single geodesic length functions
carry over to any sum of such functions. Kerckhoff showed in [K] that for a finite
number of closed geodesics γ1, . . . , γm, which fill up the Riemann surface the sum
of the geodesic length functions provides a proper exhaustion of the Teichmüller
space. Wolpert proved in [WO3] that the function (`(γ1) + . . . + `(γm))1/2 is actually
convex along the Weil–Petersson geodesics and log(`(γ1) + . . . + `(γm)) is strictly
plurisubharmonic (cf. [WO4, WO5]).

Yeung constructs in [Ye] a bounded non-positive strictly plurisubharmonic ex-
haustion function. His estimates of the second variation of the geodesic length func-
tion follow from ours.

Corollary 6.7. The logarithm of any sum of geodesic length functions is strictly
plurisubharmonic with estimates given by Lemma 6.6.

We conclude the section with the proof of upper estimates which we state for
dim S = 1.

Proof of Corollary 1.7. The maximum principle applied to the equation (31)
yields that

ϕss(z) ≤ ‖As‖2
0.

Furthermore,ˆ

γs

(
2−D2/dt2

)−1
(As) · As ≤ 1

2

ˆ

γs

As · As ≤ 1

2
`(γs)‖As‖2

0 ,

and finally
∣∣
ˆ

γs

As

∣∣2 ≤ `(γs)

ˆ

γs

As · As.

These estimates imply both inequalities. ¤

7. Differential operators along closed geodesics

When studying covariant differentiation along geodesics u(t) on a fixed Riemann
surface, we observe that the obvious identities

D

dt
u̇ = 0 and

D

dt
gzz = 0

can be used to reduce covariant differentiation of tensors along a closed geodesic
to the (covariant) differentiation of functions. In our case all functions will be of
class C∞. Hilbert space theory and regularity theorems are available and need not
explicitly be mentioned.

Lemma 7.1. The operator

L = −D2

dt2
+ 1

is invertible with bounded inverse.
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Let λν ≥ 0, λ0 = 0 be the eigenvalues of −D2/dt2. For any function ψ we denote
by

ψ =
∑
ν≥0

ψν

the eigenvector decomposition. An inverse of the operator L− L−1 is defined on the
orthogonal complement C of the kernel of D2/dt2 (which is also the kernel of D/dt)
with values in the same complement.

Lemma 7.2. Let

M = (L− L−1)−1 ◦ (− D2

dt2
)
.

Then

M(ψ) =
∑
ν>0

(
1− 1

2 + λν

)
ψν .

In particular,

M = 1− (
2− D2

dt2
)−1 − 1

2
H,

where H denotes the harmonic projection.

8. Proof of Theorem 6.2

We now prove Theorem 6.2. Only the case of dim S = 1 is needed.
For one dimensional fibers (24) and (26) read

D2

dt2
(uz

s − az
s) = (uz

s − az
s)− gzzu̇

zu̇zuz
s − Az

sz;zu̇
zu̇z,(39)

D2

dt2
(uz

s) = −gzz(u
z
s − az

s)u̇
zu̇z + uz

s.(40)

We define auxiliary functions along the geodesics. Let

w = (uz
s − az

s)u̇
zgzz, v = uz

su̇
zgzz, A = Asz z(u̇

z)2.

We apply (39) and (40) and use the notation of the preceding paragraph. The aim
is to express the function w in terms of the Kodaira–Spencer form. We have

Lw = v +
D

dt
A, Lv = w,

D

dt
A = (L− L−1)w.

The derivative (D/dt)(A) is orthogonal to the kernel of D2/dt2, so that (L−L−1)−1

is defined in the sense of the previous section.
In this shorthand notation, Proposition 6.1 reads

2
∂2`(γs)

∂s∂s
=

ˆ

γs

(
ϕ + |A|2 − w · D

dt
(A)

)
.

Modulo terms whose integral vanish

−D

dt
A · w = −D

dt
(A) · (L− L−1)−1

(D

dt
(A)

) ≡ (L− L−1)−1
(D2

dt2
(A)

) · A

= −M(A) · A = −(
1− (2− D2

dt2
)−1

)
(A) · A +

1

2
H(A) · A.
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Hence, writing ` for `(γs), we have

∂2`

∂s∂s
=

1

2

ˆ

γs

(
ϕ +

(D2

dt2
+ 2)−1(A) · A

)
+

1

4`

∣∣∣
ˆ

γs

A
∣∣∣
2

=
1

2

ˆ

γs

((
¤ + 1

)−1
(|A|2) +

(− D2

dt2
+ 2

)−1
(A) · A

)
+

1

`

∣∣∣∂`

∂s

∣∣∣
2

,

and
∂2 log `

∂s∂s
=

1

2`

ˆ

γs

((
¤ + 1

)−1
(|A|2) +

(− D2

dt2
+ 2

)−1
(A) · A

)
. ¤

9. Weighted punctured Riemann surfaces and conical metrics

Our methods equally apply to the case of punctured Riemann surfaces. In our
previous paper [A-S], we discussed the first variation of the geodesic length function
for Teichmüller spaces of weighted punctured Riemann surfaces equipped with hy-
perbolic conical metrics. Using the extended techniques in [S-T] one can see that our
results on second variations and plurisubharmonicity hold true in the conical case
(for weights ≥ 1/2).

10. Remarks on the higher dimensional case

Rather little seems to be known about minimal closed geodesics on non-rigid
canonically polarized varieties.

The aim is to express the second variation of the length of closed geodesics in a
holomorphic family only in terms of the variation of the complex structure.

We will first give an intrinsic version of Theorem 5.4 and introduce the following
notation in the situation of Section 1.1.

Let x = xα∂α, y = yα∂α etc. be differentiable vector fields along the given
geodesic. We set:

∂A(x, y) = Aα
sβ;γ

xβyγ∂α,

∂A(x, y) = Aα
sβ;δ

xβyδ∂α,

∂A(x, y, z) = Asβδ;γx
βyδzγ,

∂A(x, y, z) = Asβδ;τx
βyδzτ ,

(↑ ∂A)(x, y) = A ;γ

sβδ
xβyδ∂γ,

R(x, y)(z) = Rα
γστx

σyτzγ∂α,

R(x, y)(z) = Rβ

δτσ
xτyσzδ∂β.

We are already given the following vector fields along the closed geodesic:

u̇ = u̇α∂α, v = uα
s ∂α, w = (uα

s − aα
s )∂α.

We denote by Hess the complex Hessian. Now (36) can be expressed in the following
way (with obvious abbreviations):
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Theorem 10.1. We have
∂2`

∂s∂s
=

1

2

ˆ

γ

(
Hess(ϕ)(u̇, u̇) + (A ∪ A)(u̇, u̇)

− ∂A(u̇, u̇, w)− 2∂A(u̇, w, u̇)− ∂A(u̇, u̇, v)
)(41)

with ϕ = (¤ + 1)−1(|A|2).
The equations of Lemma 3.1 now read:

−D2

dt2
(v) + R(u̇, u̇)(v) = R(u̇, w)(u̇)− (↑ ∂)A(u̇, u̇),(42)

−D2

dt2
(w) + R(u̇, u̇)(w) = R(u̇, v)(u̇)− 2∂A(u̇, u̇)− ∂A(u̇, u̇).(43)

These two equations would be needed to express (41) just in terms of the Kodaira–
Spencer tensors A eliminating the vector fields v and w .

Given a closed geodesic, it is necessary to assume that it extends in a unique,
smooth way to neighboring fibers. In terms of vector fields along closed geodesics on
the fibers two assumptions appear reasonable.

Assumption A. The real operator

L := −D2

dt2
+ R(u̇, u̇)

on periodic vector fields along the closed geodesic γ is invertible.
This is certainly true if the holomorphic bisectional curvature is strictly negative.

That assumption, however, is too strong in our situation.
Now the formuals (42), (43) can be used to write (41) in the following way:

∂2`

∂s∂s
=

1

2

ˆ

γ

(
Hess(ϕ)(u̇, u̇) + (A ∪ A)(u̇, u̇)

−g(L(w), w)− g(L(v), v)−R(u̇, v, u̇, w)−R(v, u̇, w, u̇)
)
.

(44)

In the last step one would eliminate the vector fields v and w.

Assumption B. The kernel of the Jacobi operator J (on Kähler manifolds)

J(x) :=
D2

dt2
(x) + R(u̇, x)(u̇)−R(u̇, u̇)(x) = −L(x) + R(u̇, x)(u̇),

operating on periodic vector fields along γ, is spanned by the tangent vector field u̇.
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