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Abstract. Let D be a bounded domain in Rn, n ≥ 2, and let f be a continuous mapping of
D into Rn which is quasiconformal in D. Suppose that |f(x) − f(y)| ≤ ω(|x − y|) for all x and y

in ∂D, where ω is a non-negative non-decreasing function satisfying ω(2t) ≤ 2ω(t) for t ≥ 0. We
prove, with an additional growth condition on ω, that |f(x)− f(y)| ≤ C max{ω(|x− y|), |x− y|α}
for all x, y ∈ D, where α = KI(f)1/(1−n).

1. Introduction

The following result, due to Martio and one of the authors of this article, was
established in [MN]:

If D is a bounded domain in Rn, n ≥ 2, and if f is a continuous mapping of D
into Rn which is quasiconformal in D and satisfies

(1.1) |f(x)− f(y)| ≤ M |x− y|α

for some M > 0, 0 < α ≤ 1, and for all x and y in ∂D, then

|f(x)− f(y)| ≤ M∗|x− y|β

for all x and y in D, where β = min{α, KI(f)1/(1−n)} and M∗ depends only on M ,
α, n, K(f) and diam(D).

Our goal in the present paper is to extend this theorem so as to allow in (1.1)
majorizing conditions that are more general than a Hölder condition. For this pur-
pose, and in accordance with the terminology used by Hinkkanen in [H1] and [H2],
we call a non-negative non-decreasing function ω, defined for t ≥ 0, a majorant if

(1.2) ω(2t) ≤ 2ω(t)

for all t ≥ 0. For example, if ω(t) = Mtα, where M > 0 and 0 ≤ α ≤ 1, then ω
is a majorant. More generally, if ω is subadditive, as is often the case in moduli of
continuity considerations, that is, if ω(t1 + t2) ≤ ω(t1)+ω(t2) for t1, t2 ≥ 0, then ω is
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a majorant. We remark that ω need not be continuous, that we may have ω(0) > 0
and that

(1.3) ω(At) ≤ 2Aω(t)

for all t ≥ 0 and A ≥ 1.
We will replace condition (1.1) by

|f(x)− f(y)| ≤ ω(|x− y|),
where ω is a majorant subject to an additional growth condition (see Theorem 3.1 in
Section 3). To wit, we assume that on the boundary of D the modulus of continuity
of f is majorized by such a function ω. Our conclusion then will be that

|f(x)− f(y)| ≤ Cω̂(|x− y|)
for all x and y in D, where C > 0 is a constant and

ω̂(t) = max{ω(t), tα}
with α = KI(f)1/(1−n). No constraint in regard to the regularity of the boundaries of
D and f(D) will be imposed. Much attention has been lavished on the case where
the domains are smooth. See, for example, [K],[KM] and the references therein.
Our argument for establishing the generalization indicated above closely parallels
the pattern presented in [MN]. In Section 3 we extend, furthermore, a related result
in [HN, Theorem 4], concerning mappings of a ball, to a wider range of domains,
that is, to domains with uniformly perfect boundaries.

In matters regarding notation and terminology we will conform to the usage in
the book of Väisälä [V]. In particular, KI(f), KO(f) and K(f) will signify the inner,
the outer and the maximal dilatations of a quasiconformal mapping f , respectively.
The conformal modulus of a curve family Γ is designated by M(Γ). Given sets E, F
and G, we denote by ∆(E,F ; G) the family of all curves in G joining E to F . Unless
otherwise stipulated, all sets considered will lie in the euclidean n-space Rn, n ≥ 2.

Acknowledgement. The authors wish to acknowledge the suggestions offered to
them by conversations with Aimo Hinkkanen.

2. Preliminary considerations

For the convenience of the readers of this article we assemble in this section a
number of results from [MN], appropriately adapted and generalized to accommodate
our present needs. We commence with a most elementary observation:

Lemma 2.1. Let D be a proper subdomain of Rn and let f be a mapping defined
in D. Suppose that for some majorant ω,

|f(y)− f(z)| ≤ ω(|y − z|)
whenever either y, z ∈ ∂D or y ∈ D and z is a point in ∂D closest to y. Then

|f(x)− f(y)| ≤ 3ω(|x− y|)
for all x ∈ ∂D, y ∈ D.
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Proof. Fix x ∈ ∂D and y ∈ D. Let z be a point in ∂D closest to y. Since
|z − y| ≤ |x− y| and |x− z| ≤ 2|x− y|, condition (1.2) yields

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)|
≤ ω(2|x− y|) + ω(|x− y|) ≤ 3ω(|x− y|). ¤

In our investigation on the modulus of continuity we will resort to two separate
strategies which hinge upon the capacity density of the boundary. The thick portions
of the boundary will be handled by employing standard extremal length techniques:

Lemma 2.2. Let y be a point in a domain D, let x be a point in ∂D closest to
y, set d = |x− y| and let m > 0. Suppose that

(2.1) cap(B(y, 1
2
d), D) ≥ m.

If f is a continuous mapping of D into Rn which is quasiconformal in D and if

|f(x)− f(z)| ≤ ω(|x− z|)
for all z ∈ ∂D and for some majorant ω, then

(2.2) |f(x)− f(y)| ≤ Cω(|x− y|),
where C > 0 is a constant depending only on m, n and K(f).

Proof. We emulate the proof of Lemma 8 in [MN] and present only the necessary
adjustments needed to deal with ω(t) instead of powers of t.

Fix an integer p > 2 such that
ωn−1

[log 2(p− 1)]n−1
≤ m

2
,

where ωn−1 denotes the (n − 1)-dimensional surface area of the unit sphere. Set
B = B(y, d/2), B′ = f(B), d′ = d(f(x), ∂B′). We begin by showing that

(2.3) d′ ≤ M0ω(d),

where M0 = 2p exp([2KO(f)ωn−1/m]1/(n−1)).
Since (2.3) holds trivially if d′ ≤ pω(d), we may assume that d′ > pω(d). Consider

the curve family Γ = ∆(B, ∂D ∩ B(x, pd); D). The minorizing principle for the
modulus, together with (2.1), implies that

M(Γ) ≥ m

2
.

See [MN, p. 347]. Thus, by the quasiconformality of f ,

(2.4) M(fΓ) ≥ m

2KO(f)
.

On the other hand, our hypothesis on the boundary distortion at x guarantees that
the set f(∂D ∩B(x, pd)) is contained in B(f(x), ω(pd)). Hence the curve family fΓ
is minorized by the family ∆(S(f(x), ω(pd)), S(f(x), d′);Rn), and therefore

M(fΓ) ≤ ωn−1

(
log

d′

ω(pd)

)1−n

.

In conjunction with (2.4) this leads to

d′ ≤ exp([2K0(f)ωn−1/m]1/(n−1))ω(pd),

and (2.3) ensues because ω(pd) ≤ 2pω(d) by (1.3).
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To complete the proof, we can repeat the argument in [MN, p. 348] verbatim to
produce the estimate

|f(x)− f(y)| ≤ exp

(
KI(f)ωn−1

bn(log 2)n−1

)
d′,

where bn > 0 is a cap-inequally constant depending only on n. See [V, 10.2]. Invoking

(2.3) this yields (2.2) with C = M0 exp

(
KI(f)ωn−1

bn(log 2)n−1

)
. ¤

We next focus our attention on the thin parts of the boundary. Three lemmas will
be acquired. The first of these seeks to describe a certain quasisymmetry property
of a quasiconformal mapping at a boundary point. The lemma is extracted directly
from [MN, p. 342]. We put to use standard notation

L(r) = L(x, f, r) = max
|y−x|=r

|f(x)− f(y)|,
l(r) = l(x, f, r) = min

|y−x|=r
|f(x)− f(y)|

for a mapping f defined and continuous in {x} ∪ S(x, r).

Lemma 2.3. Let y be a point in a bounded domain D, let x be a point in ∂D
closest to y and set d = |x− y|. Suppose that

cap(B(y, d/2), D) < 2−(n+3)bn.

If f is a continuous mapping of D into Rn which is quasiconformal in D and if the
boundary component of D whose image under f separates f(D) from the point ∞
in R

n is not contained in B(x, 4d), then D contains a sphere S(x, r), d < r < 2d, on
which

L(r)

l(r)
≤ c,

where c ≥ 1 depends only on n and KO(f).

Lemma 2.4. Let r > 0, let 0 < a < 1 < b and let x be a boundary point of a
bounded domain D containing the closed spherical ring B(x, br)\B(x, ar). Suppose
that f is a continuous mapping of D into Rn which is quasiconformal in D and that

|f(x)− f(z)| ≤ ω(|x− z|)
for all z ∈ ∂D, where ω is a majorant satisfying

ω(t)

tα
≤ M max

{
1,

ω(s)

sα

}

for some M > 0, for α = KI(f)1/(1−n) and for all 0 < s < t < diam(D). Then

(2.5) |f(x)− f(y)| ≤ C max{ω(|x− y|), |x− y|α}
for all y ∈ S(x, r), where C depends only on a, b, n, M and KO(f). In particular, if
ω(t)/tα is decreasing for 0 < t < diam(D), then

(2.6) |f(x)− f(y)| ≤ Ĉω(|x− y|)
for all y ∈ S(x, r), where Ĉ depends only on a, b, n and KO(f).
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Proof. If x is mapped by f into the unbounded component of Rn \ f(S(x, r)),
then, since f(D) is bounded, B(x, r) contains a boundary component E of D such
that f(E) separates f(D) from the point ∞ in Rn. Accordingly

|f(x)− f(y)| < diam(f(D)) = diam(f(E)) ≤ 2 max
z∈E

|f(x)− f(z)|
≤ 2 max

z∈E
ω(|x− z|) ≤ 2ω(|x− y|)(2.7)

for all y ∈ S(x, r).
In the remaining case, f(x) lies in the bounded component of Rn \ f(S(x, r)).

Let z be a point in ∂D \B(x, r) closest to x. Fix R > r satisfying
1
2
|x− z| ≤ bR ≤ |x− z|.

By Lemmas 1 and 2 in [MN], there is a constant c ≥ 1, depending only on a, b, n
and KO(f), such that

|f(x)− f(y)| ≤ L(r) ≤ cl(r) ≤ cL(R)
( r

R

)α

≤ c2l(R)
( r

R

)α

for all y ∈ S(x, r). Since

l(R) ≤ |f(x)− f(z)| ≤ ω(|x− z|) ≤ ω(2bR) ≤ 4bω(R),

we thereby obtain

(2.8) |f(x)− f(y)| ≤ 4bc2ω(R)

Rα
|x− y|α.

Now, because either (2.7) or (2.8) must be true for each y ∈ S(x, r), inequality (2.5)
follows with C = max{2, 4bc2M}.

Finally, if ω(t)/tα is decreasing, then
ω(R)

Rα
|x− y|α ≤ ω(|x− y|)

in (2.8). As a combination of (2.7) and (2.8) this establishes (2.6) with Ĉ = 4bc2. ¤

Lemma 2.5. Let y be a point in a bounded domain D, let x be a point in ∂D
closest to y, set d = |x− y| and let

cap(B(y, d/2), D) < 2−(n+3)bn.

Suppose that f is a continuous mapping of D into Rn which is quasiconformal in D
and that

|f(x)− f(z)| ≤ ω(|x− z|)
for all z ∈ ∂D, where ω is a majorant satisfying

ω(t)

tα
≤ M max

{
1,

ω(s)

sα

}

for some M > 0, for α = KI(f)1/(1−n) and for all 0 < s < t < diam(D). Then

(2.9) |f(x)− f(y)| ≤ C max{ω(|x− y|), |x− y|α},
where C depends only on n, M and KO(f). In particular, if ω(t)/tα is decreasing for
0 < t < diam(D), then

(2.10) |f(x)− f(y)| ≤ Ĉω(|x− y|),
where Ĉ depends only on n and KO(f).
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Proof. Let E denote the boundary component of D whose image under f sepa-
rates f(D) from the point ∞ in R

n. We distinguish two cases.
Suppose first that E ⊂ B(x, 4d). Then

|f(x)− f(y)| ≤ diam(f(D)) = diam(f(E)) ≤ ω(diam(E))

≤ ω(8d) ≤ 8ω(d) = 8ω(|x− y|).(2.11)

Assume next that E does not lie in B(x, 4d). Then, by Lemma 2.3, there is
r, d < r < 2d, such that S(x, r) is contained in D and

L(r)

l(r)
≤ c,

where c ≥ 1 depends only on n and KO(f). Pick a point z in ∂D \ B(x, 4d) closest
to x. Since f(x) must lie in the bounded component of Rn \ f(S(x, r)), we obtain

|f(x)− f(y)| ≤ L(r) ≤ cl(r) ≤ c|f(x)− f(z)| ≤ cω(|x− z|).
Now if |x− z| ≤ 6|x− y|, then
(2.12) |f(x)− f(y)| ≤ cω(6|x− y|) ≤ 8cω(|x− y|),
while if |x − z| > 6|x − y|, then D contains the closed ring B(x, 6d) \ B(x, 4d), and
therefore, in view of Lemma 2.4,

(2.13) |f(x)− f(w)| ≤ C ′ max{ω(|x− w|), |x− w|α}
for all w ∈ S(x, 5d), where C ′ > 0 depends only on n, M and KO(f).

On the other hand, since the f(x)-component of Rn \ f(S(x, 5d)) is bounded, we
infer that

(2.14) |f(x)− f(y)| ≤ L(5d) ≤ C ′ω̂(5d) ≤ 8C ′ω̂(d) = 8C ′ω̂(|x− y|),
where ω̂(t) = max{ω(t), tα}. Therefore, because one of the inequalities (2.11), (2.12)
and (2.14) must be true for x and y, the conclusion (2.9) is secured with C =
8 max{c, C ′}, a constant depending only on n, M and KO(f).

Finally, if ω(t)/tα is decreasing, Lemma 2.4 allows us to improve inequality (2.13)
to

|f(x)− f(w)| ≤ C̃ω(|x− w|),
which is valid for all w ∈ S(x, 5d) and wherein C̃ > 0 depends only on n and KO(f).
Consequently, (2.14) will transform into

(2.15) |f(x)− f(y)| ≤ 8C̃ω(|x− y|).
Since one of the inequalities (2.11), (2.12) and (2.15) must be true for x and y, the
desired inference (2.10) results with Ĉ = 8 max{c, C̃}. ¤

One last piece of preliminaries is needed in Section 3, and that is the concept of
uniform perfectness introduced by Pommerenke in [P]. A compact set E in Rn is
called c-uniformly perfect, 0 < c < 1, if E contains at least two points and if for each
x ∈ E and 0 < r < diam(E), the spherical ring B(x, r) \ B(x, cr) meets E. Such an
E is quite evidently a perfect set. For background information on uniformly perfect
sets see, for example, [BP], [JV], [P].

There exist several alternative characterizations for uniformly perfect sets in the
literature. We need the following result involving condition (2.1) in Lemma 2.2, see
[AMV]:
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Lemma 2.6. If the boundary of a bounded domain D in Rn is c-uniformly
perfect then there exists m > 0 such that

cap(B(y, 1
2
d), D) ≥ m

for each point y ∈ D, where d = d(y, ∂D). Here m depends only on c and on the
dimension n.

Proof. It follows from Lemma 2.10 in [JV] that there is a constant s, 0 < s < ∞,
depending only on c and n, such that mod(R) < s for each ring domain R which
separates ∂D. The proof of Lemma 2.3 in [AMV] then implies that the assertion in
Lemma 2.6 holds with a constant m > 0 depending only on c and n. ¤

3. Results

We are now prepared to establish our main results. The first of these is a gen-
eralization of [NP, Theorem 1], due to Palka and one of the authors. See also [HN,
Theorem 2]. We remind the reader that the number λn in the ensuing theorems
designates the familiar positive constant present in the Teichmüller ring domain es-
timate: if E = {te1 : − 1 ≤ t ≤ 0} and Ft = {se1 : t ≤ s < ∞} for t > 0, then we
have

M(∆(E, Ft;R
n)) ≥ ωn−1

[log λn(t + 1)]n−1
,

see [AF], [AVV], [G]. The exact value of λn is somewhat mysterious, except when
n = 2, in which event λ2 = 16. The best bounds for λn known to us, when n > 2,
are

4e1,52(n−1) < λn < 4e2(n−1).

Theorem 3.1. Let D be a proper subdomain of Rn and let f be a continuous
mapping of D into Rn which is quasiconformal in D. Suppose that

(3.1) |f(x)− f(y)| ≤ ω(|x− y|)
for some majorant ω and for all x ∈ ∂D and y ∈ D. Then

(3.2) |f(x)− f(y)| ≤ C max
{

ω(|x− y|), ω(d)

dα
|x− y|α

}

for all x, y ∈ D, where α = KI(f)1/(1−n), d = d(y, ∂D) and C = 4λn, a constant
depending only on n and satisfying 16e1,52(n−1) < C < 16e2(n−1). In particular, if
ω(t)/tα is decreasing for 0 < t < diam(D), then

(3.3) |f(x)− f(y)| ≤ Cω(|x− y|)
for all x, y ∈ D, where again C = 4λn.

Proof. The argument here closely mimics the one used in [NP, p. 380] for a
Hölder continuous function ω.

Fix distinct points x and y in D and select a point z ∈ ∂D closest to y. If
|z − y| ≤ |x− y|, then |z − x| ≤ 2|x− y|, and (3.1) yields

(3.4) |f(x)− f(y)| ≤ 3ω(|x− y|).
Assume next that |z − y| > |x− y| and set

d = |z − y|, r = |x− y|.
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The spherical ring domain R = B(y, d) \ B(y, r) lies in D. The curve family Γ in R
joining the boundary components of R has modulus

(3.5) M(Γ) =
ωn−1(

log
d

r

)n−1
.

As in [NP, p. 380], one can use [G, Theorem 4] together with the Teichmüller ring
domain estimate to derive

(3.6) M(fΓ) ≥ ωn−1

[
log λn

(
1 +

|f(z)− f(y)|
|f(x)− f(y)|

)]1−n

.

Since |z − x| < 2d, it follows from (3.1) and the triangle inequality that

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| ≤ 3ω(d).

This, in conjunction with (3.1) and (3.6), gives

(3.7) M(fΓ) ≥ ωn−1

[
log λn

4ω(d)

|f(x)− f(y)|
]1−n

.

Now M(fΓ) ≤ KI(f)M(Γ) by the quasiconformality of f and we infer, combining
(3.5) and (3.7), that

(3.8) |f(x)− f(y)| ≤ 4λnω(d)rα

dα
=

4λnω(d)

dα
|x− y|α.

Consequently, because either (3.4) or (3.8) must hold for each pair of points x and y
in D, inequality (3.2) will follow with C = 4λn.

Finally, if ω(t)/tα is decreasing, then
ω(d)

dα
|x− y|α ≤ ω(|x− y|)

in (3.8). Since either (3.4) or (3.8) must hold for any pair of points x, y ∈ D,
inequality (3.3) is verified with C = 4λn. ¤

In dimension n = 2, the dilatations KI(f), KO(f) and K(f) are all equal and
the constant C in Theorem 3.1 is nothing but 64. Hence we may record the following
consequence:

Corollary 1. Under the hypotheses of Theorem 3.1, if n = 2, then

|f(x)− f(y)| ≤ 64 max

{
ω(|x− y|), ω(d)

d1/K
|x− y|1/K

}

for all x, y ∈ D, where d = d(y, ∂D) and K is the dilatation of the quasiconformal
mapping f . In particular, if ω(t)/t1/K is decreasing when 0 < t < diam(D), then

|f(x)− f(y)| ≤ 64ω(|x− y|)
for all x, y ∈ D.

Remark 1. In Theorem 3.1, condition (3.1) by itself affords no guarantee that
the estimate (3.3) be satisfied for any fixed constant C, even if D were assumed to
be a bounded domain with smooth boundary. For example, the radial stretching f ,

f(x) = |x|α−1x, 0 < α < 1,

carries the unit ball B in Rn onto itself, is the identity in ∂B, and is quasiconformal
in B with KI(f) = α1−n. See [V, 16.2]. Moreover, for points x ∈ ∂B and y ∈ B we
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have |f(x)− f(y)| < 2|x− y|, and so (3.1) is fulfilled with ω(t) = 2t. However, since
f is Hölder continuous at the origin with optimal Hölder exponent α, the estimate
(3.3) in Theorem 3.1 cannot possibly be achieved for any fixed constant C.

Hinkkanen and one of the present co-authors established the following result in
[HN, Theorem 4]: if B is the open unit ball in Rn and if f is a continuous mapping
of B into Rn which is quasiconformal in B and satisfies (3.1) for all x, y ∈ ∂B and
for some majorant ω, then

|f(x)− f(y)| ≤ Cω(|x− y|)
for all x ∈ ∂B, y ∈ B, where C > 0 depends only on n and K(f). The upshot of
this is that should the domain D in Theorem 3.1 be a ball, it would suffice to assume
(3.1) for points x, y ∈ ∂D only, when deriving (3.2) and (3.3), at the expense of a
possible dependence on the dilation K(f) for the constant C. The realm of domains
in which a similar derivation is valid is, in fact, substantially larger, as will next be
demonstrated:

Theorem 3.2. Let D be a bounded domain in Rn and let ∂D be c-uniformly
perfect. If f is a continuous mapping of D into Rn which is quasiconformal in D and
if

(3.9) |f(x)− f(y)| ≤ ω(|x− y|)
for all x, y ∈ ∂D and for some majorant ω, then

(3.10) |f(x)− f(y)| ≤ Cω(|x− y|)
for all x ∈ ∂D and y ∈ D, where C depends only on c, n, K(f) and diam(D).
Furthermore,

(3.11) |f(x)− f(y)| ≤ Ĉ max
{

ω(|x− y|), ω(d)

dα
|x− y|α

}

for all x, y ∈ D, where Ĉ = 4λnC, d = d(y, ∂D) and α = KI(f)1/(1−n). In particular,
if ω(t)/tα is decreasing for 0 < t < diam(D), then

|f(x)− f(y) ≤ Ĉω(|x− y|)
for all x, y ∈ D, where Ĉ is as above.

Proof. Since D is bounded and ∂D is c-uniformly perfect, Lemma 2.6 will provide
us a constant m > 0, which depends only on n, c and diam(D), such that

cap(B(y, 1
2
d), D) ≥ m

for each point y ∈ D, where d = d(y, ∂D). Invoking Lemma 2.2 we thus obtain
another constant C1, depending only on n, m, K(f) and diam(D), with the property
that

|f(x)− f(y)| ≤ C1ω(|x− y|)
for each pair of points x ∈ ∂D and y ∈ D such that |x−y| = d(y, ∂D). The conclusion
(3.10) ensues, therefore, by virtue of Lemma 2.1, for all points x ∈ ∂D and y ∈ D
with C = 3C1. The estimate (3.11) in Theorem 3.2 is now achieved by combining
(3.10) with Theorem 3.1. The last assertion is a special case of Theorem 3.1. ¤
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Remark 2. Condition (3.9) for all x, y ∈ ∂D, without any assumption of the
type that ∂D be uniformly perfect or that ∂D have positive local capacity, is not
enough to imply that (3.10) be valid for all x ∈ ∂D and y ∈ D. For example, if D
is the punctured unit ball B \ {0} in Rn and if f is the radial stretching defined in
Remark 1, then (3.9) obviously holds for all x, y ∈ ∂D with ω(t) = t. But selecting
x = 0 we see that no fixed C can ensure the estimate (3.10) for all y ∈ D.

We conclude this paper with our main result. It will furnish an extension
promised in the introduction of the theorem in [MN] involving Hölder continuous
boundary majorants.

Theorem 3.3. Let D be a bounded domain in Rn and let f be a continuous
mapping of D into Rn which is quasiconformal in D. Suppose that

|f(x)− f(y)| ≤ ω(|x− y|)
for all x, y ∈ ∂D, where ω is a majorant satisfying

(3.12)
ω(t)

tα
≤ M max

{
1,

ω(s)

sα

}

for some M > 0, for α = KI(f)1/(1−n) and for all 0 < s < t < diam(D). Then

(3.13) |f(x)− f(y)| ≤ C max
{

ω(|x− y|), |x− y|α
}

for all x, y ∈ D, where C depends only on n, M and K(f). In particular, if ω(t)/tα

is decreasing for 0 < t < diam(D), then

(3.14) |f(x)− f(y)| ≤ Ĉω(|x− y|)
for all x, y ∈ D, where Ĉ depends only on n and K(f).

Proof. Let y ∈ D, let z be a point in ∂D closest to y and set d = |y − z|. If
(3.15) cap(B(y, 1

2
d), D) ≥ 2−(n+3)bn,

then, by Lemma 2.2, there is a constant C1 > 0, depending only on n and K(f),
such that

(3.16) |f(z)− f(y)| ≤ C1ω(|z − y|).
If (3.15) fails, then, by Lemma 2.5, there is a constant C2 > 0, depending only on
n, M and K(f), such that

(3.17) |f(z)− f(y)| ≤ C2 max{ω(|z − y|), |z − y|α}.
Consequently,

|f(z)− f(y)| ≤ C3ω̂(|z − y|)
whenever y ∈ D, z is a point in ∂D closest to y, C3 = max{C1, C2}, and ω̂(t) =
max{ω(t), tα}.

Now ω̂ is also a majorant. Lemma 2.1 thereby implies that

|f(x)− f(y)| ≤ 3C3ω̂(|x− y|)
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for all x ∈ ∂D and y ∈ D. Theorem 3.1 in turn yields

|f(x)− f(y)| ≤ 12λnC3 max
{

ω̂(|x− y|), ω̂(d)

dα
|x− y|α

}

= 12λnC3 max
{

ω(|x− y|), |x− y|α,
ω(d)

dα
|x− yα

}

for all x, y ∈ D, where d = d(y, ∂D). This combined with our hypothesis (3.12)
establishes (3.13) with C = 12λnMC3.

Finally, suppose that ω(t)/tα is decreasing. Lemma 2.5 enables us to improve
inequality (3.17) to read

|f(z)− f(y)| ≤ C2ω(|z − y|),
where C2 now depends only on n and K(f). This, together with (3.16), allows one
to infer that

|f(z)− f(y)| ≤ C3ω(|z − y|)
whenever y ∈ D, z is a point in ∂D closest to y and C3 = max{C1, C2}. While
Lemma 2.1 guarantees that

|f(x)− f(y)| ≤ 3C3ω(|x− y|)
for all x ∈ ∂D and y ∈ D, Theorem 3.1 then will deliver the desired estimate (3.14)
with Ĉ = 12λnC3, a constant depending only on n and K(f). ¤

Remark 3. If, in Theorem 3.3, n = 2 and if the mapping f is conformal, or
merely analytic, then a myriad of results are known that are much more complete
and satisfactory than ours. See, for example, [GHH], [H2], [H3], [RST], [S], [T]. The
most striking results are due to Hinkkanen. In [H3] he showed that if D is a bounded
domain in the complex plane C and if f is a continuous mapping of D into C which
is analytic in D and satisfies |f(x)− f(y)| ≤ ω(|x− y|) for some majorant ω and for
all x, y ∈ ∂D, then |f(x) − f(y)| ≤ Cω(|x − y|) for all x, y ∈ D, where C = 3456.
Furthermore, if D happens to be the unit disk, Hinkkanen [H2] showed that the
constant above can be reduced to C = 2. It follows from results of Hinkkanen [H2],
[H3], and of Smith and Stegenga [SS] that the constant 2 above is the best possible
in the case where only one of the points x and y above is allowed to vary. That
the tantalizing number 3456 were to enjoy any such sharpness property seems rather
unlikely. For Hölder continuous majorants the best constant above is C = 1, as was
probably first shown by Sewell [S] and later on by Rubel, Shields and Taylor [RST]
in the case of a disk, and by Gehring, Hayman and Hinkkanen [GHH] in the case of
an arbitrary bounded domain D.
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