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Abstract. We prove a sub-Riemannian maximum principle for semicontinuous functions. We
apply this principle to Carnot groups to provide a “sub-Riemannian” proof of the uniqueness of
viscosity infinite harmonic functions. This is an alternate method of proof from the one found in
[15]. We also establish the equivalence of weak solutions and viscosity solutions to the p-Laplace
equation. This result extends the author’s previous work in the Heisenberg group [3, 4].

1. Calculus on Carnot groups

We begin by denoting an arbitrary Carnot group in RN by G and its corre-
sponding Lie Algebra by g. Recall that g is nilpotent and stratified, resulting in the
decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vl

for appropriate vector spaces that satisfy the Lie bracket relation [V1, Vj] = V1+j. The
Lie Algebra g is associated with the group G via the exponential map exp: g → G.
Since this map is a diffeomorphism, we can choose a basis for g so that it is the
identity map. Denote this basis by

X1, X2, . . . , Xn1 , Y1, Y2, . . . , Yn2 , Z1, Z2, . . . , Zn3

so that
V1 = span{X1, X2, . . . , Xn1},
V2 = span{Y1, Y2, . . . , Yn2},

V3 ⊕ V4 ⊕ · · · ⊕ Vl = span{Z1, Z2, . . . , Zn3}.
We endow g with an inner product 〈·, ·〉 and related norm ‖ · ‖ so that this basis is
orthonormal. Clearly, the Riemannian dimension of g (and so G) is N = n1+n2+n3.
However, we will also consider the homogeneous dimension of G, denoted Q, which
is given by

Q =
l∑

i=1

i · dim Vi.
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Before proceeding with the calculus, we recall the group and metric space prop-
erties. Since the exponential map is the identity, the group law is the Campbell–
Hausdorff formula (see, for example, [5]). For our purposes, this formula is given
by

(1.1) p · q = p + q +
1

2
[p, q] + R(p, q)

where R(p, q) are terms of order 3 or higher. The identity element of G will be
denoted by 0 and called the origin. There is also a natural metric on G, which is the
Carnot–Carathéodory distance, defined for the points p and q as follows:

dC(p, q) = inf
Γ

ˆ 1

0

‖γ′(t)‖ dt

where the set Γ is the set of all curves γ such that γ(0) = p, γ(1) = q and γ′(t) ∈ V1.
By Chow’s theorem (see, for example, [2]) any two points can be connected by such
a curve, which means dC(p, q) is an honest metric. Define a Carnot–Carathéodory
ball of radius r centered at a point p0 by

B(p0, r) = {p ∈ G : dC(p, p0) < r}.
In addition to the Carnot–Carathéodory metric, there is a smooth (off the origin)

gauge. This gauge is defined for a point p = (ζ1, ζ2, . . . , ζl) with ζi ∈ Vi by

(1.2) N (p) =

( l∑
i=1

‖ζi‖
2l!
i

) 1
2l!

and it induces a distance dN given by

dN (p, q) = N (p−1 · q).
This distance is bi-Lipschitz equivalent to the Carnot–Carathéodory metric [2]. We
define a gauge ball of radius r centered at a point p0 by

BN (p0, r) = {p ∈ G : dN (p, p0) < r}.
In this environment, a smooth function u : G → R has the horizontal derivative

given by
∇0u = (X1u, X2u, . . . , Xn1u)

and the symmetrized horizontal second derivative matrix, denoted by (D2u)?, with
entries

((D2u)?)ij =
1

2
(XiXju + XjXiu)

for i, j = 1, 2, . . . , n1. We also consider the semi-horizontal derivative given by

∇1u = (X1u,X2u, . . . , Xn1u, Y1u, Y2u, . . . , Yn2u).

We recall that for any open set O ⊂ G, the function f is in the horizontal Sobolev
space W 1,P (O) if f and Xif are in LP (O) for i = 1, 2, . . . , n1. Replacing LP (O) by
LP

loc(O), the space W 1,P
loc (O) is defined similarly. The space W 1,P

0 (O) is the closure in
W 1,P (O) of smooth functions with compact support. In addition, we recall a function
u : G → R is C2

sub if ∇1u and XiXju are continuous for all i, j = 1, 2, . . . , n1. Note
that C2

sub is different from the regular (Euclidean) C2.
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Using the above derivatives, we define the horizontal p-Laplacian of a smooth
function f for 1 < p < ∞ by

∆pf = div(‖∇0f‖p−2∇0f) =

n1∑
i=1

Xi(‖∇0f‖p−2∇0f)

= ‖∇0f‖p−2 tr((D2f)?) + (p− 2)‖∇0f‖p−4〈(D2f)?∇0f,∇0f〉.
Formally taking the limit as p goes to infinity results in the infinite Laplacian

which is defined by

∆∞f =

n1∑
i,j=1

XifXjfXiXjf = 〈(D2f)?∇0f,∇0f〉.

2. Carnot jets and viscosity solutions

We begin by recalling the following Taylor theorem [9]:

Theorem 2.1. For a smooth function u : G → R, we have the following Taylor
formula at the point p0:

u(p) = u(p0) + 〈∇1u(p0), p̂
−1
0 p〉+

1

2
〈(D2u(p0))

?p−1
0 p, p−1

0 p〉+ o((d(p0, p))2)

where p−1
0 p is the projection of p−1

0 p onto V1 and p̂−1
0 p is the projection of p−1

0 p onto
V1 ⊕ V2. (Recall that exp is the identity map.)

This theorem motivates the following definition for the semi-jets.

Definition 1. Let u be an upper semicontinuous function u : G → R and let Sn1

be the set of all n1 × n1 symmetric matrices. For η ∈ V1 ⊕ V2 and X ∈ Sn1 , consider
the following inequality:

(2.1) u(p) ≤ u(p0) + 〈η, p̂−1
0 p〉+

1

2
〈Xp−1

0 p, p−1
0 p〉+ o((d(p0, p))2) as p → p0.

The second-order superjet of u at p0, denoted J2,+u(p0), is given by

J2,+u(p0) = {(η, X) ⊂ (V1 ⊕ V2)× Sn1 : equation (2.1) holds}.
The second-order subjet of the lower semicontinuous function v at p0, denoted by
J2,−v(p0), is defined by

J2,−v(p0) = −J2,+(−v)(p0).

We define the set-theoretic closure of J2,+u(p0), denoted J
2,+

u(p0) by (η, X) ∈
J

2,+
u(p0) if there exists a sequence {(pm, u(pm), ηm, Xm)} ∈ G × R × g × Sn1 so

that as m →∞, we have {(pm, u(pm), ηm, Xm)} → (p0, u(p0), η, X) with (ηm, Xm) ∈
J2,+u(pm).

Given the upper semicontinuous function u, we may define the set of test functions
that touch u from above at p0, denoted T A(u, p0) and given a lower semicontinuous
function v, we may define the set of test functions that touch v from below at p0,
denoted T B(v, p0). Namely,

T A(u, p0) = {φ : G → R : φ ∈ C2
sub(p0), φ(p0) = u(p0) and φ(p) > u(p) for p near p0},

T B(v, p0) = {φ : G → R : φ ∈ C2
sub(p0), φ(p0) = v(p0) and φ(p) < v(p) for p near p0}.
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We define the sets K2,+u(p0) and K2,−v(p0) by

K2,+u(p0) = {(∇1φ(p0), (D
2φ(p0))

?) : φ ∈ T A(u, p0)},
K2,−v(p0) = {(∇1φ(p0), (D

2φ(p0))
?) : φ ∈ T B(v, p0)}.

As the following lemma shows, the two sets J2,+u(p0) and K2,+u(p0) are indeed the
same.

Lemma 2.2. Given an upper semicontinuous function u and lower semicontin-
uous function v, we have

J2,+u(p0) = K2,+u(p0) and J2,−v(p0) = K2,−v(p0).

Proof. The containments K2,+u(p0) ⊂ J2,+u(p0) and K2,−v(p0) ⊂ J2,−v(p0) are
clear. The opposite containments follow the proof of the Euclidean version of this
lemma, as found in [7]. The only adjustment is to replace the Euclidean distance
with the smooth Carnot norm N . See [3] for details in the case of the Heisenberg
group. ¤

We use these jets to define viscosity solutions to the class of equations given by:

F (p, u(p),∇1u(p), (D2u(p))?) = 0

where the function
F : G×R× g × Sn1 → R,

satisfies
F (p, r, η,X) ≤ F (p, s, η, Y )

when r ≤ s and Y ≤ X. In the language of viscosity solutions we say that F is
proper [8]. Examples of such equations include the p-Laplace equation, defined for
1 < p < ∞, by

−
(
‖∇0u‖p−2 tr((D2u)?) + (p− 2)‖∇0u‖p−4〈(D2u)?∇0u,∇0u〉

)
= 0

and the infinite Laplace equation

−〈(D2u)?∇0u,∇0u〉 = 0.

3. Sub-Riemannian maximum principle

We recall that the set V1 = span{X1, X2, . . . , Xn1} and notationally, we will
always denote n1 by n. The vectors Xi at the point p ∈ G can be written as

Xi(p) =
N∑

j=1

aij(p)
∂

∂xj

forming the n×N matrix A with smooth entries Aij = aij(p). By linear independence
of the Xi, A has rank n. Similarly,

Yi(p) =
N∑

j=1

bij(p)
∂

∂xj

forming the n2 × N matrix B with smooth entries Bij = bij(p). The matrix B has
rank n2.
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We now state Lemma 3 from [1], which was discussed only in the case n = N .
This lemma is actually valid in any sub-Riemannian environment. The proof for the
case n < N is identical and omitted.

Lemma 3.1. [1, Lemma 3] Let u be a smooth function with ∇euclu its Euclidean
gradient and let D2

euclu be the Euclidean second-order derivative matrix of u. Let
AT denote the transpose of the matrix A and (AT· t)k denote the k-th component of
the vector AT· t. Then, we have

(3.1) ∇1u = A · ∇euclu⊕B · ∇euclu

and for all t ∈ Rn

〈(D2u
)?· t, t〉 = 〈A ·D2

euclu ·AT· t, t〉+
N∑

k=1

〈AT· t,∇eucl

(
AT· t)

k
〉 ∂u

∂xk

= 〈(A ·D2
euclu ·AT + M(∇eucl(p), p)) · t, t〉

where the entries of the (symmetric) n× n matrix M(∇eucl(p), p) are given by

M(∇eucl(p), p)ij =





1

2

N∑

k=1

N∑

l=1

(
ail(p)

∂ajk

∂xl

(p) + ajl(p)
∂aik

∂xl

(p)

)
∂u

∂xk

, i 6= j,

N∑

k=1

N∑

l=1

ail(p)
∂aik

∂xl

(p)
∂u

∂xk

, i = j.

This result coupled with Lemma 2.2 produces the following corollary:

Corollary 3.2. Let (η,X) ∈ J
2,+

euclu(p). (Recall that (η,X) ∈ RN × SN .) Then

(A · η ⊕B · η, AXAT + M(η, p)) ∈ J
2,+

u(p).

Here the entries of the (symmetric) n× n matrix M(η, p) are given by

M(η, p)ij =





1

2

N∑

k=1

N∑

l=1

(
ail(p)

∂ajk

∂xl

(p) + ajl(p)
∂aik

∂xl

(p)

)
ηk, i 6= j,

N∑

k=1

N∑

l=1

ail(p)
∂aik

∂xl

(p)ηk, i = j.

The corollary allows us to “twist” the Euclidean jets into sub-Riemannian jets
and enables us to invoke the Euclidean results of [8]. We recall a key theorem.

Theorem 3.3. [8, Theorem 3.2, Remark 3.8] Let ε ∈ R+. Let u be an upper
semicontinuous function in RN , v a lower semicontinuous function in RN and φ a
C2 function in R2N . Let O be a locally compact subset of RN and let (p̂, q̂) be a
maximum point of u(p)− v(q)− φ(p, q) over O×O and let the matrix M∈ S2N be
given by

(3.2) M =




D2
ppφ(p̂, q̂) D2

pqφ(p̂, q̂)

D2
qpφ(p̂, q̂) D2

qqφ(p̂, q̂)




.

Then, there are matrices X,Y ∈ SN such that

(Dpφ(p̂, q̂), X) ∈ J
2,+

euclu(p̂) and (−Dqφ(p̂, q̂), Y ) ∈ J
2,−
euclv(q̂).
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In addition, for all vectors ~a,~b ∈ RN ,

〈X~a,~a〉 − 〈Y~b,~b〉 ≤ 〈(εM2 +M)(~a⊕~b), (~a⊕~b)〉.
We then combine this result with the twisting to produce the following theorem.

Theorem 3.4. Given a Euclidean C2 function φ : G × G → R, let the semi-
horizontal gradient at the point r ∈ G be denoted ∇1,rφ and the symmetrized second
derivative at r be denoted (D2

rφ)?. Let ε ∈ R+. Let u, v, p̂, q̂,O, and M be as in
Theorem 3.3. Then there are matrices X ,Y ∈ Sn so that

(∇1,pφ(p̂, q̂),X ) ∈ J
2,+

u(p̂) and (−∇1,qφ(p̂, q̂),Y) ∈ J
2,−

v(q̂).

In addition, for all vectors ξ, ε ∈ V1

〈X ξ, ξ〉−〈Yε, ε〉 ≤ 〈C(ξ⊕ ε), (ξ⊕ ε)〉+ 〈εM2(A(p̂)T ξ⊕A(q̂)T ε), (A(p̂)T ξ⊕A(q̂)T ε)〉.
Here the 2n× 2n symmetric matrix C is given in block form by(

(D2
pφ)?(p̂, q̂) W
W T (D2

qφ)?(p̂, q̂)

)

.

and the n× n matrix W has entries
Wij = Xi(p)Xj(q)φ(p̂, q̂).

Proof. By Theorem 3.3, there are matrices X and Y so that

(∇pφ(p̂, q̂), X) ∈ J
2,+

euclu(p̂) and (−∇qφ(p̂, q̂), Y ) ∈ J
2,−
euclv(q̂).

By Corollary 3.2, we have(
A(p̂) · ∇pφ(p̂, q̂)⊕B(p̂) · ∇pφ(p̂, q̂), A(p̂)XA(p̂)T + M(p̂)

)
∈ J

2,+
u(p̂)

and(
− (

A(q̂) · ∇qφ(p̂, q̂)⊕B(q̂) · ∇qφ(p̂, q̂)
)
, A(q̂)Y A(q̂)T + M(q̂)

)
∈ J

2,−
v(q̂).

By Lemma 3.1, we have, for appropriate matrices X and Y ,
(∇1,pφ(p̂, q̂),X ) ∈ J

2,+
u(p̂) and (−∇1,qφ(p̂, q̂),Y) ∈ J

2,−
v(q̂).

In addition, untwisting and using Theorem 3.3 produces, for any vectors ξ, ε ∈ V1,
〈X ξ, ξ〉 − 〈Yε, ε〉
= 〈(A(p̂)XA(p̂)T )ξ, ξ〉+ 〈M(p̂)ξ, ξ〉 − 〈(A(q̂)Y A(q̂)T )ε, ε〉 − 〈M(q̂)ε, ε〉
= 〈XA(p̂)T ξ,A(p̂)T ξ〉 − 〈Y A(q̂)T ε,A(q̂)T ε〉+ 〈M(p̂)ξ, ξ〉 − 〈M(q̂)ε, ε〉
≤ 〈(εM2 +M)(A(p̂)T ξ ⊕A(q̂)T ε), (A(p̂)T ξ ⊕A(q̂)T ε)〉+ 〈M(p̂)ξ, ξ〉 − 〈M(q̂)ε, ε〉
= 〈M(A(p̂)T ξ ⊕A(q̂)T ε), (A(p̂)T ξ ⊕A(q̂)T ε)〉+ 〈M(p̂)ξ, ξ〉 − 〈M(q̂)ε, ε〉

+ 〈εM2(A(p̂)T ξ ⊕A(q̂)T ε), (A(p̂)T ξ ⊕A(q̂)T ε)〉.
Using the second-order derivative formula of Lemma 3.1 and the formula forM given
in equation (3.2), we have

〈M(A(p̂)T ξ ⊕A(q̂)T ε), (A(p̂)T ξ ⊕A(q̂)T ε)〉
= 〈(A(p̂)D2

ppφ(p̂, q̂)A(p̂)T
)
ξ, ξ〉+ 〈(A(p̂)D2

pqφ(p̂, q̂)A(q̂)T
)
ε, ξ〉

+ 〈(A(q̂)D2
qpφ(p̂, q̂)A(p̂)T

)
ξ, ε〉+ 〈(A(q̂)D2

qqφ(p̂, q̂)A(q̂)T
)
ε, ε〉
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so that
〈X ξ, ξ〉 − 〈Yε, ε〉
≤ 〈(A(p̂)D2

ppφ(p̂, q̂)A(p̂)T + M(p̂)
)
ξ, ξ〉+ 〈(A(p̂)D2

pqφ(p̂, q̂)A(q̂)T
)
ε, ξ〉

+ 〈(A(q̂)D2
qpφ(p̂, q̂)A(p̂)T

)
ξ, ε〉+ 〈(A(q̂)D2

qqφ(p̂, q̂)A(q̂)T −M(q̂)
)
ε, ε〉

+ 〈εM2(A(p̂)T ξ ⊕A(q̂)T ε), (A(p̂)T ξ ⊕A(q̂)T ε)〉.
We note that by Lemma 3.2 the “ηk” term in the definition of M(η, q̂) is − ∂

∂yk
φ(p̂, q̂).

So that applying Lemma 3.1, we have

A(q̂)D2
qqφ(p̂, q̂)A(q̂)T −M(q̂) = (D2

qφ)?(p̂, q̂)

and similarly,
A(p̂)D2

ppφ(p̂, q̂)A(p̂)T + M(p̂) = (D2
pφ)?(p̂, q̂).

The theorem then follows. ¤
The theorem can be adjusted in the case when ξ = ε. Namely,

Corollary 3.5. Let ε, φ, u, v, p̂, q̂,O, and M be as in Theorem 3.4. Then there
are matrices X ,Y ∈ Sn so that

(∇1,pφ(p̂, q̂),X ) ∈ J
2,+

u(p̂) and (−∇1,qφ(p̂, q̂),Y) ∈ J
2,−

v(q̂).

Additionally, for all vectors ξ ∈ V1

〈X ξ, ξ〉 − 〈Yξ, ξ〉
≤ 〈C̃(ξ ⊕ ξ), (ξ ⊕ ξ)〉+ 〈εM2(A(p̂)T ξ ⊕A(q̂)T ξ), (A(p̂)T ξ ⊕A(q̂)T ξ)〉

where the 2n× 2n symmetric matrix C̃ is given in block form by(
(D2

pφ)?(p̂, q̂) W ?

W ? (D2
qφ)?(p̂, q̂)

)

and the n× n symmetric matrix W ? has entries

W ?
ij =

1

2

(
Xi(p)Xj(q) + Xj(p)Xi(q)

)
φ(p̂, q̂).

Proof. Define the 2n× 2n matrix

(3.3) M =

(
0 1

2
(W −W T )

1
2
(W T −W ) 0

)

and note that for any vector ξ ∈ V1, we have

(3.4) 〈M(ξ ⊕ ξ), (ξ ⊕ ξ)〉 = 0.

Invoking the theorem, we have

(∇1,pφ(p̂, q̂),X ) ∈ J
2,+

u(p̂) and (−∇1,qφ(p̂, q̂),Y) ∈ J
2,−

v(q̂)

with

〈X ξ, ξ〉−〈Yξ, ξ〉≤〈C(ξ⊕ ξ), (ξ⊕ ξ)〉+ 〈εM2(A(p̂)T ξ⊕A(q̂)T ξ), (A(p̂)T ξ⊕A(q̂)T ξ)〉.
Recall that

C =

(
(D2

pφ)?(p̂, q̂) W
W T (D2

qφ)?(p̂, q̂)

)

.

We then observe that C = C̃ + M. The result then follows from equation (3.4). ¤
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Theorem 3.4 and Corollary 3.5 hold in any sub-Riemannian space. However,
when using them to prove comparison principles in Carnot groups, they produce
estimates that are not readily controlled. This is not unexpected, as we have not
used the fact that we are in a Carnot group. By incorporating the Carnot group law
with Theorem 3.4, we obtain the Carnot group maximum principle.

Lemma 3.6. (Carnot group maximum principle) Let Ω ⊂ G be a domain. Let
τ ∈ R+ and let u be an upper semicontinuous function and v a lower semicontinuous
function. Let φ(p, q) = ϕ(p ·q−1) be a non-negative C2 function so that ϕ(p ·q−1) = 0
exactly when p = q. Let the points pτ , qτ ∈ G be the local maximum in Ω × Ω of
u(p)− v(q)− τϕ(p · q−1) and let u− v have a positive interior local maximum

sup
Ω

(u− v) > 0.

The following hold:
i)

lim
τ→∞

τϕ(pτ · q−1
τ ) = 0.

ii) There exists a point p̂ ∈ Ω such that pτ → p̂ (and so does qτ by (i)) and

sup
Ω

(u− v) = u(p̂)− v(p̂) > 0.

iii) There exist symmetric matrices Xτ ,Yτ and vector ητ ∈ V1 ⊕ V2, namely
ητ = ∇1,pϕ(pτ · q−1

τ ), so that

(τητ ,Xτ ) ∈ J
2,+

u(pτ ) and (τητ ,Yτ ) ∈ J
2,−

v(qτ ).

vi) For any vectors ξ, ε ∈ V1, we have

〈Xτξ, ξ〉 − 〈Yτ ε, ε〉
≤ τ〈(D2

pϕ)?(pτ · q−1
τ )(ξ − ε), (ξ − ε)〉+ τ〈M(ξ ⊕ ε), (ξ ⊕ ε)〉

+ τ‖M‖2‖A(p̂)T ξ ⊕A(q̂)T ε‖2.

(3.5)

In particular,

(3.6) 〈Xτξ, ξ〉 − 〈Yτξ, ξ〉 . τ‖M‖2‖ξ‖2.

Recall M is the matrix defined in equation (3.2) and M is the matrix defined in
equation (3.3).

Proof. The proof of the first two items follows that of the Euclidean case [8] and
Heisenberg group case [3] and is omitted. In order to prove the last two items, we
note that

Xj(p)ϕ(p · q−1) =
d

dt
ϕ
(
p · exp(tXj) · q−1

)|t=0

=
d

dt
ϕ
(
p · (q · exp(−tXj))

−1
)|t=0

= −Xj(q)ϕ(p · q−1)

with a similar calculation holding for Yj(p). Consequently, we have

(3.7)
(
Xi(p)Xj(q)+Xj(p)Xi(q)

)
ϕ(p ·q−1) = −(

Xi(p)Xj(p)+Xj(p)Xi(p)
)
ϕ(p ·q−1).
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In a similar manner, we also have

d

ds

d

dt
ϕ
(
p · exp(tXj) · exp(sXi) · q−1

)
+

d

dt

d

ds
ϕ
(
p · exp(sXi) · exp(tXj) · q−1

)

=
d

ds

d

dt
ϕ
(
p · (q · exp(−sXi) · exp(−tXj)

)−1
)

+
d

dt

d

ds
ϕ
(
p · (q · exp(−tXj) · exp(−sXi)

)−1
)

allowing us to conclude
(
Xj(p)Xi(p) + Xi(p)Xj(p)

)
ϕ(p · q−1)

= (−1)2
(
Xj(q)Xi(q) + Xi(q)Xj(q)

)
ϕ(p · q−1).

(3.8)

Set ητ = ∇1,pϕ(pτ · q−1
τ ) = −∇1,qϕ(pτ · q−1

τ ). Then Corollary 3.2 produces

(τητ ,Xτ ) ∈ J
2,+

u(pτ ) and (τητ ,Yτ ) ∈ J
2,−

v(qτ )

for appropriate matrices Xτ and Yτ , proving the third item.
In addition, Corollary 3.5 and equations (3.7) and (3.8) produce, for any vectors

ξ, ε ∈ V1,

〈Xτξ, ξ〉 − 〈Yτ ε, ε〉 ≤ τ〈
(

(D2
pϕ)?(pτ · q−1

τ ) −(D2
pϕ)?(pτ · q−1

τ )
−(D2

pϕ)?(pτ · q−1
τ ) (D2

pϕ)?(pτ · q−1
τ )

)(
ξ
ε

)
,

(
ξ
ε

)
〉

+ τ〈M(ξ ⊕ ε), (ξ ⊕ ε)〉
+ τ 2〈εM2(A(p̂)T ξ ⊕A(q̂)T ε), (A(p̂)T ξ ⊕A(q̂)T ε)〉.

Equation (3.5) follows by setting ε = τ−1 and equation (3.6) follows from equation
(3.5) by setting ε = ξ. ¤

4. Infinite harmonic functions

The existence of viscosity infinite harmonic functions in Carnot groups can be
proved by following the Heisenberg argument in [3]. In [15], Wang uses the clever
technique of considering the Carnot infinite Laplace equation from the Euclidean
point of view to obtain uniqueness of viscosity solutions. The key step is to show
uniqueness of viscosity solutions to the Jensen auxiliary functions [12] and pass to
the limit. We will present a proof of this key step from the sub-Riemannian point of
view by using the Carnot group maximum principle. Namely,

Theorem 4.1. Fix ε > 0. Define the function F ε
∞ by

F ε
∞(∇1u, (D2u)?) = min{‖∇0u‖2 − ε,−〈(D2u)?∇0u,∇0u〉}.

Let u be a viscosity subsolution and v a viscosity supersolution to F ε
∞ = 0 in a

bounded domain Ω. Then

sup
p∈Ω

(u(p)− v(p)) = sup
p∈∂Ω

(u(p)− v(p)).

Proof. Suppose not. Then,

sup
p∈Ω

(u(p)− v(p)) > sup
p∈∂Ω

(u(p)− v(p)).
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Using Lemma 5.1 from [3], we may replace v with the strict supersolution w, so that
F ε
∞((∇1w, (D2w)?) > 0. Consider the function

ϕ(p · q−1) =
N∑

i=1

1

6

(
(p · q−1)i

)6

where (p · q−1)i is the i-th component of the group multiplication law. We let the
maximum of u(p)− v(q)− τϕ(p · q−1) in Ω×Ω occur at the point (pτ , qτ ). Applying
the chain rule, we have

∂

∂xj

ϕ(pτ · q−1
τ ) =

N∑
i=1

(
(pτ · q−1

τ )i

)5 ∂

∂xj

(pτ · q−1
τ )i,

∂

∂xj

∂

∂xk

ϕ(pτ · q−1
τ ) =

N∑
i=1

(
(pτ · q−1

τ )i

)5 ∂

∂xj

∂

∂xk

(pτ · q−1
τ )i

+
N∑

i=1

5
(
(pτ · q−1

τ )i

)4
(

∂

∂xj

(pτ · q−1
τ )i

)(
∂

∂xk

(pτ · q−1
τ )i

)

with corresponding formulas for ∂
∂yj

ϕ(pτ · q−1
τ ) and ∂

∂yj

∂
∂yk

ϕ(pτ · q−1
τ ). We note that

∂
∂xj

(pτ · q−1
τ )i is a polynomial in pτ and qτ , which are points in a bounded domain.

We therefore can find a constant K < ∞ so that for all l and i,
∣∣∣∣

∂

∂xl

(pτ · q−1
τ )i

∣∣∣∣ ≤ K and
∣∣∣∣

∂

∂yl

(pτ · q−1
τ )i

∣∣∣∣ ≤ K.

We then conclude

(4.1)
∣∣∣∣

∂

∂xj

ϕ(pτ · q−1
τ )

∣∣∣∣ . ϕ(pτ · q−1
τ )

5
6 and

∣∣∣∣
∂

∂yj

ϕ(pτ · q−1
τ )

∣∣∣∣ . ϕ(pτ · q−1
τ )

5
6 .

Invoking Lemma 3.6 (i) and (ii), namely, that pτ → p̂ and qτ → p̂, we also have for
sufficiently large τ (so that |pτ · q−1

τ | < 1),

(4.2)
∣∣∣∣

∂

∂xj

∂

∂xk

ϕ(pτ · q−1
τ )

∣∣∣∣ . ϕ(pτ · q−1
τ )

4
6 and

∣∣∣∣
∂

∂yj

∂

∂yk

ϕ(pτ · q−1
τ )

∣∣∣∣ . ϕ(pτ · q−1
τ )

4
6 .

We note that equation (4.2) also holds for the mixed derivatives ∂
∂xj

∂
∂yk

and ∂
∂yj

∂
∂xk

.
By Lemma 3.6, we have

(τητ ,Xτ ) ∈ J
2,+

u(pτ ) and (τητ ,Yτ ) ∈ J
2,−

w(qτ )

with the matrices satisfying

〈Xττητ , τητ 〉 − 〈Yττητ , τητ 〉 ≤ τ 3‖M‖2‖ητ‖2.

By the definition of M (equation (3.2)), and equation (4.2), we have

‖M‖ . ϕ(pτ · q−1
τ )

4
6 .

In addition, since ητ = ∇1,pϕ(pτ · q−1
τ ), equation (4.1) gives

‖η‖ . ϕ(pτ · q−1
τ )

5
6 .
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We then have
〈Xττητ , τητ 〉 − 〈Yττητ , τητ 〉 ≤ τ 3‖M‖2‖ητ‖2

. τ 3ϕ(p · q−1)
4
3 × ϕ(p · q−1)

5
3 = (τϕ(p · q−1))3.

Now, since u is a subsolution and w a strict supersolution, we have

min{‖τητ‖2 − ε,−〈Xττητ , τητ 〉} ≤ 0

and
min{‖τητ‖2 − ε,−〈Yττητ , τητ 〉} > 0

so that subtracting, we have

0 < min{0, 〈Xττητ , τητ 〉 − 〈Yττητ , τητ 〉}
. (τφ(p · q−1))3 → 0 as τ →∞.

The theorem follows from this contradiction. ¤
Uniqueness of viscosity infinite harmonic functions then follows as in [3].

5. The p-Laplacian in Carnot groups

We now turn our attention to the p-Laplacian when 1 < p < ∞. Our main goal
is to relate three different notions of solutions to the equation

(5.1) −∆pf = − div(‖∇0f‖p−2∇0f) = 0

in a bounded domain Ω.

5.1. Weak solutions. We begin by considering weak solutions to equation
(5.1). We will actually do more, for we shall consider weak solutions to a wider class
of equations. Letting ε ≥ 0 be a real parameter, we consider equations of the form

(5.2) −∆pf = − div(‖∇0f‖p−2∇0f) = ε

in a bounded domain Ω. Note that equation (5.1) corresponds to equation (5.2) with
ε = 0. We define weak solutions to equation (5.1) and ε-weak solutions to equation
(5.2) in the usual way. A weak solution to equation (5.1) (i.e., a 0-weak solution) is
called p-harmonic.

In addition to weak solutions we may define weak supersolutions and weak sub-
solutions in the usual way. Using the definitions for ε1 > ε2 ≥ 0, we observe that
an ε1-weak solution is a ε2-weak supersolution and an ε2-weak solution is a ε1-weak
subsolution.

It is also well-known that 0-weak subsolutions and supersolutions satisfy the
following comparison principle.

Lemma 5.1. [11, Lemma 3.18] Let u ∈ W 1,p(Ω) be a weak subsolution to equa-
tion (5.1) and let v ∈ W 1,p(Ω) be a weak supersolution to equation (5.1) in Ω. If
γ ≡ min{v − u, 0} ∈ W 1,p

0 (Ω), then u ≤ v almost everywhere in Ω.

We are then able to formulate the existence-uniqueness of p-harmonic functions.
(cf. [11, Thm. 3.17], [10, Sec. 4.10]).

Theorem 5.2. Given a bounded domain Ω with boundary data Θ ∈ W 1,p(Ω),
there is a unique p-harmonic function u that satisfies u−Θ ∈ W 1,p

0 (Ω).
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Using standard techniques in calculus of variations, one can show that ε-weak
solutions exist and Lemma 5.1 can be extended to ε-weak solutions.

It is well-known that an ε-weak solution u has a continuous representative that
satisfies

oscBru ≤ Cε

(
r

R

)αε

oscBR

when BR ⊂ Ω and r ≤ R. ([10, 6]) We note that the constants Cε > 0 and αε > 0
depend only on ε and the group G. We therefore identify ε-weak solutions with their
continuous representative.

5.2. p-superharmonic functions. The next class of solutions we wish to
consider are p-superharmonic functions and p-subharmonic functions defined via the
following definition.

Definition 2. The function u : Ω → RN ∪{∞} is p-superharmonic if the follow-
ing hold:

(1) u is lower semicontinuous.
(2) u is not identically infinity in each component of Ω.
(3) For each subdomain D ⊂⊂ Ω, a p-harmonic function g in D that is continuous

in D with g ≤ u on ∂D implies g ≤ u in D.
A function u is p-subharmonic if −u is p-superharmonic.

These key point of these definitions are that they are based on comparison with
p-harmonic functions. We then are able to obtain the following comparison principle
[14, Thm. 7.2].

Lemma 5.3. Let Ω be a bounded domain in G. Let v be a p-superharmonic
function and u be a p-subharmonic function in Ω so that

lim sup
q→p

u(q) ≤ lim inf
q→p

v(q)

for all p ∈ ∂Ω with both sides not simultaneously −∞ or ∞. Then u ≤ v in Ω.

We are then able to conclude the following lemma ([11, Lemma 7.8]).

Lemma 5.4. A function is p-harmonic if and only if it is both p-subharmonic
and p-superharmonic.

5.3. Viscosity solutions. We consider equation (5.2) in non-divergence form,
namely,

(5.3) −
(
‖∇0u‖p−2 tr((D2u)?) + (p− 2)‖∇0u‖p−4〈(D2u)?∇0u,∇0u〉

)
= ε.

We note that equation (5.3) is degenerate elliptic and proper in the sense of [8].
In order to consider the possibility that for a test function φ, we may have ‖∇0φ‖ = 0,
resulting in a singularity when 1 < p < 2, we will need to weaken the definition of
viscosity solution. This definition coincides with the definition given earlier when
2 ≤ p < ∞. (See also [13] and [4] for a further discussion.)

Definition 3. The function u : Ω → RN ∪ {∞} is an ε-viscosity supersolution
to equation (5.3) if the following hold:

(1) u is lower semicontinuous.
(2) u is not identically infinity in each component of Ω.
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(3) For p0 ∈ Ω, φ ∈ T B(u, p0) with ∇0φ(p0) 6= 0 satisfies

−∆pφ(p0) ≥ ε.

A function u is an ε-viscosity subsolution to equation (5.3) if −u is an ε-viscosity
supersolution. A function u is an ε-viscosity solution if it is both an ε-viscosity
supersolution and an ε-viscosity subsolution.

Given the viscosity solutions, it is natural to ask how they relate to the pre-
vious notions of solutions. It was shown via Lemma 4.1 in [3] that upper(lower)
semicontinuous ε-weak sub(super-)solutions are ε-viscosity sub(super-)solutions in
the Heisenberg group. The proof trivially extends to Carnot groups. In addition,
we have the following lemma which was proven for the Heisenberg group in [4], as
Lemma 3.5. The proof is similar and omitted.

Lemma 5.5. A p-sub(super-)harmonic function is a viscosity sub(super-)solution.
Hence, a p-harmonic function is a viscosity solution.

We now have existence of all three notions of solutions, but a comparison principle
only for the first two. We will now establish a comparison principle for viscosity
solutions.

We begin with a technical lemma whose Euclidean version is Lemma 3.2 in [13]
and Heisenberg version is Lemma 4.1 in [4]. The proof is similar, needing only to use
the smooth gauge N (p), and is therefore omitted.

Lemma 5.6. Let v ∈ W 1,p
loc be a continuous ε-weak solution. Let p0 ∈ Ω and let

φ ∈ C2
sub(Ω) be a function such that v − φ has a strict local minimum at p0. Then

lim sup
p→p0
p 6=p0

(−∆pφ(p)) ≥ ε

provided that ∇0φ(p0) 6= 0 or p0 is an isolated critical point.

Note that in the case when p ≥ 2, by continuity we have −∆pφ(p0) ≥ ε and so
∇0φ(p) 6= 0 near p0.

We next consider the function ϕ : G×G → R given by

ϕ(p · q−1) =
1

m

N∑
i=1

∣∣(p · q−1)i

∣∣m

for some large positive integer m > 4. We note that 4 is chosen so that ϕ is C2
sub.

Here, as before, (p · q−1)i is the i-th component of p · q−1.
We now prove a preliminary comparison principle.

Lemma 5.7. Fix ε > 0 and 1 < p < ∞. Let v be a continuous ε-weak solution
and let u be a 0-viscosity subsolution so that u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. Suppose that sup(u − v) > 0 occurs at the interior point p0. For each
positive integer j, we consider the function ψj : G×G → R defined by

ψj(p, q) = u(p)− v(q)− jϕ(p, q)

with m chosen so that m > max{4, p
p−1

, p + 2}. Following the scheme of [3] and [8],
we let the maximum of ψj occur at (pj, qj) and observe for large j, these are interior
points. By Lemma 3.6, these points tend to p0 as j →∞ and

(jηj,Xj) ∈ J
2,+

u(pj) and (jηj,Yj) ∈ J
2,−

v(qj)
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where ηj,X , and Y are as in Lemma 3.6.

Claim 5.8. By passing to a subsequence if needed, we may assume pj 6= qj.

Proof. Fix j > 0. By definition, we have for any p and q,

u(p)− v(q)− jϕ(p, q) ≤ u(pj)− v(qj)− jϕ(pj, qj)

and so when p = pj, we have

v(q) ≥ v(qj) + jϕ(pj, qj)− jϕ(pj, q).

Defining the function β(q) by

β(q) = v(qj) + jϕ(pj, qj)− jϕ(pj, q)− ϕ(qj, q)

we see that v−β has a strict local minimum at qj and qj is an isolated critical point.
Applying Lemma 5.6, we have

(5.4) lim sup
q→qj

(−∆pβ(q)) ≥ ε.

Suppose now that pj = qj. Then β(q) = v(qj) − (j + 1)ϕ(qj, q). We then need to
estimate ∆pβ(q). Using the non-divergence form of the p-Laplacian (equation (5.3))
and the definition of β(q), we have

|∆pβ(q)| . ‖∇0ϕ(qj, q)‖p−2

∣∣∣∣ tr(D2ϕ)?(qj, q) + ‖(D2ϕ)?(qj, q)‖
∣∣∣∣
.

Using Lemma 3.6, we have

‖∇0ϕ(qj, q)‖ ∼ ‖ηj‖ ∼ ϕ(qj, q)
m−1

m .

We note that given the standard vectors ek with every entry 0 except for the k-th
entry which is equal to 1, we see that for any matrix A,

tr(A) =
∑

〈Aek, ek〉
and so

| tr(D2ϕ)?(qj, q)| . ‖(D2ϕ)?(qj, q)‖.
We then conclude∣∣∣∣ tr(D2ϕ)?(qj, q) + ‖(D2ϕ)?(qj, q)‖

∣∣∣∣ . ϕ(qj, q)
m−2

m

so that
|∆pβ(q)| . (ϕ(qj, q)

1
m )(m−1)(p−2)+(m−2).

Since m > p
p−1

, we would have

lim
q→qj

q 6=qj

(−∆pβ(q)) = 0.

This contradicts equation (5.4). ¤
Now, u is a viscosity subsolution to equation (5.3) with ε = 0. That is,

0 ≥ −
(
‖jηj(pj, qj)‖p−2 tr(Xj)

? + (p− 2)‖jηj(pj, qj)‖p−4〈Xj jηj(pj, qj), jηj(pj, qj)〉
)

.
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Using Lemmas 5.5 and 5.6 along with the definition of J
2,−, we have

ε ≤ −
(
‖jηj(pj, qj)‖p−2 tr(Yj)

? + (p− 2)‖jηj(pj, qj)‖p−4〈Yj jηj(pj, qj), jηj(pj, qj)〉
)

.

Subtracting these two inequalities, we have

0 < ε < jp−2‖ηj(pj, qj)‖p−2(tr(Xj)− tr(Yj))

+ (p− 2)jp−2‖ηj(pj, qj)‖p−4(〈Xjηj(pj, qj), ηj(pj, qj)〉
− 〈Yjηj(pj, qj), ηj(pj, qj)〉).

(5.5)

As in the proof of the above claim, we have

‖ηj(pj, qj)‖ ∼ ϕ(pj, qj)
m−1

m

and we can write the trace difference as

tr(Xj)− tr(Yj) =
2n∑

k=1

〈Xjek, ek〉 − 〈Yjek, ek〉.

Using Lemma 3.6, we obtain

tr(Xj)− tr(Yj) . j(ϕ(pj, qj)
2m−4

m )

and

〈Xjηj(pj, qj), ηj(pj, qj)〉 − 〈Yjηj(pj, qj), ηj(pj, qj)〉 . j(ϕ(pj, qj)
2m−4

m )(ϕ(pj, qj)
2m−2

m ).

Equation (5.5) then leads to

0 < ε . jp−1(ϕ(pj, qj)
m−1

m )p−2ϕ(pj, qj)
2m−4

m

+ jp−1(ϕ(pj, qj)
m−1

m )p−4(ϕ(pj, qj)
4m−6

m )

∼ jp−1(ϕ(pj, qj)
1
m )p(m−1)−2.

Since m > p + 2, we have (p(m − 1) − 2)( 1
m

) > p − 1. We arrive at a contradiction
as j →∞. ¤

The next lemma is proved in the Heisenberg group as Lemma 4.6 of [4]. The
proof in Carnot groups is identical and omitted.

Lemma 5.9. Let v be a p-harmonic function in Ω. For each ε ≥ 0, let vε be the
continuous ε-weak solution equal to v on the boundary. Then vε → v pointwise as
ε → 0.

Combining the previous lemmas, we obtain the following consequence.

Lemma 5.10. Let 1 < p < ∞. 0-viscosity subsolutions are p-subharmonic. 0-
viscosity supersolutions are p-superharmonic and 0-viscosity solutions are p-harmonic.

Proof. The last statement follows from the first two and the second follows from
the first by replacing u with −u. We let u be a 0-viscosity subsolution that is not
p-subharmonic. Then there is a p-harmonic function v so that u ≤ v on ∂Ω but for
some p ∈ Ω, we have u(p) > v(p). For ε ≤ 1, we let vε be ε-weak solutions equal
to v on ∂Ω so that u ≤ vε on ∂Ω. By Lemma 5.9 we conclude for some ε near 0,
u(p) > vε(p), contrary to Theorem 5.7. ¤

Combining Lemma 5.5 and 5.10, we have the following corollary.
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Corollary 5.11. Let 1 < p < ∞. Then 0-viscosity sub(super-)solutions to
equation (5.3) and p-sub(super-)harmonic functions coincide. In particular, for 1 <
p < ∞, a function is p-harmonic if and only if it is a 0-viscosity solution to equation
(5.3).

We are then able to conclude the following comparison principle.

Theorem 5.12. Let ε = 0. Let v be a viscosity supersolution to equation (5.3)
and let u be a viscosity subsolution of equation (5.3) so that u ≤ v on ∂Ω. Then
u ≤ v in Ω.
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