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Abstract. We investigate various boundary behavior properties of harmonic mappings of the
unit disk D with emphasis on univalent harmonic mappings “onto” D in the sense of Hengartner
and Schober [10]. This study continues the earlier work of the authors [4] on a problem that was
raised by Laugesen [12].

1. Introduction

A harmonic mapping f of a complex region G is a complex-valued function that
satisfies Laplace’s equation

∆f ≡ fxx + fyy = 0.

This function can be written as

f(z) = u(x, y) + iv(x, y), z = x + iy,

where u and v are real-valued harmonic functions, and

(1) f(z) = h(z) + g(z),

where h and g are analytic functions which are single-valued if G is simply-connected
and possibly multiple-valued if G is otherwise. In the former case, the function h
will be called the analytic factor, and g the coanalytic factor of f , and the function
a = g′/h′ the second complex dilatation. Then |a| < 1 in G if and only if f is open
and sense-preserving, and |a| > 1 in G if and only if f is open and sense-reversing.

Throughout this article, we denote by C, D, and T the complex plane, the open
unit disc, and the unit circle, respectively.

A way to construct harmonic mappings of D is as follows. Let f ∗(eiθ) be a
Lebesgue integrable function on T. Then

(2) f(z) = P [f ∗] =
1

2π

ˆ 2π

0

P (r, ϕ− θ)f ∗(eiϕ) dϕ, z = reiθ ∈ D,

where P (r, t) is the Poisson kernel of D, is a harmonic mapping of D whose unre-
stricted limit at every continuity point eiθ0 of f ∗ is f ∗(eiθ0). Set f ∗(eiθ) ≡ Φ(θ); these
representations will be used interchangeably wherever it is appropriate.
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The Rado–Kneser–Choquet theorem [8, pp. 29–30] asserts that if |f ∗| = 1 and
arg f ∗(eiθ) is nondecreasing in θ ∈ [0, 2π) with ∆∂D arg f ∗(eiθ) ≤ 2π on T, and
f ∗ takes at least three distinct values on T, then f is a univalent sense-preserving
harmonic mapping of D onto a convex region whose “vertices” lie on T.

Open sense-preserving harmonic mappings of D also arise as solutions of linear
elliptic partial differential equations of the form

(3) fz(z) = a(z)fz(z), z ∈ D,

where a is an analytic function from D into itself. Thus with the representation (1),

(4) |g′| < |h′|, z ∈ D.

For the special case where |a| < k < 1 in D, it is classical that the existence part
of the Riemann Mapping Theorem (RMT) of equation (3) holds; namely, for a given
bounded simply connected domain Ω and a fixed w0 ∈ Ω, there is a univalent solution
f of (3) that satisfies f(0) = w0 and fz(0) > 0 and maps D onto Ω. In addition, if Ω
is a Jordan domain, then f extends to a homeomorphism from D onto Ω. However,
in the case where ‖a(z)‖∞ = 1 the following theorem holds [10, Theorem 4.2 and
Theorem 4.3].

Theorem A. (Hengartner and Schober [10]) Let Ω be a bounded simply con-
nected domain whose boundary ∂Ω is locally connected. Suppose that a(D) ⊂ D
and w0 is a fixed point of Ω. Then there exists a univalent solution f of (3) having
the following properties:

(a) f(0) = w0, fz(0) > 0, and f(U) ⊂ Ω.
(b) There is a countable set E ⊂ ∂U such that the unrestricted limits f ∗(eit) =

limz→eit f(z) exist on ∂U \ E and they are on ∂Ω.
(c) The functions

f ∗(eit−) = ess lim
s↑t

f ∗(eis) and f ∗(eit+) = ess lim
s↓t

f ∗(eis)

exist on ∂U, belong to ∂Ω and are equal on ∂U \ E.
(d) The cluster set of f at eit ∈ E is the straight line segment joining f ∗(eit−) to

f ∗(eit+).

The mapping f is termed a Generalized Riemann Mapping (GRM) from D onto
Ω. It is immediate that the boundary function f ∗ is continuous at every point in
∂U \E and has a jump discontinuity at every point in E. We will use the term jump
to describe the behavior of f ∗ at every point of E. Note that the cluster set of f
on an arc J ⊂ ∂U induces a boundary positively directed arc in ∂f(U); this arc is
denoted, with abuse of notation, by f ∗(J).

The uniqueness of GRMs has been established recently for strictly starlike do-
mains Ω with respect to some interior point [3]; that is, every ray through the point
meets ∂Ω in one point only. Obviously, every convex domain is strictly starlike
relative to any interior point.

2. Main results

The two approaches described above, the Poisson formula (2) on one hand and
Theorem A on the other, call for a study of the interplay between the behavior of
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the boundary function f ∗ of a harmonic mapping f of form (1) on one hand and the
dilatation function a(z) on the other; globally, locally, and pointwise.

One immediately observes that for an arc J ∈ ∂Ω that is concave with respect
to the interior of Ω, for any admissible dilatation a(z), the boundary function f ∗

is continuous if merely because a jump would imply that the image domain of the
corresponding GRM near J will step outside Ω which is not possible. Hence a jump
should be sought on a convex part of the boundary, if any. On the other hand, in
Laugesen’s proof of Theorem 5 [12, p. 47], if a jump occurs at a point eiθ0 ∈ T, then
it is noted that the angular limit of the dilatation a(z) at eiθ0 satisfies

(5) lim
z∠eiθ0

a(z) =
df ∗(eiθ0)

df ∗(eiθ0)
.

In particular this limit is of magnitude one. Analytic functions in the unit disk,
bounded by one and having radial limits of magnitude one a.e. on T are inner func-
tions. We focus attention primarily on inner function dilatations. A basic global
result is

Theorem B. (Corollary 2, [12]) Let Φ(θ) be the boundary function of a GRM
that maps D onto a bounded convex set, and whose dilatation is a(z). Then Φ′(θ) = 0
a.e. on ∂D if, and only if, a(z)is an inner function.

In [4] it is observed that certain Möbius transformations on an inner dilatation
transform it into a Blaschke product, which results in another GRM of D onto a
convex domain Ω with a Blaschke dilatation.

We shall examine the effect of the local property Φ′(θ0) for some θ0 ∈ ∂D on
Blaschke dilatations. In Theorem 1 and Theorem 2 we show that if |Φ′(θ0)| is small
enough, then the number of zeros of the complex dilatation a(z) in any Stolz angle
at θ0 is finite. Corollary 3 gives the effect of the above property on the boundary
behavior of the analytic factor h′ of f .

As to the pointwise behavior of the dilatation, let B(z) be a (infinite) Blaschke
product of the form (8). In such a case B is uniquely determined by its zeros and
a rotation. We shall examine the relationship of the zeros of B and the jumps and
continuity of f ∗.

The immediate question which arises is this: To what extent one can force a
jump of f ∗ at a specific interval or a specific point?

In the special case where B ≡ A is a finite Blaschke product, the corresponding
GRM maps the disk onto a polygon and f ∗ is a piecewise constant function with
n + 2 jumps. A mere rotation eiαA of A is enough to change a jump to continuity at
a boundary point. If it is at all possible to specify the points on T where jumps occur
in terms of A, this would be of interest. It turns out that a complete characterization
of jumps is related to the analytic or co-analytic factors of the harmonic mapping
f(z) (Theorem 3).

We then assume that B is an infinite Blaschke product. Given an interval J ⊂ T,
if the boundary function f ∗ of the GRM f associated with B is constant on J, then
for B1, a Blaschke product with only one specific extra linear factor added to B,
the boundary function f ∗1 of the associated GRM, can be made to have a jump in J
(Corollary 4 in [4]).

The pointwise behavior, however, is far more interesting. The answer has to do
with the Frostman sum in the left hand side of (9). If the Frostman sum of B is finite,
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one can generate a subproduct B1 of B such that the corresponding f ∗1 is continuous
at eiθ0 and by a mere rotation of B1, B2 = eiαB1, the corresponding boundary
function f ∗2 of the GRM f2 associated with B2, admits a jump at eiθ0 (Theorem 5).
However, if the Frostman sum of B at eiθ0 is infinite, it was shown (Corollary 1 in
[4]) that if the zeros of the Blaschke product are in one side of the radius to eiθ then
f ∗ is continuous at eiθ0 . This result is extended to show that the same holds without
restrictions on the placement of the zeros of the Blaschke product (Theorem 6). Note
that this result refers to any GRM whose dilatation is a Blaschke product or any of
its rotations. Theorem 4 gives another result ensuring the continuity of a GRM at a
specific point.

3. Differentiability at a boundary point

A requisite for our results in this section is the following result due to Fatou [15,
pp. 132–135].

Theorem C. (Fatou [15]) Let u∗ be an integrable real-valued function of T and
let u = P [u∗]. Then:

(i) If (du∗/dθ)(eiθ0) exists and is finite, then the angular limit

lim
z∠eiθ0

∂u

∂θ
(z) =

du∗

dθ
(eiθ0)

is uniform in any Stolz angle with vertex at eiθ0 .
(ii) If (du∗/dθ)(eiθ0) = +∞, then

lim
r→1−

∂u

∂θ
(reiθ) = +∞.

If, in addition, u∗ is monotone increasing in a neighborhood of θ0, then the
angular limit

lim
z∠eiθ0

∂u

∂θ
(z) = +∞

is uniform in any Stolz angle with vertex at eiθ0 .
(iii) If (du∗/dθ)(eiθ0) is continuous on an interval [α, β] and α < α1 < β1 < β,

then ∂u/∂θ → du∗/dθ uniformly on [α1, β1] as z → eiθ from D.

Evidently, in (ii) −∞ may replace +∞, and (i) and (iii) hold true for integrable
complex-valued functions f ∗ of T.

The first result in this section is the following.

Lemma 1. Let f ∗ be an integrable complex-valued function of T and let f
be the function defined by (2). Then f is a harmonic mapping of D of the form
f = h+ g, where h and g are analytic functions of D, whose dilatation is denoted by
a. If (df∗/dθ)(eiθ0) = 0 for some θ0 and the cluster set of h′ at eiθ0 does not contain
zero, then the angular limit of |a| at eiθ0 is 1 and a can have only a finite number of
zeros in any Stolz angle with vertex eiθ0 .

Proof. Let f be as in (2) and have dilatation a(z). Then

(6)
∂f

∂θ
(z) = i

(
zh′(z)− zg′(z)

)
.
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By invoking Theorem C at θ0 provided that the cluster set of h′ at eiθ0 does not
contain zero, we conclude that

0 = −i lim
z∠eiθ0

∂f

∂θ
(z) = lim

z∠eiθ0

zh′(z)

(
1− zh′(z)

zh′(z)
a(z)

)
= lim

z∠eiθ0

(
1− zh′(z)

zh′(z)
a(z)

)
,

where the limits involved are angular limits. This implies at once that the angular
limit of |a| at eiθ0 is 1.

The assumption that the cluster set of h′ at eiθ0 does not contain zero yields at
once that h′ has only a finite number of zeros in any Stolz angle Sθ0 at eiθ0 . Suppose
that g′ has infinitely many zeros in Sθ0 . Then infinitely many of these zeros are not
zeros for h′; hence are zeros of a which contradicts the conclusion of the previous
paragraph. Thus g′, like h′, has a finite number of zeros in Sθ0 . But every zero of a
is a zero of g′. Therefore a has only a finite number of zeros in Sθ0 and the proof is
complete. ¤

We shall combine Lemma 1 with an extension of a theorem of Heinz [9] due to
Kalaj [11, Theorem 2.5].

Theorem D. Let f be a univalent harmonic mapping of D onto a bounded
convex domain Ω containing the origin and let f(0) = 0. Then

|fz|2 + |fz|2 ≥ dist(0, ∂Ω)2

16
.

By combining Theorem D with Lemma 1 we obtain the following interesting
consequence.

Theorem 1. Let f be the GRM from the unit disc D onto a bounded convex set
with boundary function f ∗ and dilatation a. If (df ∗/dθ)(eiθ0) = 0 for some θ0 ∈ R,
then the angular limit of |a| at eiθ0 is 1; in particular, a has at most a finite number
of zeros in any Stolz angle with vertex eiθ0 .

Proof. By Theorem D it follows that h′ is bounded away from 0, so by Lemma 1
the result follows. ¤

As a special case of Theorem 1 we have

Corollary 1. Let f of form (1) be the GRM from the unit disc D onto a bounded
convex set with boundary function f ∗ and dilatation a. If (df∗/dθ)(eiθ0) = 0 for some
θ0 ∈ R and the angular limit limz∠eiθ0 arg a(z) = α, then the angular limits

lim
z∠eiθ0

arg h′(z) = −θ0 − 1

2
α (mod π)

and

lim
z∠eiθ0

arg g′(z) = −θ0 +
1

2
α (mod π)

hold.

Proof. As in the proof of Lemma 1, the angular limit

lim
z∠eiθ0

(
1− zh′(z)

zh′(z)
a(z)

)
= 0
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holds. Consequently, the angular limit

lim
z∠eiθ0

arg

{
zh′(z)

zh′(z)
a(z)

}
= 0

holds. This gives the desired limits. ¤
The next result reveals some properties in the case where (df∗/dθ)(eiθ0) is nonzero

and finite.

Corollary 2. Let f ∗ be an integrable complex-valued function of T and let f of
form (1) be the harmonic mapping of D defined by (2) and have dilatation a. Suppose
that (df ∗/dθ)(eiθ0) = α 6= 0,∞ for some θ0 and the angular limit limz∠eiθ0 h′(z) = β
exists. Then β 6= 0 and the angular limit limz∠eiθ0 a(z) exists.

Proof. By Theorem C, the angular limit

lim
z∠eiθ0

∂f

∂θ
(z) =

df∗

dθ
(eiθ0) = α.

But

(7) −i
∂f

∂θ
(z) = zh′(z)− zg′(z) = zh′(z)q(z),

where

q(z) =

[
1− zh′(z)

zh′(z)
a(z)

]
.

Since q is bounded in D, by taking the angular limits of both sides of (4) at eiθ0

we obtain β 6= 0. Moreover, we infer that the angular limit of q at eiθ0 exists; and
consequently that of a. ¤

In the special case of GRM’s onto convex domains we have the following result:

Theorem 2. Let f be the GRM from the unit disc D onto a bounded convex
set with boundary function f ∗ and dilatation a. If (df ∗/dθ)(eiθ0) = α 6= 0 for some
θ0 ∈ R, and sufficiently small constant |α|, then the a has at most a finite number
of zeros in any Stolz angle with vertex eiθ0 .

Proof. From (7) and Theorem C we conclude that

lim
z∠eiθ0

|h′(z)− g′(z)| = |α|,

and in particular
limz∠eiθ0

(|h′(z)| − |g′(z)|)| ≤ |α|,
so that

limz∠eiθ0 |g′(z)|| ≥ limz∠eiθ0 |h′(z)| − |α|.
As in the proof of Theorem 1, by Theorem D there exists a positive constant c such
that |h′(z)| ≥ c . Thus, for any α with |α| < c, we must have limz∠eiθ0 |g′(z)| > 0 so
that a has finitely many zeros in any Stolz angle at eiθ0 . ¤

It would be interesting to know whether for other values of df∗/dθ the dilatation
function has finitely many zeros in Stolz angles.
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4. Continuity at a boundary point

We start with a characterization of the continuity and the jump of a GRM at a
boundary point. We have the following result:

Lemma 2. Let f ∗ be a complex-valued function of bounded variation on T and
let f of form (1) be the harmonic mapping of D defined by (2) and have dilatation
a. Then limr→1−(1 − r)h′(reiθ0) = c exists if and only if limr→1−(1 − r)g′(reiθ0) = d

exists; in this case c and d are finite and ceiθ0 = deiθ0 . In particular, either limit is
zero if and only if f ∗ is continuous at eiθ0 .

Remark 1. Note that this result asserts the equivalence of the continuity of f ∗

and the radial growth of h′, or equivalently g′, and not the dilatation a, at a boundary
point. A jump of size b > 0 occurs at eiθ0 , if and only if

lim
r→1−

(1− r)|h′(reiθ0)| = lim
r→1−

(1− r)|g′(reiθ0)| = b.

Proof. Differentiating (2) with respect to z and z and using integration by parts
we obtain

h′(z) =
1

2π

ˆ 2π

0

df ∗

eiφ − z
and g′(z) =

1

2π

ˆ 2π

0

df ∗

eiφ − z
.

Suppose that limr→1−(1 − r)h′(reiθ0) = c exists, then, by the bounded convergence
theorem,

eiθ0c = eiθ0 lim
r→1−

(1− r)h′(reiθ0) = lim
r→1−

1

2π

ˆ 2π

0

1− r

ei(φ−θ0) − r
df∗ = df ∗(eiθ0).

But f ∗ is a function of bounded variation over [0, 2π]; hence df ∗(eiθ0) is finite; so
likewise is c. In view of this, and using essentially the same argument, we conclude
that

eiθ0d = eiθ0 lim
r→1−

(1− r)g′(reiθ0) = df ∗(eiθ0).

Suppose now that limr→1−(1 − r)g′(reiθ0) = d exists, then a similar argument
as above yields that limr→1−(1 − r)h′(reiθ0) = c exists and that ceiθ0 = deiθ0 . This
concludes the first claim of the theorem. The second claim then follows at once and
the proof is complete. ¤

An immediate consequence of this theorem is the following interesting result:

Theorem 3. Let f of form (1) be a GRM from D onto a bounded Jordan domain
with a rectifiable boundary, and let a and f ∗ be the dilatation and boundary function
of f respectively. Then limr→1−(1 − r)h′(reiθ0) = c and limr→1−(1 − r)g′(reiθ0) = d

exist, are finite, and satisfy ceiθ0 = deiθ0 ; moreover, either limit is zero if and only if
f ∗ is continuous at eiθ0 .

Proof. In the characterization of f ∗ given in Theorem A, the set E of jumps must
be empty and thus f ∗ is continuous on T. ¤

We conclude at once that a GRM f ∗ is continuous at eiθ0 if f satisfies the addi-
tional condition that either one of the cluster sets of h′, or g′, at eiθ0 is away from
infinity. Another consequence of Lemma 2 is the following result:

Corollary 3. Under the assumptions of Lemma 2, suppose that there exists a
sequence {zn} of complex numbers in D that satisfies the following properties:
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(a) limn→∞ zn = eiθ0 for some θ0 ∈ R;
(b) limn→∞ |zn − zn−1|/(1− |zn|) = 0;
(c) limn→∞ g′(zn) = α exists and is finite.

Then f ∗ is continuous at eiθ0 .

Proof. Conditions (a) and (b) imply that limn→∞ ρ(zn, zn−1) = 0, where ρ(zn,
zn−1) denotes the hyperbolic distance between zn and zn−1. Now, g′(z) is a normal
function since

(1− |z|)|g′(z)| ≤ 1

2π

ˆ 2π

0

1− |z|
|eiφ − z| |df

∗(eiφ)| ≤ 1

2π

ˆ 2π

0

|df ∗(eiφ)| ≤ L < ∞.

where L is the length of ∂f(D). By a result of Bagemihl–Seidel [1], limr→1− g′(reiθ0) =
α; hence limr→1−(1−r)g′(reiθ0) = 0. Therefore, f ∗ is continuous at eiθ0 by Theorem 3
and the proof is complete. ¤

A special case of the above corollary is when the values zn are zeros of g′ which
are the same as the zeros of a.

Theorem 4. Let f of form (1) be a GRM from D onto a Jordan domain having
a rectifiable boundary, and let a and f ∗ are the dilatation and boundary values of f
respectively. If {zn} is a sequence satisfying (a) and (b) of Corollary 3, and a(zn) = 0,
n = 1, 2, 3, · · · , then f ∗ is continuous at eiθ

0 .

In the next result, we illustrate the significance of Theorem 3 by showing the
surprising fact that the set of zeros of the dilatation of the GRM f from D onto D
need not determine the behavior of the boundary function f ∗. We shall take B(z) to
be a Blaschke product

(8) B(z) = eiαzm

∞∏
n=m+1

|ζn|
ζn

ζn − z

1− ζnz
,

where m is a nonnegative integer and {ζn} is an infinite sequence of nonzero complex
numbers satisfying

∑
(1− |ζn|) < ∞.

Theorem 5. Suppose the following:
(a) The numbers ζn ∈ D, n = 1, 2, · · · , are such that <(e−iθ0ζn) > 0 for some

θ0 ∈ R, and

(9)
∞∑

n=1

1− |ζn|
|eiθ0 − ζn| < ∞.

(b) The Blaschke subproducts BN
j (z) are defined by

BN
j (z) = eiαj

∞∏
n=N

|ζn|
ζn

ζn − z

1− ζnz
, j = 1, 2.

(c) The fj are GRMs from D onto D, with fj(0) = 0, and whose dilatation is
some BN

j for some chosen N.
Then for sufficiently large N, there exist values αj such that the boundary function
f ∗j of fj has a jump discontinuity at eiθ0 for some value of αj and is continuous at
eiθ0 for another.
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The condition <(e−iθ0ζn) > 0 may be replaced by the condition <(e−iθ0ζn) < 0; in
this case the desired GRM has form f(z), where f is the desired GRM whose Blaschke
product is B(z), with zeros ζn satisfying <(eiθ0ζn) > 0 and ζn → e−iθ0 . In view of
this, either condition becomes unnecessary for the validity of Theorem 5 provided
that the Blaschke products BN

j are chosen as subproducts of B with a common set
of zeros, say {ζnk

}; namely a set that satisfies for all k either <(e−iθ0ζnk
) > 0 or

<(e−iθ0ζnk
) < 0.

We shall use the notation arg
√

a(z) and ∆J arg
√

a(z) to denote a single-valued
branch of arg

√
a and its net variation on a subarc J of the unit circle.

The proof of Theorem 5 requires some known results.

Lemma 3. (Bshouty, Lyzzaik, Weitsman [4]) Let a(z) be a Blaschke product
whose zeros {ζn} accumulate at 1, and let J = {eit : − γ < t < 0}, where 0 < γ < π.

(a) If =ζn > 0 for all n, then

∆J arg
√

a(z) =
1

2

∞∑
n=1

∆J arg

{
z − ζn

1− ζnz

}
∼

∞∑
n=1

1− |ζn|
|1− ζn| ;

this means that the expressions on both of sides of ∼ converge or diverge
simultaneously.

(b) If infinitely many ζn satisfy =ζn ≤ 0, then ∆J arg
√

a(z) = ∞.

Under the assumptions of Lemma 3 the Blaschke product a extends analytically
across ∂D \ {1}, with |a| = 1 there, but not across 1.

Lemma 4. Let f be a GRM from D onto a bounded convex domain Ω whose
dilatation a admits an analytic extension across an open interval J = {eit : γ < t <
δ}, γ < δ < γ + 2π, such that |a| ≡ 1 on J. Then the following hold:

(a) f ∗ has a jump at eiθ ∈ J if and only if arg{
√

a(eiθ) df ∗(eiθ)} = 0 mod π.

(b) ∆J arg
√

a(z) = ∞ if and only if f ∗ has infinitely many jumps in J.
(c) If f ∗ has no jumps in J, then f ∗ is identically constant on J.

Note that Lemma 4 (a) and (c) follow from Theorem 2.2 and Corollary 2.8 re-
spectively of [2], and Lemma 4 (b) is itself Corollary 2(i) of [4].

Proof of Theorem 5. First, we assert that the theorem can be reduced to the
case where θ0 = 0 and each f ∗j (ei0+) = 1; note that |f ∗j (eiθ+)| = |f ∗j (eiθ−)| = 1 for
every θ ∈ R by Theorem 1. For if fj(z) is the GRM from D onto D with fj(0) = 0,
f ∗j (ei0+) = 1, and dilatation BN

j (e2iθ0z), then it can be easily verified that every
gj(z) = eiγfj(e

iθ0z) is the GRM from D onto D with gj(0) = 0, g∗j (e
iθ0+) = eiγ , and

dilatation BN
j (z).

Thus we assume henceforth that θ0 = 0 and each fj(e
i0+) = 1. Let ∂D− =

∂D ∩ {z : =z < 0}.
We divide the proof into two parts:
A. Here we find the value α1 such that for sufficiently large N the boundary

function f ∗1 of the GRM f1 has a jump at 1.
Since each =ζn > 0, Lemma 3(a) and (9) yield

∆∂D− arg
√

BN
1 (z) =

1

2

∞∑
n=N

∆∂D− arg

{
z − ζn

1− ζnz

}
∼

∞∑
n=N

1− |ζn|
|1− ζn| < ∞.
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Hence, for a fixed sufficiently large N we have

∆∂D− arg
√

BN
1 (z) <

π

2
.

Now we drop reference to N and choose α1 so that 0 < arg
√

B1(z) < π/2 for all
z ∈ ∂D−. Define f1 as stated in the theorem. By virtue of Lemma 3 (b) and Lemma 4
(b), we conclude that f ∗1 attains countably many jumps at points eiθn , n = 1, 2, · · · ,
satisfying

(10) 2π > θ1 > · · · > θn > · · · and lim
n→∞

θn = 0.

It is immediate from Lemma 4 (c) that f ∗1 is identically a unimodular constant ω for
all eiθ, θ1 < θ < 2π.

To show that f ∗1 has a jump discontinuity at 1, it is enough to establish that
ω 6= 1. Suppose to the contrary that ω = 1. Then π < θ1 < 2π since, by the
mean-value property applied to <f1, we have

0 = 2πf1(0) = 2π<f1(0) =

ˆ θ1

0

<f ∗1 (eiθ) dθ +

ˆ 2π

θ1

<f ∗1 (eiθ) dθ

>

ˆ θ1

0

−dθ +

ˆ 2π

θ1

dθ = 2(π − θ1).

Thus arg
√

BN
1 (eiθ1) < π/2. Moreover, since the origin belongs to f1(D), f ∗1 (eiθ1−) ∈

∂D−; hence 0 < arg df∗1 (eiθ1) < π/2. It follows that

0 < arg{
√

BN
1 (eiθ1)df∗1 (eiθ1)} < π/2 + π/2 = π,

which, by Lemma 4 (a), contradicts the assumption that eiθ1 is a discontinuity point
for f ∗1 . Therefore, ω 6= 1 and f ∗1 is discontinuous at 1 as desired.

B. Here we find the value α2 such that for sufficiently large N the boundary
function f ∗2 of the GRM f2 is continuous at 1.

Let BN
1 be as found in part A; so 0 < arg

√
BN

1 (z) < π/2 for all z ∈ ∂D−. By
invoking (9), we infer that BN∗

1 (1) = limr→1− BN
1 (r) exists and |BN∗(1)| = 1; see [4,

Theorem D]. Let α2 = − arg BN∗
1 (1) and let BN

2 (z) = eiα2BN
1 (z); hence BN∗

2 (1) = 1
and

∆∂D− arg
√

BN
2 (z) < π/2.

Define f2 as stated in the theorem. Then we conclude, as above in part A, that f ∗2
attains countably many jumps at points eiθn , n = 1, 2, · · · , satisfying (10) such that
f ∗2 is identically a unimodular constant ω for all eiθ, θ1 < θ < 2π.

To show that f ∗2 is continuous at 1, it is enough to establish that ω = 1. Suppose
that =ω > 0; then f ∗2 (ei0−) = ω. But f ∗2 (ei0+) = 1. Hence, the directed straight line
segment [ω, 1] is a boundary arc of f(D) that has the origin on its right-hand side.
But the origin lies in f(D) and f2 is sense-preserving in D; hence the origin lies on
the left-hand side of [ω, 1] and we have a contradiction.

It follows that =ω ≤ 0. Suppose now that =ω < 0. Since f ∗2 (ei0−) = ω 6= 1 =
f ∗2 (ei0+), f ∗2 admits a jump at 1 with the cluster set of f2 at 1 is the straight line
segment [ω, 1]. Thus, 0 < arg df ∗2 (1) < π/2. Assuming that f ∗2 (eit), 0 ≤ t ≤ 2π, is
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right-continuous on [0, 2π] and that f2 = h2 + g2, then, by [12, p. 47], we have

BN
2 (r) =

(1− r)g′2(r)
(1− r)h′2(r)

=

ˆ π

−π

(1− r)df ∗2 (eit)

eit − r

/ˆ π

−π

(1− r)df∗2 (eit)

eit − r
.

But
´ π

−π
|df ∗2 (eit)| < 2π. Hence, by the Lebesgue dominated convergence theorem,

1 = BN∗
2 (1) = lim

r→1
BN∗

2 (r) =
df ∗2 (1)

df ∗2 (1)
,

which yields arg df ∗2 (1) = 0 and we have a contradiction. Therefore, f ∗2 (ei0−) = ω =
1 = f ∗2 (ei0+) and f ∗2 is continuous at 1. This completes the proof of Theorem 5. ¤

Finally, we have the following theorem that completes our results Theorem 1 (b)
and Corollary 1 in [3].

Lemma 5. (Protas [14]) Let B be an infinite Blaschke product with zeros {ζn},
and let ζ ∈ ∂D, γ ≥ 1, and m > 0. Then (9) holds if and only if

ˆ

Γζ,γ,m

1− |B(z)|2
1− |z|2 |dz| < ∞,

where Γζ,γ,m = Γ is the “curve” in D defined by Γ(θ) = (1 −m|θ|γ)eiθ for 0 < |θ| <
min{π,m−1/γ}.

Theorem 6. Let f of form (1) be a GRM from D onto a bounded convex domain
Ω, whose dilatation is a Blaschke product a with zeros ζn, n = 1, 2, · · · , and whose
boundary function is f ∗. If

(11)
∞∑

n=1

1− |ζn|
|eiθ0 − ζn| = ∞,

then f ∗ is continuous at θ0.

Proof. Without loss of generality we shall assume that θ0 = 0. Let us assume to
the contrary that f admits a jump at 1. Then

(12) lim
z∠1

(1− |z|)|h′(z)| = lim
z∠1

(1− |z|)|g′(z)| = c1 > 0,

for some c1. By Lemma 5, (11) is equivalent to

(13) ∞ =

ˆ

Γm

1− |a(z)|2
1− |z|2 |dz|,

where Γm(θ) = (1−m|θ|)eiθ, 0 < |θ| ≤ min{π, 1/m}, for every m > 0. Let

Γ+
m(θ) = (1−mθ)eiθ, 0 < θ ≤ min{π, 1/m}

and
Γ−m(θ) = (1 + mθ)eiθ, −min{π, 1/m} ≤ θ < 0.

We may observe the following properties of the “curves” Γm:
(a) Each Γ+

m is a closed-open Jordan arc that starts from the origin if m ≥ 1/π
and from a point in (−1, 0) if 0 < m < 1/π, terminates at 1, and lies otherwise
in the upper-half unit disc.

(b) Γ+
m and Γ−m are symmetric about the real axis for every m.

(c) The arcs Γ+
m (Γ−m) are mutually disjoint except when m ≥ 1/π in which case

they share the origin as an initial point.
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(d) If Rm is the Jordan region bounded by Γm, then Rm properly contains Rm′

whenever m′ > m and
⋂

m Rm is the open unit interval.
In view of Theorem D, h′(z) is bounded away from zero in D. This with (12),

yields that |h′(z)|(1 − |z|) is bounded away from zero. For the rest of the proof let
m ≤ 1/2π and |θ| ≤ π. We have

|dΓm(θ)| = |m + i(1−m|θ|)| dθ ≤ (m + 1) dθ < 2 dθ, |θ| ≤ π.

Hence, by employing (13), we obtain

∞ =

ˆ

Γm

(|h′(z)|2 − |g′(z)|2)(1− |z|)
|h′(z)|2(1− |z|)2(1 + |z|) |dz| ≤ c2

ˆ

Γm

(|h′(z)|2 − |g′(z)|2)m|θ||dz|

< c2

ˆ π

−π

(|h′(z)|2 − |g′(z)|2)|θ| dθ

for some real constant c2 > 0.
By virtue of the properties (a), · · · , (d) of Γm, we infer that the mapping

Γ(m, θ) : (m, θ) → (r, θ) defined by Γ(m, θ) = Γm(θ) for 0 < |θ| ≤ π is a diffeo-
morphism from the open rectangle R = (−π, π) × (0, 1/2π) minus the line segment
{(m, 0) : 0 < m < 1/2π} onto Q = D \ R1/2π minus the open interval (−1,−1/2).
But the Jacobian of Γ(m, θ) is ∂(r, θ)/∂(m, θ) = |θ| and 1−m|θ| > 1/2 in Q. Hence,
the area A of f(D) satisfies

A =

¨

D

(|h′(z)|2 − |g′(z)|2) r dr dθ >

¨

Q

(|h′(z)|2 − |g′(z)|2) r dr dθ

=

¨

R

(|h′(z)|2 − |g′(z)|2)(1−m|θ|) ∂(r, θ)

∂(m, θ)
dmdθ

>
1

2

ˆ π

−π

ˆ 1/2π

0

(|h′(z)|2 − |g′(z)|2)|θ| dθ dm = ∞.

This yields a contradiction since A is finite because f(D) ⊂ Ω. This completes the
proof. ¤

Remark 2. Let φ = znB(z)s(z) be an inner function where B is a Blaschke
product and s is a singular inner function associated with the measure σ. Using
Theorem 2 of Protas [14] and the preceding proof one can show the following:

Let φ be an inner function and let f be the GRM from D onto a bounded convex
domain associated with φ. If

∞∑
n=1

1− |ζn|
|eiθ0 − ζn| +

ˆ 2π

0

|1− ei(t−θ0)| dσ(t) = ∞,

then the boundary function f ∗ is continuous at eiθ0 .
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