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Abstract. Fix r ∈ (0, 1/3]. We discuss a class of self-similar sets {Kn}n≥1 with complete
overlaps, where Kn = (rKn)∪ (rKn + rn(1− r))∪ (rKn + 1− r). We prove that for any n1, n2 ≥ 1,
Kn1 and Kn2 are Lipschitz equivalent.

1. Introduction

Suppose {hi : Rm → Rm}k
i=1 are contractive similitudes. We say that a compact

set Λ = h1(Λ) ∪ · · · ∪ hk(Λ) is a self-similar set with overlaps, if there are i 6= j such
that hi(Λ) ∩ hj(Λ) 6= ∅.

Self-similar sets with overlaps have very complicated structures. For example,
the open set condition (OSC), which means the overlaps are little, was introduced by
Moran [18] and studied by Hutchinson [10]. Schief [24], Bandt and Graf [1] showed the
relation between the open set condition and the positive Hausdorff measure. Falconer
[6] proved some “generic” results on Hausdorff dimension of self-similar sets without
the assumption about the open set condition. One useful notion “transversality”
to study self-similar sets (or measures) with overlaps can be found e.g. in Keane,
Smorodinsky and Solomyak [11], Pollicott and Simon [19], Simon and Solomyak [25]
and Solomyak [26]. Feng and Lau [9], Lau and Ngai [14] studied the weak separation
condition. Please refer to Bandt and Hung [2], Sumi [27] for some recent work.

For self-similar set Eλ = Eλ/3 ∪ (Eλ/3 + λ/3) ∪ (Eλ/3 + 2/3), a conjecture of
Furstenberg says that dimH Eλ = 1 for any λ irrational. Świa̧tek and Veerman [28]
proved that dimH Eλ > 0.767 for every λ irrational. Kenyon [12], Rao and Wen [23]
obtained that H1(Eλ) > 0 if and only if λ = p/q ∈ Q with p ≡ q 6≡ 0 (mod 3). The
key idea of [23] is “graph-directed struture” introduced by Mauldin and Williams [17].

In particular, Rao and Wen [23] studied the self-similar sets with “complete over-
laps”.
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Definition 1. We say that a self-similar set Λ = h1(Λ)∪· · ·∪hk(Λ) has complete
overlaps, if there are words i1i2 · · · in1 ∈ {1, · · · , k}n1 , j1j2 · · · jn2 ∈ {1, · · · , k}n2 with
i1 6= j1 such that

(1.1) hi1 ◦ hi2 ◦ · · · ◦ hi(n1)
(x) ≡ hj1 ◦ hj2 ◦ · · · ◦ hj(n2)

(x).

Here (1.1) implies hi1 ◦ hi2 ◦ · · · ◦ hi(n1)
(Λ) = hj1 ◦ hj2 ◦ · · · ◦ hj(n2)

(Λ).

Remark 1. The cases according to “complete ovelaps” and “OSC” are quite
different. For example, suppose h1, · · · , hk have the same ratio α. Then (1.1) implies
n1 = n2 = n and dimH Λ ≤ − log(kn−1)

log αn < − log k/ log α. However OSC implies
dimH Λ = − log k/ log α.

Remark 2. It is shown in [23] that for λ ∈ Q, dimH Eλ < 1 if and only if Eλ

has complete overlaps, E2/3n has complete overlaps and dimH E2/3n = log3
3+
√

5
2

for
all n ≥ 1.

The other interesting topic on self-similar sets is their Lipschitz equivalence. Here
two compact subsets X1, X2 of Euclidean spaces are said to be Lipschitz equivalent,
if there is a bijection f : X1 → X2 and a constant C > 0 such that for all x, y ∈ X1,

C−1|x− y| ≤ |f(x)− f(y)| ≤ C|x− y|.
If compact sets X1 and X2 are Lipschitz equivalent, then dimH X1 = dimH X2. How-
ever, it is worth pointing out that Cooper and Pignataro [3], Falconer and Marsh [8],
David and Semmes[4] and Wen and Xi [30] showed that two self-similar sets need not
be Lipschitz equivalent although they have the same Hausdorff dimension.

For self-similar sets without overlaps, Cooper and Pignataro [3], Falconer and
Marsh [8], David and Semmes [4] and Xi [32] posed some algebraic conditions upon
the ratios of similitudes for two given self-similar sets without overlaps to be Lips-
chitz equivalent. The quasi-Lipschitz equivalence, which is weaker than the Lipschitz
equivalence, was studied for self-conformal sets and Ahlfors–David regular sets in Xi
[31] and Wang and Xi [29], respectively. The Lipschitz embedding of fractals can be
found in Llorente and Mattila [15], Mattila and Saaranen [16] and Deng and Wen et
al. [5]. Please also refer to Rao, Ruan and Yang [21] and Rao, Ruan and Wang [22].

For self-similar sets with overlaps, an interesting result is on the {1,3,5}-{1,4,5}
Problem which was posed by David and Semmes [4]. Let H1 = (H1/5) ∪ (H1/5 +
2/5) ∪ (H1/5 + 4/5) be the {1,3,5} self-similar set, and H2 = (H2/5) ∪ (H2/5 +
3/5)∪(H2/5+4/5) the {1,4,5} self-similar set. The problem asks about the Lipschitz
equivalence of H1 and H2. Rao, Ruan and Xi [20] proved that H1 and H2 are Lipschitz
equivalent. Furthermore, Xi and Ruan [33] proved that for given r1, r2, r3 ∈ (0, 1)
with r1 + r2 + r3 < 1, self-similar sets J1 and J2 are Lipschitz equivalent if and only
if log r1/ log r2 ∈ Q, where

J1 = (r1J1) ∪ (r2J1 + 1− r2 − r3) ∪ (r3J1 + 1− r3),

J2 = (r1J2) ∪ (r2J2 +
1 + r1 − r2 − r3

2
) ∪ (r3J2 + 1− r3).

Xi and Xiong [34] generalized the result on the {1,3,5}-{1,4,5} Problem to the higher
dimensional spaces. Given integers n ≥ 2 and m ≥ 1, for A,B ⊂ {0, 1, · · · , (n−1)}m,
let EA = ∪a∈A

EA+a
n

and EB = ∪b∈B
EB+b

n
be self-similar sets in Rm. Suppose that

EA and EB are totally disconnected. Then it is proved in [34] that EA and EB are
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Lipschitz equivalent if and only if A and B have the same cardinality. Please also
refer to Wen and Xi [30], Xi and Xiong [35] and Zhu et al. [36].

We notice that for the self-similar sets considered in [20], [30], [33]–[36], the open
set condition holds, which means two pieces of self-similar sets touch a little. In this
paper, we will consider a quite different case according to complete overlaps.

Fix r ∈ (0, 1/3]. For any integer n ≥ 1, let Kn be a self-similar set satisfying

Kn = (rKn) ∪ (rKn + rn(1− r)) ∪ (rKn + 1− r).

The main result of the paper is stated as follows.

Theorem 1. For any n1, n2 ≥ 1, Kn1 and Kn2 are Lipschitz equivalent.

Remark 3. Kn has complete overlaps. In fact, Kn is generated by

(1.2) S1(x) = rx, S2(x) = rx + rn(1− r), S3(x) = rx + (1− r).

Let Si1i2···ik = Si1 ◦ Si2 ◦ · · · ◦ Sik and [1]t be the word composed of t digits 1. Then
S[1]n3(x) ≡ S2[1]n(x) ≡ rn+1x + rn(1− r).

Remark 4. For r = 1/3, Kn = E2/3n and it is shown in [23] that {Kn}n have
the same Hausdorff dimension. In fact, the technique in [23] can deal with dimension
for any self-similar set Λ = ∪k

i=1(Λ/n + bi) where n ∈ N and bi ∈ Q for all i. In this
paper, fix any ratio r(≤ 1/3) rational or irrational, for the special fractals {Kn}n,
we prove that {Kn}n belong to the same Lipschitz equivalent class, which implies
{Kn}n have the same dimension.

Remark 5. For r ∈ (0, 1/3], let K = (r1/2K) ∪ (rK + 1 − r) be a self-similar
set without overlaps. Proposition 5 in Section 6 says that Kn and K are Lipschitz
equivalent for any n.

We organize the paper as follows. Section 2 is the preliminaries, including the
counting function L(m) (Lemma 1), the graph-directed sets (Lemma 2) and their
corresponding criterion for Lipschitz equivalence (Lemma 3). In Section 3, for Kn

we construct the graph-directed sets with ratio r and adjacency matrix Mn defined
in (3.1). In Section 4, for K1 we construct some graph-directed sets with ratio r
and the same adjacency matrix Mn. Then it follows from Lemma 3 that K1 and
Kn are Lipschitz equivalent, hence Theorem 1 is proved. In Section 5, we obtain the
Perron–Frobenius eigenvector of the matrix Mn in terms of the counting function
L(m) and the Fibonacci sequence. Section 6 shows that Kn is Lipschitz equivalent
to a self-similar set K (in Remark 4) without overlaps.

2. Preliminaries

Fix r ∈ (0, 1/3] and integer n ≥ 1. Let E, F be the self-similar sets satisfying

E = rE ∪ (rE + r(1− r)) ∪ (rE + 1− r),(2.1)
F = rF ∪ (rF + rn(1− r)) ∪ (rF + 1− r).(2.2)

Notice that E = K1 and F = Kn.
Therefore for proving Theorem 1, we only need to prove the following proposition

(in Section 4).

Proposition 1. E and F are Lipschitz equivalent.
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Given any integer m ∈ [0, 2n − 1], let

m = x0x1 · · · xn−1 (xt = 0 or 1),

be the dyadic representation of m, that is m = 2n−1x0 + 2n−2x1 + · · · + xn−1. Then
we define the counting function

(2.3) L(m) = L(x0x1 · · · xn−1) =
∑n−1

i=0
xi,

i.e., the number of digits 1 in x0x1 · · · xn−1. We have the following lemma.

Lemma 1. Suppose m = x0x1 · · · xn−1 ∈ Z ∩ [0, 2n − 1]. Then

L(2m) = L(m) and L(2m + 1) = L(m) + 1 when m < 2n−1,
L(2(m− 2n−1)) = L(m)− 1 and L(2(m− 2n−1) + 1) = L(m) when m ≥ 2n−1.

Proof. When m = x0 · · ·xn−1 ∈ [0, 2n−1), we have x0 = 0,

L(2m) = L(x1 · · · xn−10) = L(0x1 · · · xn−1) = L(m),

and L(2m + 1) = L(x1 · · · xn−11) = L(0x1 · · · xn−1) + 1 = L(m) + 1.
When m ∈ x0 · · · xn−1 = [2n−1, 2n − 1], we have x0 = 1,

L(2(m− 2n−1)) = L(x1 · · · xn−10) = L(1x1 · · · xn−1)− 1 = L(m)− 1,

and L(2(m− 2n−1) + 1) = L(x1 · · · xn−11) = L(1x1 · · · xn−1) = L(m). ¤
Recall the notion of “graph-directed structure” [17] as follows.
Let (V, E) be a directed graph, where V = {0, · · · , (m − 1)} and E are vertex

set and edge set respectively. Denote by Ei,j the set of edges from vertex i to vertex
j. For this graph, we consider the adjacency matrix A = (ai,j)0≤i,j≤m−1 defined by
ai,j = #Ei,j. Let ρ(A) be the spectral radius of A. The graph is said to be transitive,
if for any vertexes i and j, there exists a directed path starting at i and ending at j.

To simplify the structure, we assume there exists τ ∈ (0, 1) such that every edge
e ∈ E is equipped with a contracting similitude Se : Rn → Rn with ratio τ . By [17],
there exists a unique family of non-empty compact sets Γ0, Γ1, · · · , Γm−1 such that
for any i,

(2.4) Γi =
m−1⋃
j=0

⋃
e∈Ei,j

Se(Γj).

Here {Γ0, Γ1, · · · , Γm−1} are called graph-directed sets on (V, E) with ratio τ . Fur-
thermore, we say that {Γi}m−1

i=0 are dust-like graph-directed sets on (V, E), if the right
hand of (2.4) is a disjoint union for each 0 ≤ i ≤ m− 1.

By [17], we have the following lemma.

Lemma 2. Suppose that {Γi}m−1
i=0 are dust-like graph-directed sets on a transitive

graph with ratio τ and adjacency matrix A. Then for every i,

dimH Γi = − log ρ(A)/ log τ.

Theorem 2.1 of [20] yields the following lemma for Lipschitz equivalence.

Lemma 3. Suppose {Γi}m−1
i=0 and {Γ′i}m−1

i=0 are dust-like graph-directed sets with
the same ratio and the same adjacency matrix. Then Γi and Γ

′
i are Lipschitz equiv-

alent for any i.
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For example, for {1, 3, 5} set H1 and {1, 4, 5} set H2 mentioned above, we ob-
tained

Γ0 = H1, Γ′0 = H2,
Γ1 = H1 ∪ (H1 + 2), Γ′1 = H2 ∪ (H2 + 1),
Γ2 = H1 ∪ (H1 + 2) ∪ (H1 + 4), Γ′2 = H2 ∪ (H2 + 1) ∪ (H2 + 2).

It is pointed out in [20] that {Γi}2
i=0 and {Γ′i}2

i=0 have the same ratio 1/5 and adja-

cency matrix




1 1 0
1 1 1
1 1 2


 , which implies that Γ0(= H1) and Γ′0(= H2) are Lipschitz

equivalent.

3. Graph-directed structure

Given m = x0x1 · · ·xn−1 ∈ {0, 1, 2, · · · , 2n − 1}, set

Am =
⋃

i0i1···in−1∈{0,1}n

(F +
n−1∑
t=0

rt(1− r)(itxt)),

where F is defined in (2.2). In particular, A0 = F .
Let Mn = (gi,j)0≤i,j≤2n−1 be a 2n × 2n integer matrix, where

gi,j =





1, if i < 2n−1, j = 2i,

1, if i < 2n−1, j = 2i + 1,

1, if i ≥ 2n−1, j = 2(i− 2n−1),

2, if i ≥ 2n−1, j = 2(i− 2n−1) + 1,

0, otherwise.

That means

(3.1) Mn =




1 1 0 0 · · · 0 0 0 0
0 0 1 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1 1 0 0
0 0 0 0 · · · 0 0 1 1
1 2 0 0 · · · 0 0 0 0
0 0 1 2 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1 2 0 0
0 0 0 0 · · · 0 0 1 2




2n×2n

.

Proposition 2. {Am}0≤m≤2n−1 are dust-like graph-directed sets with ratio r and
adjacency matrix Mn, where A0 = F .

Proof. Let m = x0x1 · · · xn−1 be the dyadic representation of m. We will discuss
two cases.

Case 1. 0 ≤ m < 2n−1, that is x0 = 0. We only need to check

rA2m+1 ∪ (rA2m + 1− r) = Am.
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For this, we notice that

Am = A0x1···xn−1 =
⋃

i1···in−1∈{0,1}n−1

(
F +

n−1∑
t=1

rt(1− r)(itxt)

)
.

Applying equation (2.2), we have

Am = T1 ∪ T2 ∪ T3,

where

T1 =
⋃

i1···in−1∈{0,1}n−1

(
rF +

n−1∑
t=1

rt(1− r)(itxt)

)
,

T2 =
⋃

i1···in−1∈{0,1}n−1

(
rF + rn−1(1− r) +

n−1∑
t=1

rt(1− r)(itxt)

)
,

T3 =
⋃

i1···in−1∈{0,1}n−1

(
rF + 1− r +

n−1∑
t=1

rt(1− r)(itxt)

)
.

Therefore, we have

T1 ∪ T2 =


 ⋃

i1···in−1∈{0,1}n−1

r

(
F +

n−2∑
t=0

rt(1− r)(it+1xt+1) + rn−1(1− r)(0 · 1)

)


∪

 ⋃

i1···in−1∈{0,1}n−1

r

(
F +

n−2∑
t=0

rt(1− r)(it+1xt+1) + rn−1(1− r)(1 · 1)

)


=
⋃

i1···in−1in∈{0,1}n

r

(
F +

n−2∑
t=0

rt(1− r)(it+1xt+1) + rn−1(1− r)(in · 1)

)

= rAx1···xm1 = rA2m+1.

In the same way, we have

T3 =
⋃

i1···in−1∈{0,1}n−1

(
rF + 1− r +

n−1∑
t=1

rt(1− r)(itxt)

)

= r


 ⋃

i1···in−1in∈{0,1}n

(
F +

n−2∑
t=0

rt(1− r)(it+1xt+1) + rn−1(1− r)(in · 0)

)
+ (1− r)

= rAx1···xn−10 + (1− r)

= rA2m + (1− r).

Since rA2m+1 ⊂ [0, r], rA2m +(1−r) ⊂ [1−r, 1] and r ≤ 1/3, we have the disjoint
union

(3.2) Am = rA2m+1 ∪ (rA2m + 1− r).
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Case 2. m ≥ 2n−1, that is x0 = 1,

Am = A1x1···xn−1 =
1⋃

i0=0

⋃

i1···in−1∈{0,1}n−1

(F +
n−1∑
t=0

rt(1− r)(itxt)).

Let

Ri0 =
⋃

i1···in−1∈{0,1}n−1

(F + (1− r)(i0) +
n−1∑
t=1

rt(1− r)(itxt)).

Then
Am = R0 ∪R1.

Applying (2.2), we have

R0 =


 ⋃

i1···in−1∈{0,1}n−1

(rF +
n−1∑
t=1

rt(1− r)(itxt))




∪

 ⋃

i1···in−1∈{0,1}n−1

(rF + rn(1− r) +
n−1∑
t=1

rt(1− r)(itxt))




∪

 ⋃

i1···in−1∈{0,1}n−1

(rF + (1− r) +
n−1∑
t=1

rt(1− r)(itxt))




= R0,1 ∪R0,2 ∪R0,3.

In the same way as above, we obtain

R0,1 ∪R0,2 = rAx1···xn−11 = rA2m+1.

Applying (2.2), we also have

R1 =


 ⋃

i1···in−1∈{0,1}n−1

(rF + (1− r) +
n−1∑
t=1

rt(1− r)(itxt))




∪

 ⋃

i1···in−1∈{0,1}n−1

(rF + rn(1− r) + (1− r) +
n−1∑
t=1

rt(1− r)(itxt))




∪

 ⋃

i1···in−1∈{0,1}n−1

(rF + 2(1− r) +
n−1∑
t=1

rt(1− r)(itxt))




= R1,1 ∪R1,2 ∪R1,3.

Here R1,1 = R0,3. In the same way,

R1,1 ∪R1,2 = rA2m+1 + (1− r) and R1,3 = rA2m + 2(1− r).

Therefore
Am = R0,1 ∪R0,2 ∪R0,3 ∪R1,1 ∪R1,2 ∪R1,3

= (R0,1 ∪R0,2) ∪ (R1,1 ∪R1,2) ∪R1,3

= rA2m+1 ∪ (rA2m+1 + (1− r)) ∪ (rA2m + 2(1− r)).

(3.3)
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Notice that

rA2m+1 ⊂ [0, r +
n∑

t=1

rt(1− r)] ⊂
[
0, r +

∞∑
t=1

rt(1− r)

)

= [0, 2r) ⊂ [0, 1− r) (since r ≤ 1/3).

Similarly,

(rA2m+1 + (1− r)) ⊂ [1− r, 2(1− r)),

(rA2m + 2(1− r)) ⊂ [2(1− r),∞).

Then the above three intervals are disjoint, which implies the union (3.3) is disjoint.
This proposition follows from (3.2) and (3.3). ¤

Remark 6. For r = 1/3, Rao and Wen [23] pointed out the adjacency matrix
w.r.t F is Mn. Our approach to prove Proposition 2, which can deal with the case
of r irrational, is quite different from the technique in [23].

4. Proof of Proposition 1

Notice that A0 = F and {Am}0≤m≤2n−1 is dust-like with ratio r and adjacency
matrix Mn. To prove the Lipschitz equivalence of E and F , we shall construct graph-
directed sets {Bm}0≤m≤2n−1 such that B0 = E and the corresponding adjacency
matrix is Mn.

Let Bm be the set defined by

(4.1) Bm = Bx0x1···xn−1 =

{
r−kE if L(m) = 2k,

r−k(E ∪ (E + 1− r)) if L(m) = 2k + 1,

where E is defined in (2.1). Notice that B0 = E.

Lemma 4. When m ∈ [0, 2n−1) and L(m) = 2k, we get the disjoint decomposi-
tion

(4.2) Bm = rB2m+1 ∪ (rB2m + r−k(1− r)).

Proof. When m = x0 · · · xn−1 ∈ [0, 2n−1), we have x0 = 0. Then L(2m) = 2k and
L(2m + 1) = 2k + 1 by Lemma 1.

Applying equation (2.1), we have

Bm = Bx0x1···xn−1 = r−kE

= r−k+1E ∪ (r−k+1E + r−k+1(1− r)) ∪ (r−k+1E + r−k(1− r))

=
[
r−k+1(E ∪ (E + 1− r))

] ∪ [
r−k+1E + r−k(1− r)

]

= rBx1···xn−11 ∪ (rBx1···xn−10 + r−k(1− r))

= rB2m+1 ∪ (rB2m + r−k(1− r)).

Here rB2m+1 ⊂ [0, r−k+1(2− r)] and (rB2m + r−k(1− r)) ⊂ [r−k(1− r), r−k], where

r−k+1(2− r) < r−k(1− r)

since r ≤ 1/3. Then the decomposition in (4.2) is disjoint, which is shown in Figure 1.
In this figure, we get the decomposition of r−kE as two parts in shadows. ¤
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r E
-k

r E E+ -r
-k+1

( ( 1 ))4 r E+r -r
-k+1

(1 )
-k

Figure 1. The decomposition of Bm with m ∈ [0, 2n−1) and L(m) = 2k.

Lemma 5. When m ∈ [0, 2n−1) and L(m) = 2k + 1, we get the disjoint decom-
position

(4.3) Bm = rB2m ∪ (rB2m+1 + r−k(1− r)).

Proof. When m = x0 · · · xn−1 ∈ [0, 2n−1), it should holds that x0 = 0. Then
L(2m) = 2k + 1 and L(2m + 1) = 2(k + 1) by Lemma 1.

Applying the equation (2.1), we have

Bm = Bx0x1···xn−1 = r−kE ∪ [
r−k(E + 1− r)

]
=

[
r−k+1E

∪ (r−k+1E + r−k+1(1− r)) ∪ (r−k+1E + r−k(1− r))
] ∪ [

r−kE + r−k(1− r)
]

We conclude that

(r−k+1E + r−k(1− r)) ⊂ r−kE + r−k(1− r).

In fact, by (2.1), we also have

r−kE + r−k(1− r)

= (r−k+1E + r−k(1− r)) ∪ (r−k+1E + r−k(1− r2)) ∪ (r−k+1E + 2r−k(1− r))

Therefore, we have

Bm =
[
r−k+1E ∪ (r−k+1E + r−k+1(1− r))

] ∪ [
r−kE + r−k(1− r)

]

=
[
r−k+1(E ∪ (E + 1− r))

] ∪ [
r · r−(k+1)E + r−k(1− r)

]

= rBx1···xn−10 ∪ (rBx1···xn−11 + r−k(1− r))

= rB2m ∪ (rB2m+1 + r−k(1− r)).

r E E+ -r
-k

( ( 1 ))4

r E+r -r
-k

(1 )
-kr E E+ -r

-k+1
( ( 1 ))4

Figure 2. The decomposition of Bm with m ∈ [0, 2n−1) and L(m) = 2k + 1.

Here rB2m ⊂ [0, r−k+1(2−r)] and (rB2m+1+r−k(1−r)) ⊂ [r−k(1−r), r−k(2−r)],
where

r−k+1(2− r) < r−k(1− r)

since r ≤ 1/3. That means the decomposition in (4.3) is disjoint as shown in Figure 2.
In this figure, we get the decomposition of r−k(E ∪ (E + 1 − r)) as two parts in
shadows. ¤
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Lemma 6. When m ∈ [2n−1, 2n− 1] and L(m) = 2k, we get the disjoint decom-
position

Bm = rB2(m−2n−1) ∪
[
rB2(m−2n−1)+1 + r−k+1(1− r)

]

∪ (rB2(m−2n−1)+1 + r−k(1− r)).
(4.4)

Proof. When m = x0x1 · · · xn ∈ [2n−1, 2n − 1], it should holds that x0 = 1. Then
L(2(m−2n−1)) = 2(k−1)+1 and L(2(m−2n−1)+1) = 2k by Lemma 1. Therefore,
by (2.1), we have

Bm = Bx0x1···xn−1 = r−kE

= r−k+1E ∪ [
r−k+1E + r−k+1(1− r)

] ∪ [
r−k+1E + r−k(1− r)

]

= Q1 ∪Q2 ∪Q3.

By (2.1), we also have

Q1 = r−k+1E

=
[
r−k+2E ∪ (r−k+2E + r−k+2(1− r)) ∪ (r−k+2E + r−k+1(1− r))

]
,

where
(r−k+2E + r−k+1(1− r)) ⊂ Q2,

since

Q2 = (r−k+2E + r−k+1(1− r))∪ (r−k+2E + r−k+1(1− r2))∪ (r−k+2E + 2r−k+1(1− r))

by using (2.1) again. Hence,

Bm =
[
r−k+2E ∪ (r−k+2E + r−k+2(1− r))

] ∪Q2 ∪Q3

=
[
r−k+2(E ∪ (E + 1− r))

] ∪ (r−k+1E + r−k+1(1− r)) ∪ (r−k+1E + r−k(1− r))

= rBx1···xn−10 ∪ (rBx1···xn−11 + r−k+1(1− r)) ∪ (rBx1···xn−11 + r−k(1− r))

= rB2(m−2n−1) ∪ (rB2(m−2n−1)+1 + r−k+1(1− r)) ∪ (rB2(m−2n−1)+1 + r−k(1− r)).

r E
-k

r E E+ -r
-k+2

( ( 1 ))4 r E+r -r
-k+1

(1 )
-k

r E+r -r
-k+1

(1 )
-k+1

Figure 3. The decomposition of Bm with m ≥ 2n−1 and L(m) = 2k.

In the same way, the decomposition in (4.4) is disjoint, which is shown in Figure 3.
In this figure, we get the decomposition of r−kE as three parts in shadows. ¤

Lemma 7. When m ∈ [2n−1, 2n − 1] and L(m) = 2k + 1, we get the disjoint
decomposition

(4.5) Bm = rB2(m−2n−1)+1∪(rB2(m−2n−1)+1+r−k(1−r))∪(rB2(m−2n−1)+2r−k(1−r)).

Proof. When m = x0 · · · xn−1 ∈ [2n−1, 2n − 1], it should hold that x0 = 1. Then
L(2(m− 2n−1)) = 2k and L(2(m− 2n−1) + 1) = 2k + 1 by Lemma 1. By (2.1), as in
Figure 4, we have

Bm = Bx0x1···xn−1 = r−kE ∪ [r−k(E + 1− r)] = P1 ∪ P2 ∪ P3,
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where

P1 = r−k+1E ∪ (r−k+1E + r−k+1(1− r)) ∪ (r−k+1E + r−k(1− r)),

P2 = (r−k+1E + r−k(1− r)) ∪ (r−k+1E + r−k+1(1− r) + r−k(1− r)),

P3 = r−k+1E + 2r−k(1− r).

r E E+ -r
-k

( ( 1 ))4

r E E+ -r
-k+1

( ( 1 ))4 r E E+ -r
-k+1

( ( 1 ))+4 r -r
-k

(1 ) r E
-k+1

+2r -r
-k

(1 )

Figure 4. The decomposition of Bm with m ≥ 2n−1 and L(m) = 2k + 1.

Notice that P1 and P2 have a common part r−k+1E + r−k(1− r). Therefore, we
have

Bm =
[
r−k+1E ∪ (r−k+1E + r−k+1(1− r))

] ∪ P2 ∪ P3.

We also have
r−k+1E ∪ (r−k+1E + r−k+1(1− r)) = rBx1···xn−11,

and

P2 = rBx1···xn−11 + r−k(1− r),

P3 = rBx1···xn−10 + 2r−k(1− r).

Hence

Bm = rB2(m−2n−1)+1 ∪ (rB2(m−2n−1)+1 + r−k(1− r)) ∪ (rB2(m−2n−1) + 2r−k(1− r)).

In the same way, the decomposition in (4.5) is disjoint, which is shown in Figure 4.
In this figure, we get the decomposition of r−k(E ∪ (E + 1 − r)) as three parts in
shadows. ¤

By Lemmas 4–7, we have the following proposition.

Proposition 3. {Bm}0≤m≤2n−1 are dust-like graph-directed sets with ratio r and
adjacency matrix Mn, where B0 = E.

The proof of Proposition 1. It follows from Lemma 3, Proposition 2 and Propo-
sition 3 that A0 (= F ) and B0 (= E) are Lipschitz equivalent. This completes the
proof of Proposition 1. ¤

5. Properties of adjacency matrix

In the section, for the adjacency matrix Mn defined in (3.1), we will discuss its
Perron–Frobenius eigenvalue and Perron–Frobenius eigenvector.

Let a = 1+
√

5
2

, we have

(5.1) a2 = a + 1 and a3 = 2a + 1.

Let {Fk}k≥1 = {1, 1, 2, 3, 5, · · · } be the Fibonacci sequence. Set F−1 = 1, F0 = 0.
We have

(5.2) Fk+1 = Fk + Fk−1 for all k ≥ 0.
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By induction, we have

(5.3) ak = aFk + Fk−1 for all k ≥ 0.

In fact, a0 = 1 = aF0 + F−1, assume that ak = aFk + Fk−1, by (5.1) and (5.2) we can
find

ak+1 = a(aFk + Fk−1) = a2Fk + aFk−1 = (a + 1)Fk + aFk−1

= a(Fk + Fk−1) + Fk = aFk+1 + Fk.

Proposition 4. Given n ≥ 1, the Perron–Frobenius eigenvalue of Mn is ω =
3+
√

5
2

. Let Vn = (v0, v1, · · · , v2n−1)
T > 0 be the Perron–Frobenius eigenvector of Mn

with v0 = 1. Then

(5.4) Vn = (vm)T
0≤m≤2n−1 with vm = aL(m) = aFL(m) + FL(m)−1.

Proof. For given n ≥ 1, by Lemma 2 and Proposition 2, we have

(5.5) dimH(Kn) = − log ωn

log r
,

where ωn is the Perron–Frobenius (PF) eigenvalue of Mn. In particular, we easily
check that dimH(K1) = − log ω1

log r
, where ω1 = 3+

√
5

2
is the PF eigenvalue of M1 =(

1 1
1 2

)
.

Since Kn and K1 are Lipschitz equivalent, we have

dimH(Kn) = dimH(K1).

Then by (5.5),

ωn = ω1 = ω =
3 +

√
5

2
(= a2).

Since the matrix Mn is primitive, we notice that the eigenspace associated to the
PF eigenvalue is one dimensional. Therefore, to prove that Vn defined in (5.4) is the
unique PF eigenvector of Mn with v0 = a0 = 1, we only need to check that

MnVn = ωVn,

i.e.,

(5.6)
∑2n−1

j=0
gmjvj = ω · vm for every m.

We will check (5.6) for two cases.

Case 1. When 0 ≤ m = x0x1 · · · xn−1 < 2n−1, that is x0 = 0. Then by Lemma 1,

L(2m) = L(m) and L(2m + 1) = L(m) + 1.

By the definition of Mn and (5.1), we have
∑2n−1

j=0
gmjvj = v2m + v2m+1 = aL(2m) + aL(2m+1)

= aL(m) + aL(m)+1 = aL(m)(1 + a) = a2 · aL(m) = ω · vm.

Case 2. When 2n−1 ≤ m = x0x1 · · · xn−1 ≤ 2n − 1, that is x0 = 1. Then by
Lemma 1,

L(2(m− 2n−1)) = L(m)− 1 and L(2(m− 2n−1) + 1) = L(m).
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By the definition of Mn and (5.1), we have
∑2n−1

j=0
gmjvj = v2(m−2n−1) + 2v2(m−2n−1)+1

= aL(2(m−2n−1)) + 2aL(2(m−2n−1)+1)

= aL(m)−1 + 2aL(m) = (1 + 2a)aL(m)−1

= a3 · aL(m)−1 = a2 · aL(m) = ω · vm. ¤
Remark 7. Rao and Wen [23] pointed out that ω can be proved to be the PF

eigenvalue of Mn by induction. This conclusion is also a consequence of Proposition 1
(or Theorem 1) as shown in the proof of Proposition 4. Rao and Wen [23] also
obtained the recurrent structure

V1 = (1, a)T , · · · , Vn = (Vn−1, aVn−1)
T , · · · .

6. Lipschitz equivalent to a self-similar set without overlaps

Fix r ∈ (0, 1/3]. Let

K = (rK + 1− r) ∪ (r1/2K)

be a self-similar set without overlaps.
In this section, we will prove the following proposition.

Proposition 5. Kn and K are Lipschitz equivalent for any n.

Proof. By Theorem 1, we only need to show that K1 and K are Lipschitz
equivalent.

In fact, let
Γ0 = K and Γ1 = r−1/2K.

Then we have the following disjoint decomposition

(6.1) Γ0 = K = (rK + 1− r) ∪ r1/2K = (rΓ0 + 1− r) ∪ rΓ1.

By using (6.1), we also have the following disjoint decomposition

Γ1 = r−1/2K = r−1/2[(rK + 1− r) ∪ r1/2K]

= [r(r−1/2K) + r−1/2(1− r)] ∪K

= [rΓ1 + r−1/2(1− r)] ∪ (rΓ0 + 1− r) ∪ rΓ1.

(6.2)

The above decompositions (6.1)–(6.2) show that {Γ0, Γ1} are dust-like graph-directed
sets with ratio r and adjacency matrix

M1 =

(
1 1
1 2

)
.

Applying Proposition 2 to the case of n = 1, we get graph-directed sets {B0, B1}
with ratio r and adjacency matrix M1, where B0 = K1.

It follows from Lemma 3 that K and K1 are Lipschitz equivalent. ¤
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