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Abstract. Let 1 < p < ∞ and let X be a metric measure space with a doubling measure and
a (1, p)-Poincaré inequality. Let Ω be a bounded domain in X. For a function f on ∂Ω we denote
by PΩf the p-Dirichlet solution of f over Ω. It is well known that if Ω is p-regular and f ∈ C(∂Ω),
then PΩf is p-harmonic in Ω and continuous in Ω. We characterize the family of domains Ω such
that improved continuity of boundary functions f ensures improved continuity of PΩf . We specify
such improved continuity if X is Ahlfors regular and X \ Ω is uniformly p-fat.

1. Introduction

Let X = (X, d, µ) be a complete connected metric measure space endowed with
a metric d and a positive complete Borel measure µ such that 0 < µ(U) < ∞ for all
non-empty bounded open sets U .

By the symbol C we denote an absolute positive constant whose value is unim-
portant and may change from line to line. Let B(x, r) = {y ∈ X : d(x, y) < r} denote
the open ball centered at x with radius r. We assume that µ is doubling, i.e., there
is a constant C ≥ 1 such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for every x ∈ X and r > 0.
Let 1 < p < ∞. We assume that X admits a (1, p)-Poincaré inequality.

We denote by Capp the p-capacity defined on X (Definition 2.5). Let Ω ⊂ X be
a bounded domain with Capp(X \Ω) > 0. For a function f on ∂Ω we donate by PΩf
the p-Perron solution of f over Ω. A point ξ ∈ ∂Ω is said to be a p-regular point
(with respect to the p-Dirichlet problem) if

lim
Ω3x→ξ

PΩf(x) = f(ξ)

for every f ∈ C(∂Ω). If every boundary point is a p-regular point, then Ω is called p-
regular. It is well known that if Ω is p-regular and f ∈ C(∂Ω), then PΩf is p-harmonic
in Ω and continuous in Ω. It is natural to raise the following question:

Question 1.1. Does improved continuity of a boundary function f guarantee
improved continuity of PΩf?

Aikawa and Shanmugalingam [3] studied this question in the context of Hölder
continuity. Aikawa [2] investigated this question in the context of general modulus of
continuity for the classical setting, i.e., for harmonic functions in a Euclidean domain.
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The purpose of this paper is to study this question in the context of general modulus
of continuity in a metric measure space.

Let M be the family of all positive nondecreasing concave functions ψ on (0,∞)
with ψ(0) = limt→0 ψ(t) = 0. We say that f is ψ-Hölder continuous if |f(x)−f(y)| ≤
Cψ(d(x, y)). The modulus of continuity of a uniformly continuous function on any
geodesic space is comparable to a certain concave function. See [5, Chapter 2 §6] and
Propositions 2.13 and 2.14. The author would like to thank Kuroda for drawing his
attention to [5]. Therefore, we have only to check ψ-Hölder continuity for ψ ∈M to
study Question 1.1 in the context of modulus of continuity.

As a typical example of ψ ∈M we consider ψαβ defined by

ψαβ(t) =

{
tα(− log t)−β for 0 < t < t0,

tα0 (− log t0)
−β for t ≥ t0.

where either 0 < α < 1 and β ∈ R or α = 0 and β > 0; and t0 is so small that
ψαβ ∈M. In particular, we write ϕα = ψα0, and we say that f is α-Hölder continuous
if f is ϕα-continuous.

Let ψ ∈M and E ⊂ X. We consider the family Λψ(E) of all bounded continuous
functions f on E with norm

‖f‖ψ,E = sup
x∈E

|f(x)|+ sup
x,y∈E
x6=y

|f(x)− f(y)|
ψ(d(x, y))

< ∞.

We define the operator norm

‖PΩ‖ψ = sup
f∈Λψ(∂Ω)
‖f‖ψ,∂Ω 6=0

‖PΩf‖ψ,Ω

‖f‖ψ,∂Ω

.

Observe that ψ-Hölder continuity of a boundary function f ensures ψ-Hölder conti-
nuity of PΩf if and only if ‖PΩ‖ψ < ∞.

Aikawa [2] characterized the family of Euclidean domains Ω such that ‖PΩ‖ψ < ∞
for ψ ∈ M in context of harmonic functions. We consider the same problem in the
context of p-harmonic functions in a metric measure space. It is known that there
exists α0 ∈ (0, 1] such that every p-harmonic function in any domain Ω is locally
α0-Hölder continuous in Ω (see [10]). Hence, ‖PΩ‖ψ < ∞ can hold only for ψ ∈ M,
in some sense, bigger than the function ϕα0(t) = tα0 .

Let ψ, ϕ ∈M. We say that ϕ - ψ if there are r0 > 0 and C > 0 such that

ϕ(s)

ϕ(r)
≤ C

ψ(s)

ψ(r)
for 0 < s < r < r0.

LetM0 be the family of all ψ ∈M with tα0 - ψ(t). For example, if either 0 < α < α0

and β ∈ R or α = 0 and β > 0, then ψαβ ∈ M0. But if α = α0 and β < 0, then
ψα0β 6∈ M0. Hence we see that M0  M. Our results will be given for ψ ∈M0.

Let U be an open set in X and let E be a Borel set in ∂U . We denote by
ωp(x,E, U) the p-harmonic measure evaluated at x of E in U . Note that the p-
harmonic measure is not a measure, i.e., the p-harmonic measure is not additive. We
define two decay properties for p-harmonic measures. We say that Ω enjoys the Local
Harmonic Measure Decay property with ψ (abbreviated to the LHMD(ψ) property)
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if there are positive constants C1 and r0 depending only Ω and ψ such that

(1.1) ωp(x, Ω ∩ ∂B(a, r), Ω ∩B(a, r)) ≤ C1
ψ(d(x, a))

ψ(r)
for x ∈ Ω ∩B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. We say that Ω enjoys the Global Harmonic
Measure Decay property with ψ (abbreviated to the GHMD(ψ) property) if there are
positive constants C2 and r0 depending only Ω and ψ such that

(1.2) ωp(x, ∂Ω \B(a, r), Ω) ≤ C2
ψ(d(x, a))

ψ(r)
for x ∈ Ω ∩B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. By the comparison principle (see [9, Theorem 7.2])
it is easy to see that (1.1) implies (1.2).

Without loss of generality, we may assume that Ω is a bounded p-regular domain
(see [3, Proposition 2.1]). For a ∈ ∂Ω we define a test function τa,ψ on ∂Ω by

τa,ψ(ξ) = ψ(d(a, ξ)) for ξ ∈ ∂Ω.

Then we have the following theorem.

Theorem 1.2. Let ψ ∈M0 and let Ω be a bounded p-regular domain. Consider
the following conditions:

(i) ‖PΩ‖ψ < ∞.
(ii) There is a constant C such that

PΩτa,ψ(x) ≤ Cψ(d(x, a)) for x ∈ Ω,

whenever a ∈ ∂Ω.
(iii) Ω satisfies the GHMD(ψ) property.
(iv) Ω satisfies the LHMD(ψ) property.

Then we have
(i)⇐⇒ (ii) =⇒ (iii)⇐= (iv).

The remaining implications in Theorem 1.2 are of interest. Theorem 4.1 in Sec-
tion 4 will give the equivalence (iii)⇐⇒ (iv) under additional assumptions on X and
ψ ∈ M0. As was observed in [3, Remark 2.4], the implication (iv) =⇒ (i) does not
hold. However, we prove that a condition slightly stronger than (iv) implies (i).

Theorem 1.3. Let ψ, ψ1 ∈M0. Let ψ2 = ψ1/ψ. Suppose that limr→0 ψ2(r) = 0
and there are constants 0 < C3 < 1 and r0 > 0 such that ψ2 is increasing on (0, r0)
and

(1.3) sup
0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= C3

}
< ∞.

If Ω satisfies the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.

Condition (1.3) looks rather complicated. We have a simple condition.

Corollary 1.4. Let ψ, ψ1 ∈ M0. Let ψ2 = ψ1/ψ. Suppose that there are
constants 0 < C4 < 1 and r0 > 0 such that ψ is increasing on (0, r0) and

(1.4) inf
0<r≤r0

ψ2(r)

ψ2(C4r)
> 1.

If Ω satisfies the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.
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Theorem 1.3 and Corollary 1.4 are main results of this paper. They give several
corollaries for ψαβ.

Corollary 1.5. Let Ω be a bounded p-regular domain. Consider the following
conditions:

(i) 0 < α < α′ < α0 and β, β′ ∈ R.
(ii) 0 = α < α′ < α0 and β > 0, β′ ∈ R.
(iii) α = α′ = 0 and 0 < β < β′.

Assume that either (i), (ii), or (iii) holds. If Ω satisfies the LHMD(ψα′β′) property,
then ‖PΩ‖ψαβ

< ∞.

We say that E ⊂ X is uniformly p-fat or satisfies the p-capacity density condition
if there are constants C > 0 and r0 > 0 such that

(1.5)
Capp(E ∩B(a, r), B(a, 2r))

Capp(B(a, r), B(a, 2r))
≥ C,

whenever a ∈ E and 0 < r < r0. The uniform p-fatness of the complement of a
domain Ω is closely related to the condition ‖PΩ‖ψαβ

< ∞. For α > 0 we obtain the
following corollary.

Corollary 1.6. Let Ω be a bounded p-regular domain. If X \ Ω is uniformly
p-fat, then there is a constant 0 < α1 ≤ α0 such that ‖PΩ‖ψαβ

< ∞ for 0 < α < α1

and β ∈ R. Conversely, if ‖PΩ‖ψαβ
< ∞ for some 0 < α < α0 and β ∈ R, then X \Ω

is uniformly p-fat, provided that there is a constant Q ≥ p such that X is Ahlfors
Q-regular, i.e.,

C−1rQ ≤ µ(B(x, r)) ≤ CrQ

for every x ∈ X and r > 0.

Aikawa and Shanmugalingam [3] showed the case β = 0 of Corollary 1.6. For
α = 0 we obtain the following corollary.

Corollary 1.7. If X \ Ω is uniformly p-fat, then ‖PΩ‖ψ0β
< ∞ for every β > 0.

The plan of this paper is as follows. In the next section we shall define notions
of p-harmonicity, p-Dirichlet problem, p-capacity, and p-harmonic measure, and we
shall observe some properties for M. In Section 3 we shall show Theorem 1.2. In
Section 4 we shall prove that Ω satisfies the LHMD(ψ) property if and only if Ω
satisfies the GHMD(ψ) property under certain additional assumptions. The proof of
Theorem 1.3 and Corollary 1.4 will be given in Section 5. Finally, we shall give the
proof of Corollaries 1.5, 1.6, and 1.7.

2. Preliminaries

In this section we introduce notions of p-harmonicity, p-Dirichlet problem, p-
capacity, and p-harmonic measure; for details we refer to [3], and we observe some
properties for M.

The integral mean of u over a measurable set E is denoted by

1

µ(E)

ˆ

E

u dµ =

ˆ

E

u dµ = uE.
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Definition 2.1. We say that a Borel function g on X is an upper gradient of a
real-valued function u on X if

(2.1) |u(x)− u(y)| ≤
ˆ

γ

g ds

for any x, y ∈ X and all compact rectifiable curves γ joining x and y. If (2.1) fails
only for a curve family with zero p-modulus (see [7, Definition 2.1]), then g is said to
be a p-weak upper gradient of u. We say that g is a minimal p-weak upper gradient
of u if g ≤ g′ µ-almost everywhere for another p-weak upper gradients g′ of u. We
denote by gu a minimal p-weak upper gradient of u.

Definition 2.2. Let u ∈ Lp(X). We define the seminorm

‖u‖N1,p(X) = ‖u‖Lp + inf
g
‖g‖Lp,

where the infimum is taken over all p-weak upper gradients g of u. The Newtonian
space on X is the quotient space

N1,p(X) = {u ∈ Lp(X) : ‖u‖N1,p(X) < ∞}/ ∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Remark 2.3. The Newtonian space N1,p(X) with the norm ‖ · ‖N1,p(X) is a
Banach space. Every function u ∈ N1,p(X) has the minimal p-weak upper gradient
gu.

Definition 2.4. We say that X admits a (1, p)-Poincaré inequality if there are
constants κ ≥ 1 and C ≥ 1 such that for all balls B(x, r) ⊂ X, all measurable
functions u on X, and all p-weak upper gradients g of u we have

(2.2)
ˆ

B(x,r)

|u− uB(x,r)| dµ ≤ Cr

(ˆ

B(x,κr)

gp dµ

)1/p

.

A consequence of the (1, p)-Poincaré inequality is the following p-Sobolev in-
equality (see [10, Lemma 2.1]): if 0 < γ < 1 and µ({z ∈ B(x,R) : |u(z)| > 0}) ≤
γµ(B(x,R)), then there exists a positive constant Cγ depending only on γ such that

(2.3)
(ˆ

B(x,R)

|u|p dµ

)1/p

≤ CγR

(ˆ

B(x,κR)

gp
u dµ

)1/p

.

If X admits a (1, p)-Poincaré inequality, then X admits a (1, q)-Poincaré inequal-
ity for every q ≥ p by Hölder’s inequality. Keith and Zhong [8] showed that if X
is proper (that is, closed and bounded subsets of X are compact) and X admits
a (1, p)-Poincaré inequality, then there exists q < p such that X admits a (1, q)-
Poincaré inequality. Because X is a complete metric space equipped with a doubling
measure, X is proper. Therefore we can use their result.

Definition 2.5. The p-capacity of a subset E ⊂ X is defined by

Capp(E) = inf
u
‖u‖p

N1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.

We say that a property holds p-quasieverywhere (p-q.e.) if the set of points for
which the property fails to hold has p-capacity zero. We let

N1,p
0 (Ω) = {u ∈ N1,p(X) : u = 0 p-q.e. on X \ Ω}.
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We say that u ∈ N1,p
loc (Ω) if for every x ∈ Ω there is rx such that f |B(x,rx) ∈

N1,p(B(x, rx)). This is clearly equivalent to saying that f ∈ N1,p(V ) for every rela-
tively compact subset V of Ω. We now introduce the notion of p-harmonicity.

Definition 2.6. We call a function u ∈ N1,p
loc (Ω) a p-harmonic function in Ω if u

is continuous and

(2.4)
ˆ

U

gp
u dµ ≤

ˆ

U

gp
u+ϕ dµ.

for all relatively compact subsets U of Ω and all functions ϕ ∈ N1,p
0 (U). A function

u ∈ N1,p
loc (Ω) is said to be a p-superminimizer in Ω if (2.4) holds for all relatively

compact subsets U of Ω and all nonnegative functions ϕ ∈ N1,p
0 (U). We call a

function u ∈ N1,p
loc (Ω) a p-subminimizer in Ω if (2.4) holds for all relatively compact

subsets U of Ω and all nonpositive functions ϕ ∈ N1,p
0 (U).

Let u and v be p-harmonic functions and let α, β ∈ R. Then αu+β is p-harmonic.
But in general u + v is not p-harmonic. Kinnunen and Shanmugalingam [10, Theo-
rem 5.2] showed the following local Hölder continuity of p-harmonic functions. Here,
we denote by oscE u the oscillation supE u− infE u.

Theorem 2.7. Suppose a function u is p-harmonic on B(x, 2κR). Then there
are constants 0 < α0 ≤ 1 and C ≥ 1 such that

osc
B(x,κr)

u ≤ C

(
r

R

)α0

osc
B(x,κR)

u for 0 < r ≤ R.

The constants α0 and C are independent of u, x, and R.

Next we define p-Dirichlet solutions over Ω. For a function f ∈ N1,p(Ω) we
denote by HΩf the Dirichlet solution of f over Ω, i.e., HΩf is a function on Ω that
is p-harmonic in Ω with f −HΩf ∈ N1,p

0 (Ω). For E ⊂ X we denote by Lip(E) the
family of all Lipschitz continuous functions on E. For every f ∈ Lip(∂Ω) there is a
function Ef ∈ Lip(Ω) such that f = Ef on ∂Ω. Therefore we can define HΩf by
the function HΩEf ; this is independent of the extension Ef . We say that a lower
semicontinuous function u on Ω is a p-superharmonic function in Ω if

(i) −∞ < u ≤ ∞;
(ii) u is not identically ∞ in Ω;
(iii) HΩ′v ≤ u in Ω′ for every relatively compact subset Ω′ of Ω and all functions

v ∈ Lip(∂Ω′) such that v ≤ u on ∂Ω′.
If −u is p-superharmonic, then we say that u is p-subharmonic.

The following comparison principle is very useful in nonlinear potential theory
(see [9, Theorem 7.2]).

Theorem 2.8. Let u be a p-superharmonic function on Ω and let v be a p-
subharmonic function on Ω. If

(2.5) lim sup
Ω3x→ξ

v(x) ≤ lim inf
Ω3x→ξ

u(x)

for every ξ ∈ ∂Ω, and if both sides of (2.5) are not simultaneously ∞ or −∞, then
v ≤ u in Ω.

Definition 2.9. Let f be a function on ∂Ω. Let Uf be the set of all p-superharmonic
functions u on Ω bounded below such that lim infΩ3x→ξ u(x) ≥ f(ξ) for each ξ ∈ ∂Ω.
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The upper Perron solution of f is defined by

PΩf(x) = inf
u∈Uf

u(x) for x ∈ Ω.

Similarly, we define the lower Perron solution of f by

PΩf(x) = sup
s∈Lf

s(x) for x ∈ Ω,

where Lf = −U−f is the set of all p-subharmonic functions s on Ω bounded above
such that lim supΩ3x→ξ s(x) ≤ f(ξ) for each ξ ∈ ∂Ω. If PΩf = PΩf , then we write
PΩf = PΩf , and we say that f is resolutive. We call PΩf the Perron solution of f .

A. Björn, J. Björn and Shanmugalingam [4, Theorem 6.1] showed that if f ∈
C(∂Ω), then f is resolutive. Moreover, if f ∈ N1,p(X), then f is resolutive and
PΩf = HΩf , by [4, Theorem 5.1]. We define the p-harmonic measure as follows.

Definition 2.10. Let U be an open subset of X and let E be a Borel set in ∂U .
The p-harmonic measure evaluated at x of E in U is defined by

ωp(x,E, U) = PUχE(x) for x ∈ U.

The p-harmonic measure is not additive because of the non-linear nature of p-
harmonic functions. Therefore the p-harmonic measure is not a measure.

Definition 2.11. Let E ⊂ U ⊂ X. We define the relative p-capacity of E in U
by

Capp(E, U) = inf
u

ˆ

U

gp
u dµ,

where the infimum is taken over all u ∈ N1,p
0 (U) such that u ≥ 1 on E.

Finally, we observe some properties for M. The following proposition shows an
elementary property for M (see [2, Lemma 2.2]).

Proposition 2.12. Let ψ ∈ M. If c > 1 and 0 < s ≤ t ≤ cs, then ψ(s) ≤
ψ(t) ≤ cψ(s).

In Section 1 we have assumed that ψ ∈M is concave. The relevance of concavity
of ψ ∈M follows from the following propositions.

Proposition 2.13. Let ϕ be a nondecreasing subadditive function on (0,∞), i.e.,
if t1, t2 > 0, then ϕ(t1 + t2) ≤ ϕ(t1) + ϕ(t2). Suppose that limt→0 ϕ(t) = ϕ(0) = 0.
Then there is a function ψ ∈M satisfying

1

2
ψ(t) ≤ ϕ(t) ≤ ψ(t) for t ≥ 0.

Proposition 2.14. Let (A, dA) be a geodesic space and let f be a uniformly
continuous function on A. Then

ϕ(t) = ϕ(f, t) = sup
dA(x,y)≤t

x,y∈A

|f(x)− f(y)| for t ≥ 0.

is a subadditive function on (0,∞).

See [2, Section 5], [5, Chapter 2 §6], and [11, Section 3] for these accounts.
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3. Proof of Theorem 1.2

To prove Theorem 1.2 we recall the following geometric property (see [6, Propo-
sition 4.4]).

Lemma 3.1. The space X is quasiconvex, i.e., there exists a constant C5 ≥ 1
such that every pair of points x, y ∈ X can be joined by a curve of length at most
C5d(x, y). Hence if x ∈ E  X, then

dist(x,X \ E) ≤ dist(x, ∂E) ≤ C5 dist(x,X \ E).

Proof of Theorem 1.2. Since the LHMD(ψ) property implies the GHMD(ψ)
property, it is sufficient to show that Condition (ii) implies Condition (iii) and that
Condition (i) is equivalent to Condition (ii).

(ii) =⇒ (iii). Suppose (ii) holds. Let a ∈ ∂Ω and r > 0. Then

ψ(r)χ∂Ω\B(a,r)(ξ) ≤ τa,ψ(ξ) for ξ ∈ ∂Ω.

The comparison principle yields

ψ(r)ωp(x, ∂Ω \B(a, r), Ω) ≤ PΩτa,ψ(x) for x ∈ Ω.

Hence, (ii) implies that

ψ(r)ωp(x, ∂Ω \B(a, r), Ω) ≤ Cψ(d(x, a)) for x ∈ Ω.

Thus (iii) follows.
(i) =⇒ (ii). Suppose ‖PΩ‖ψ < ∞. Since τa,ψ ∈ Λψ(∂Ω), we have

‖PΩτa,ψ‖ψ,Ω ≤ ‖PΩ‖ψ‖τa,ψ‖ψ,∂Ω < ∞.

By definition

|PΩτa,ψ(x)− PΩτa,ψ(y)| ≤ ‖PΩτa,ψ‖ψ,Ωψ(d(x, y)) for x, y ∈ Ω.

Letting y → a, we see that PΩτa,ψ(x) ≤ ‖PΩτa,ψ‖ψ,Ωψ(d(x, a)). Thus (ii) follows with
C = ‖PΩτa,ψ‖ψ,Ω.

(ii) =⇒ (i). Suppose (ii) holds. Let f ∈ Λψ(∂Ω). Since |PΩf | is bounded by the
supremum of |f | over ∂Ω, it is sufficient to show that

(3.1) |PΩf(x)− PΩf(y)| ≤ C‖f‖ψ,∂Ωψ(d(x, y)) for x, y ∈ Ω.

Let x, y ∈ Ω. Without loss of generality, we may assume that dist(x,X \ Ω) ≥
dist(y,X \Ω). Let R = dist(x,X \Ω)/2κ. Since ∂Ω is compact, we can take x∗ ∈ ∂Ω
such that d(x, x∗) = dist(x, ∂Ω). Then Lemma 3.1 gives

(3.2) 2κR ≤ d(x, x∗) ≤ 2κC5R.

Let f0(ξ) = f(ξ)− f(x∗). By definition

|f0(ξ)| ≤ ‖f‖ψ,∂Ωτx∗,ψ(ξ) for ξ ∈ ∂Ω.

Hence, by the comparison principle and (ii), we obtain

(3.3) |PΩf0(z)| ≤ C‖f‖ψ,∂Ωψ(d(z, x∗)) for z ∈ Ω.

Let us consider two cases.
Case 1: d(x, y) ≤ d(x, x∗)/(2κC5). Let r = d(x, y). Then r ≤ R. Since PΩf0 is

p-harmonic, Theorem 2.7 gives

osc
B(x,κr)

PΩf0 ≤ C

(
r

R

)α0

osc
B(x,κR)

PΩf0.
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We obtain from (3.2) that

d(z, x∗) ≤ d(x, z) + d(x, x∗) ≤ (1 + 2C5)κR for z ∈ B(x, κR).

By Proposition 2.12 we have

ψ(d(z, x∗)) ≤ ψ((1 + 2C5)κR) ≤ (1 + 2C5)κψ(R).

Thus by (3.3) we obtain

osc
B(x,κR)

PΩf0 ≤ 2 sup
B(x,κR)

|PΩf0| ≤ C‖f‖ψ,∂Ωψ(R).

Hence

(3.4) |PΩf(x)− PΩf(y)| = |PΩf0(x)− PΩf0(y)| ≤ C

(
r

R

)α0

‖f‖ψ,∂Ωψ(R).

Since ψ ∈M0, there is a constant C > 0 such that
(

s

r

)α0

≤ C
ψ(s)

ψ(r)
for 0 < s < r < 2κ diam(Ω).

Hence by (3.4), we have

|PΩf(x)−PΩf(y)| ≤ C‖f‖ψ,∂Ωψ(d(x, y)).

Case 2: d(x, y) ≥ d(x, x∗)/(2κC5). We have

d(y, x∗) ≤ d(x, y) + d(x, x∗) ≤ (1 + 2κC5)d(x, y).

It follows from Proposition 2.12 and (3.3) that

|PΩf(x)−PΩf(y)| = |PΩf0(x)− PΩf0(y)| ≤ |PΩf0(x)|+ |PΩf0(y)|
≤ C‖f‖ψ,∂Ω(ψ(d(x, x∗)) + ψ(d(y, x∗)))

≤ C‖f‖ψ,∂Ωψ(d(x, y)).

Combining the above two cases, we obtain (3.1). Thus (i) follows. ¤

4. Equivalence between GHMD(ψ) and LHMD(ψ)

If ψ = ϕα, then the GHMD(ψ) property and the LHMD(ψ) property are equiv-
alent for Euclidean domains (see [1]) and for a metric measure space (see [3]). If
ψ 6= ϕα, it is not known whether this equivalence holds or not. In this section we
show that the equivalence holds under certain additional assumptions.

Let S(x, r) = {y ∈ X : d(x, y) = r} be the sphere with center at x and radius
r and let A(x, r, R) be the annulus B(x,R) \ B(x, r) with center at x and radii r
and R. We say that X is linearly locally connected (abbreviated to LLC) if there are
constants C6 > 1 and r0 > 0 such that for every a ∈ X and 0 < r < r0 each pair of
points x, y ∈ S(a, r) can be connected by a curve lying in A(a, r/C6, C6r).

Theorem 4.1. Let Ω be a bounded regular domain. Assume that X is LLC and
there is a constant C > 0 such that

(4.1)
µ(B(a, r))

µ(B(a,R))
≤ C

(
r

R

)p
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whenever a ∈ ∂Ω and 0 < r ≤ R < diam(X). Let ψ ∈M0. Suppose that there exist
constants 0 < C < 1 and r0 > 0 such that

(4.2) inf
0<r<r0

ψ(r)

ψ(Cr)
> 1.

Then Ω satisfies the LHMD(ψ) property if and only if Ω satisfies the GHMD(ψ)
property.

Theorem 4.1 is new, even for the classical setting, i.e., for harmonic functions in
Euclidean domains.

The proof is decomposed mainly into two steps. First, we show that the GHMD(ψ)
property implies that the uniform perfectness of the boundary (Lemma 4.3). Second,
with the aid of the uniform perfectness and a chain property, we will complete proof
of Theorem 4.1. See [3, Lemmas 5.1 and 5.2] for Hölder continuity.

Definition 4.2. Let E be a subset of X. We say that E is uniformly perfect if
there are constants 0 < C7 < 1 and r0 > 0 such that A(x,C7r, r) ∩ E 6= ∅ for every
x ∈ E and all 0 < r < r0.

Lemma 4.3. Let Ω be a bounded regular domain. Assume that X is LLC and
µ satisfies (4.1). Let ψ ∈ M0. Suppose that ψ satisfies (4.2). If Ω satisfies the
GHMD(ψ) property, then ∂Ω is uniformly perfect.

For the proof we state the following lemma, which is proved in the same way as
[3, Lemma 5.3].

Lemma 4.4. Assume that µ satisfies (4.1). If 0 < 2r ≤ R < diam(Ω)/2, then

Capp(B(a, r), B(a,R))

µ(B(a,R))
≤ C

(
log

R

r

)1−p

R−p.

Proof of Lemma 4.3. Let a ∈ ∂Ω and 0 < ρ1 < ρ2 < diam(Ω)/2. Suppose
A(a, ρ1, ρ2) does not intersect ∂Ω. Then it is sufficient to show that the ratio ρ1/ρ2

is bounded below by a positive constant C depending only on Ω and ψ.
Without loss of generality, we may assume that ρ1 ≤ ρ2/(2C

2
6). By the LLC

property we see that A(a, C6ρ1, ρ2/C6) ⊂ Ω. For simplicity, we let r = C6ρ1 and
R = ρ2/C6. Then

(4.3) A(a, r, R) ⊂ Ω.

Letting ρ2 be larger if necessary, we may assume that S(a, C6R) has a point b ∈ ∂Ω.
Let K = B(a, r) \ Ω. Observe from (4.3) that K = B(a,R) \ Ω. By Lemma 4.4,

(4.4)
Capp(K, Ω ∪K)

µ(B(a,R))
≤ Capp(B(a, r), B(a, R))

µ(B(a,R))
≤ C

(
log

R

r

)1−p

R−p.

Let uK be the p-capacitary potential for the condenser (K, Ω ∪ K), i.e., uK is p-
harmonic on Ω, uK = 1 p-q.e. on K, uK = 0 p-q.e. on X \ (Ω ∪K) and

Capp(K, Ω ∪K) =

ˆ

X

gp
uK

dµ.

We prove that uK ≤ 1/3 p-q.e. on B(b, βR) for some 0 < β < 1. Since r ≤ R/2
and A(a, r, R)∩ ∂Ω = ∅, it follows from the comparison principle and the GHMD(ψ)
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property that

(4.5) uK(x) ≤ C2
ψ(d(x, b))

ψ(R/2)
for x ∈ Ω ∩B(b, R/2).

Since ψ satisfies (4.2), there is a constant 0 < C8 < 1 such that

S = inf
0<r<diam(Ω)/2

ψ(r)

ψ(C8r)
> 1.

Therefore, we have
ψ(Cj−1

8 R/2)

ψ(Cj
8R/2)

≥ S

for every positive integer j. Now multiplying the above inequalities over j = 1, 2, . . . , N ,
we get

ψ(R/2)

ψ(CN
8 R/2)

≥ SN .

We can find a positive integer N such that
C2

SN
≤ 1

3
.

Let β = CN
8 /2. By the monotonicity of ψ, if x ∈ B(b, βR), then

ψ(d(x, b)) ≤ ψ(βR) ≤ ψ(R/2)/(3C2).

Hence, by (4.5) we obtain

uK(x) ≤ 1

3
for x ∈ Ω ∩B(b, βR)

Since uK = 0 p-q.e. on B(b, R/2) \ Ω, we have uK ≤ 1/3 p-q.e. on B(b, βR).
Next we prove that uK ≥ 2/3 p-q.e. on B(a, βR). It follows from (4.3) and the

comparison principle that

uK(x) = 1− ωp(x, ∂Ω \B(a,R), Ω) for x ∈ Ω.

By the GHMD(ψ), we have

ωp(x, ∂Ω \B(a,R), Ω) ≤ C2
ψ(d(x, a))

ψ(R)
for x ∈ Ω ∩B(a,R)

Hence (4.2) implies

uK(x) ≥ 2

3
for x ∈ Ω ∩B(a, βR)

Since uK = 1 p-q.e. on B(a, βR) \ Ω ⊂ B(a,R) \ Ω, we obtain uK ≥ 2/3 p-q.e. on
B(a, βR).

Let v = max{uK , 1/3} − 1/3 ≥ 0. Then

µ({x ∈ B(a, 2C6R) : v(x) = 0})
µ(B(a, 2C6R))

≥ µ(B(b, βR))

µ(B(a, 2C6R))
≥ γ

where γ > 0 depends only on β. Hence the p-Sobolev inequality (2.3) and the
doubling property of µ imply

( ˆ

B(a,2C6R)

vp dµ

)1/p

≤ CR

( ˆ

B(a,2κC6)

gp
v dµ

)1/p

.
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By the doubling property of µ we haveˆ

B(a,2C6R)

vp dµ ≥
ˆ

B(a,βR)

(1/3)p dµ ≥ Cµ(B(a,R)).

Hence, we obtain

Capp(K, Ω ∪K) =

ˆ

X

gp
uK

dµ ≥
ˆ

B(a,2κC6R)

gp
v dµ

≥ CR−p

ˆ

B(a,2C6R)

vp dµ ≥ CR−pµ(B(a,R)).

This, together with (4.4), implies that r/R is bounded below and therefore so is
ρ1/ρ2. Thus the lemma is proved. ¤

To prove Theorem 4.1 we state two lemmas in [3].

Lemma 4.5. Let 0 < R < diam(Ω)/6κ and let u be a p-subminimizer on
B(z, 2κR). Suppose 0 ≤ u ≤ 1 on B(z, 2κR) and

µ({x ∈ B(z, R) : u(x) > 1− s})
µ(B(z, R))

≤ γ < 1

for some 0 < s < 1. Then there exists a constant t > 0 such that

u ≥ 1− t on B(z.R/2).

The constant t is independent of u, z, and R.

Lemma 4.6. Let 0 < R < diam(Ω)/6κ. Let B(z1, R/2) ∩ B(z2, R/2) 6= ∅.
Suppose u is a p-subminimizer on B(z2, 2κR) with 0 ≤ u ≤ 1 in B(z2, 2κR). If u ≤
1−ε1 on B(z1, R/2) for some ε1 > 0, then there is a positive constant ε2 = ε2(ε1) < 1
such that u ≤ 1− ε2 on B(z2, R/2).

Proof of Theorem 4.1. It is sufficient to show that if Ω satisfies the GHMD(ψ)
property, then Ω satisfies the LHMD(ψ) property. Since Ω is uniformly perfect by
Lemma 4.3, there are constants 0 < C7 < 1 and r0 > 0 such that A(x,C7r, r)∩∂Ω 6= ∅
for every x ∈ ∂Ω and all 0 < r < r0. Let a ∈ ∂Ω and 0 < r < r0. Then we can find
ρ such that S(a, ρ) ∩ ∂Ω 6= ∅ and C7r ≤ ρ < r.

Let c be a small positive number to be determined later. By the LLC prop-
erty and the doubling property of µ we can find finitely many points z1, . . . , zN ∈
A(a, ρ/C6, C6ρ) such that the union ∪N

j=1B(zj, cr) is a covering of S(a, ρ) that forms a
chain, that is, for every k, l ∈ {1, . . . , N} there is a subcollection of balls Bj1 , . . . , Bjm

such that Bk = Bj1 , Bl = Bjm and Bji
∩ Bji+1

6= ∅ for i ∈ {1, . . . , m − 1}. Observe
that

(4.6)
N⋃

j=1

B(zj, 4κcr) ⊂ A(a,
ρ

C6

−4κcr, C6ρ+4κcr) ⊂ A(a, (
C7

C6

−4κc)r, (C6+4κc)r).

Let c > 0 be small enough so that 4κc ≤ C7/(2C6). Let η = C7/(2C6). Consider

u =

{
ωp(∂Ω ∩B(a, ηr), Ω) on Ω,

0 on X \ Ω.

Then 0 ≤ u ≤ 1 on X and u is a p-subminimizer in X \B(a, ηr) ⊃ ∪N
j=1B(zj, 4κcr).

Fix z∗ ∈ ∂Ω∩S(a, ρ). Without loss of generality, we may assume that z∗ ∈ B(z1, cr).
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Since
B(z∗, (4κ− 1)cr) ⊂ B(z1, 4κcr) ⊂ X \B(a, ηr),

it follows from the comparison principle that

u(x) ≤ ωp(x, ∂Ω \B(z∗, (4κ− 1)cr), Ω) for x ∈ Ω.

Since Ω satisfies the GHMD(ψ) property and ψ satisfies (4.2), we obtain

u(x) ≤ 1

2
for x ∈ B(z∗, βr) ∩ Ω

for some β > 0 independent of a and r. Since u = 0 on X \ Ω, we have u ≤ 1/2 on
B(z∗, βr). Hence Lemma 4.5 with R = 2cr yields that u ≤ 1 − ε1 on B(z1, cr) for
some ε1 > 0 independent of a and r. Since ∪N

j=1B(zj, cr) is a chain, we find some
ball, say B(z2, cr), intersecting B(z1, cr). Then by Lemma 4.6 we have u ≤ 1− ε2 on
B(z2, cr) for some ε2 > 0. We may repeat this argument finitely many times until, by
the finiteness of the cover and its chain property, we eventually obtain u ≤ 1− ε0 on
∪N

j=1B(zj, cr) for some ε0 > 0 that is independent of a and r. In particular, u ≤ 1−ε0

on S(a, ρ). Since

ωp(∂Ω ∩B(a, ηr), Ω) = 1− ωp(∂Ω \B(a, ηr), Ω) on Ω,

it follows that ωp(∂Ω \B(a, ηr), Ω) ≥ ε0 on Ω∩S(a, ρ). By the comparison principle
we have

1

ε0

ωp(∂Ω \B(a, ηr), Ω) ≥ ωp(Ω ∩ ∂B(a, ρ), Ω ∩B(a, ρ)) on Ω ∩B(a, ρ).

Hence the GHMD(ψ) property and Proposition 2.12 yield
ωp(x, Ω ∩ ∂B(a, r), Ω ∩B(a, r)) ≤ ωp(x, Ω ∩ ∂B(a, ρ), Ω ∩B(a, ρ))

≤ C2

ε0

ψ(d(x, a))

ψ(ηr)
≤ C2

ε0η

ψ(d(x, a))

ψ(r)

for all x ∈ Ω ∩ B(a, ρ). Because ρ ≥ C7r, we obtain d(x, a) ≥ C7r for all x ∈
Ω ∩B(a, r) \B(a, ρ). Proposition 2.12 yields

ωp(x, Ω ∩ ∂B(a, r), Ω ∩B(a, r)) ≤ 1 ≤ ψ(d(x, a))

ψ(C7r)
≤ 1

C7

ψ(d(x, a))

ψ(r)

for all x ∈ Ω ∩B(a, r) \B(a, ρ). Thus Ω satisfies the LHMD(ψ) property. ¤

Remark 4.7. We say that X is Ahlfors Q-regular if there exists a positive con-
stant C such that

C−1rQ ≤ µ(B(x, r)) ≤ CrQ for every B(x, r).

If X is Ahlfors Q-regular with Q ≥ p, then µ satisfies (4.1). Moreover if X supports a
(1, p)-Poincaré inequality and X is Ahlfors Q-regular with Q ≥ p, then X is LLC (see
[6, Proposition 4.5]). Therefore, if X is Ahlfors Q-regular with Q ≥ p and ψ ∈ M0

satisfies (4.2), then Ω satisfies the LHMD(ψ) property if and only if Ω satisfies the
GHMD(ψ) property.

Remark 4.8. Let ψ = ψαβ. If α > 0, then ψαβ satisfies (4.2). Therefore if X is
Ahlfors Q-regular with Q ≥ p, then the LHMD(ψαβ) property and the GHMD(ψαβ)
property are equivalent. On the other hand, ψ0β does not satisfy (4.2), and we do
not know whether the equivalence holds or not.
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5. Proof of Theorem 1.3 and Corollary 1.4

In this section we give the proof of Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Let a ∈ ∂Ω and u = PΩτa,ψ. We will show (ii) in
Theorem 1.2 holds, i.e., u(x) ≤ Cψ(d(x, a)). For ρ > 0 we define a function f(ρ) by

f(ρ) = sup
Ω∩S(a,ρ)

u(x).

It is sufficient to show that

(5.1) f(ρ) ≤ Cψ(ρ)

for small ρ > 0. Let 0 < ρ < r < diam(Ω). By definition of τa,ψ we see that
u ≤ ψ(r) + f(r)χΩ∩∂B(a,r) on ∂(Ω ∩B(a, r)). The comparison principle yields

u(x) ≤ ψ(r) + f(r)ωp(x, Ω ∩ ∂B(a, r), Ω ∩B(a, r))

for all x ∈ Ω ∩B(a, r). Hence, the LHMD(ψ1) property implies

(5.2) f(ρ) ≤ ψ(r) + C1f(r)
ψ1(ρ)

ψ1(r)
= ψ(r) + C1f(r)

ψ(ρ)

ψ(r)

ψ2(ρ)

ψ2(r)
.

Without loss of generality, we assume that r0 < diam(Ω). We can find a positive
integer N such that CN

3 ≤ 1/(2C1). By (1.3) we have

(5.3) M = sup
0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= CN

3

}
< ∞.

We can find the number 0 < r′0 < r0 such that

ψ2(r
′
0)

ψ2(r0)
= CN

3 .

Let 0 < r < r′0. Then by (5.3) we can find a sequence {ρj}n
j=1 such that r = ρ0 <

ρ1 < . . . < ρn−1 < r′0 ≤ ρn < r0,

ψ2(ρj)

ψ2(ρj+1)
= CN

3 ≤ 1

2C1

for j = 0, 1, . . . , n− 1,

and

ψ(ρj+1)

ψ(ρj)
≤ M for j = 0, 1, . . . , n− 1.

Hence, by (5.2) we obtain

f(ρj) ≤ ψ(ρj+1) +
1

2
f(ρj+1)

ψ(ρj)

ψ(ρj+1)
for j = 0, 1, . . . , n− 1.
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These inequalities imply that

f(r) = f(ρ0) ≤ ψ(ρ1) + ψ(ρ0)
n−1∑
j=1

1

2j

ψ(ρj+1)

ψ(ρj)
+

1

2n
f(ρn)

ψ(ρ0)

ψ(ρn)

≤ Mψ(ρ0) + Mψ(ρ0)
n−1∑
j=1

1

2j
+ f(ρn)

ψ(ρ0)

ψ(ρn)

≤ Mψ(ρ0) + Mψ(ρ0) + f(ρn)
ψ(ρ0)

ψ(ρn)

≤ (2M +
ψ(diam(Ω))

ψ(r′0)
)ψ(r),

where f ≤ ψ(diam(Ω)) and r′0 ≤ ρn are used in the last inequality. Thus (5.1) follows,
and so (ii) in Theorem 1.2 holds. Hence ‖PΩ‖ψ < ∞ by Theorem 1.2. ¤

Proof of Corollary 1.4. Let us prove (1.3) with

C3 = sup
0<r≤r0

ψ2(C4r)

ψ2(r)
< 1.

Fix 0 < r ≤ r0. Then
ψ2(C4r)

ψ2(r)
≤ C3.

By the monotonicity of ψ2 we can find a number ρ such that C4r ≤ ρ < r and
ψ2(ρ)

ψ2(r)
= C3.

Proposition 2.12 yields that
ψ(r)

ψ(ρ)
≤ ψ(r)

ψ(C4r)
≤ 1

C4

.

Hence we have

sup
0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= C3

}
≤ 1

C4

< ∞.

Next we prove that limr→0 ψ2(r) = 0. By the monotonicity of ψ2 the limit of
ψ2(r) exists, as r → 0. If limr→0 ψ2(r) 6= 0, then we would have

lim
r→0

ψ2(r)

ψ2(C4r)
= 1.

This would contradict (1.4). Hence limr→0 ψ2(r) = 0. Since the assumptions of
Theorem 1.3 are satisfied, it follows that ‖PΩ‖ψ < ∞. ¤

6. Proof of Corollaries 1.5, 1.6 and 1.7

In this section we prove Corollaries 1.5, 1.6, and 1.7.

Proof of Corollary 1.5. We divide the proof into the following two cases.
Case 1: (i) or (ii) holds. Let ψ = ψαβ, ψ1 = ψα′β′ , and ψ2 = ψ1/ψ. Let r0 be a

small positive number. Then

ψ2(r) = rα′−α(− log r)−β′+β for 0 < r ≤ r0.
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Hence ψ2 is increasing on (0, r0), and for some constant C4 ∈ (0, 1)

inf
0<r≤r0

ψ2(r)

ψ2(C4r)
> 1.

Since the assumptions of Corollary 1.4 are satisfied, we have ‖PΩ‖ψαβ
< ∞.

Case 2: (iii) holds. Let ψ = ψ0β, ψ1 = ψ0β′ , and ψ2 = ψ1/ψ. Let r0 be a small
positive number. Then

ψ2(r) = (log r)−β′+β for 0 < r ≤ r0.

Hence limr→0 ψ2(r) = 0 and ψ2 is increasing on (0, r0). Fix a constant 0 < η < 1 and
0 < r ≤ r0. Let λ = η1/(β−β′) and ρ = rλ. Then we have

ψ2(ρ)

ψ2(r)
= λ−β′+β = η,

and
ψ(r)

ψ(ρ)
= λβ.

Hence
sup

0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= η

}
= λβ < ∞.

Thus it follows from Theorem 1.3 that ‖PΩ‖ψ0β
< ∞. ¤

To prove Corollaries 1.6 and 1.7 we observe the following lemma (see [3, Lem-
ma 6.1]).

Lemma 6.1. A domain Ω satisfies the LHMD(ϕα2) property for some α2 > 0 if
and only if X \ Ω is uniformly p-fat.

Proof of Corollary 1.6. First suppose that X \ Ω is uniformly p-fat. It follows
from Lemma 6.1 that there is a constant α2 > 0 such that Ω satisfies the LHMD(ϕα2)
property. Let α1 = min{α0, α2}. Then Ω satisfies the LHMD(ϕα1) property. Corol-
lary 1.5 yields that ‖PΩ‖ψαβ

< ∞ for 0 < α < α1 and β ∈ R.
Conversely, suppose that ‖PΩ‖ψαβ

< ∞ for some 0 < α < α0 and β ∈ R. Assume
that X is Ahlfors Q-regular with Q ≥ p. By Theorem 1.2 Ω satisfies the GHMD(ψαβ)
property. It follows from Remark 4.8 that Ω satisfies the LHMD(ψαβ) property. Let
0 < α′ < α. By Corollary 1.5 we obtain that ‖PΩ‖ϕα′ < ∞. Theorem 1.2 and
Theorem 4.1 imply that Ω satisfies the LHMD(ϕα′) property. Lemma 6.1 yields that
X \ Ω is uniformly p-fat. ¤

Proof of Corollary 1.7. Suppose that X \ Ω is uniformly p-fat. It follows from
Lemma 6.1 that there is a constant α2 > 0 such that Ω satisfies the LHMD(ϕα2) prop-
erty. Let α1 = min{α0, α2}. Then Ω satisfies the LHMD(ϕα1) property. Corollary 1.5
yields that ‖PΩ‖ψ0β

< ∞ for every β ∈ R. ¤
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