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Abstract. We prove that, if E is the Engel group and u is a stable solution of ∆Eu = f(u),
then

ˆ

{∇Eu 6=0}


|∇Eu|2

{(
p +

〈
(Hu)T ν, v

〉

|∇Eu|

)2

+ h2

}
− J


 η2 ≤

ˆ

E

|∇Eη|2|∇Eu|2

for any test function η ∈ C∞0 (E). Here above, h is the horizontal mean curvature, p is the imaginary
curvature and

J := 2(X3X2uX1u−X3X1uX2u) + (X4u)(X1u−X2u)

This can be interpreted as a geometric Poincaré inequality, extending the work of [21, 22, 13] to
stratified groups of step 3. As an application, we provide a non-existence result.

1. Introduction

The Engel group is the Lie group E having Lie algebra e spanned by the vector
fields X1, X2, X3, X4 subject to the commuting relations

[X1, X2] = X3, [X1, X3] = [X2, X3] = X4.

The sub-Riemannian geometry of E is the one in which the horizontal vectors in
V1 := span(X1, X2) play a distinguished role. The geometry is not trivial because
V1, V2 := [V1, V1] and V3 := [V1, V2] span e. The essence of sub-Riemannian geometry
is that its information is carried out only by V1, but in a way which might differ
from the Riemannian case. For istance, to better understand the difficulties hidden
by the misterious geometry of the Engel group before going into the details of the
semilinear equations on it let us consider the case of geodesics. The distance between
two points P and Q in E can be computed as the infimum of the sub-Riemannian
length of smooth curves joining them. Namely, we require that γ̇ = a1X1+a2X2 ∈ V1

and compute the length as

length(γ) =

ˆ √
a2

1 + a2
2 dt.

By definition there are ∞1 choices for the (unit) tangent vector of a geodesic at a
point P of E, but there are ∞4 points in E and (Chow’s Theorem) they can all
be reached from P along geodesics. Having each geodesic ∞1 points, there must
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be two “hidden” real parameters to account for the ∞3 multiplicity to be reached
starting from each tangent vector at P . In particulat, let us consider a smooth three-
dimensional hypersurface S ⊂ E with P ∈ E and consider the problem of finding
the geodesic starting at P such that, for small t, which is the only length minimizing
geodesic between P and γ(t). Surely, γ̇(t) := ν ∈ V1 must be the vector normal to
S in the sub-Riemannian geometry, but this leaves us with ∞2 geodesics to choose
from. In [1] and [2] the problem was considered in the Heisenberg group, where the
only missing parameter was rescued in terms of the “imaginary curvature” of S. In [3]
the same problem was considered in groups of any step, although most applications
were proved in the step-two case only. We refer to Section 2 for a more detailed
treatment of the Engel group.

We now introduce the problem we study and present our main result. Given a
domain Ω ⊆ E we consider solutions u of the following semilinear equation in E,

(1) ∆Eu = f(u).

For simplicity, we assume f ∈ C∞(R): in this way, u ∈ C∞(Ω) by the regularity
theory of [18] (the case of less regular nonlinearities f may be treated analogously,
with only minor modifications).

Moreover, we assume that u is stable, that is

0 ≤
ˆ

E

〈∇Eη,∇Eη〉E +

ˆ

E

ḟ(u)η2(2)

for every η ∈ C∞
0 (Ω).

The stability condition in (2) has been widely studied in the calculus of variation
setting: indeed, it states that the second variation of the energy functional associated
to (1) is nonnegative at the critical point u—hence, for instance, minimal solutions
are always stable, but, in principle, stability is a weaker condition than minimality.

Equation (1) is called semilinear, since the only nonlinearity depends on the
solution u (not on the space, neither on the derivatives of u): such kind of equations
have been studied in detail in the Euclidean framework, and in the sub-Riemannian
one as well (see, e.g. [5, 6, 7, 17]), and they possess the remarkable geometric property
that the operator is constant along the level sets of the solution.

At any point of
E0 := {x ∈ Ω | ∇Eu 6= 0}

we denote by

ν =
∇Eu

|∇Eu|
the intrinsic unit normal to the level set of u, to wit ν is the normalized projection
on the horizontal fiber of the Riemannian normal.

We shall also consider the intrinsic tangent direction to the level set of u

v := −Jν,(3)

where J denotes the symplectic matrix

J :=

(
0 −1
1 0

)
.

Let us observe that ∀p ∈ E0

〈ν(p), v(p)〉p,E = 0,



A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group 359

where 〈·, ·〉p,E is the standard scalar product on the fiber HpE. We denote by Hu the
intrinsic Hessian matrix, i.e.

Hu :=

(
X1X1u X2X1u
X1X2u X2X2u

)
.

As usual, we define
(Hu)2 := (Hu)(Hu)T

and
|Hu| :=

√
|∇EX1u|2 + |∇EX2u|2.

Also, in E0, following an analogy in the Heisenberg group (see [1, 2, 19, 20]), we
define the horizontal mean curvature

(4) h := divE ν

and the imaginary curvature

(5) p := − X3u

|∇Eu| .

Let also
J := 2(X3X2uX1u−X3X1uX2u) + (X4u)(X1u−X2u).

With this notation, we have:

Theorem 1.1.
ˆ

E0


|∇Eu|2

{(
p +

〈
(Hu)T ν, v

〉

|∇Eu|

)2

+ h2

}
− J


 η2 ≤

ˆ

E

|∇Eη|2|∇Eu|2

for any η ∈ C∞
0 (Ω).

Theorem 1.1 is a sort of geometric weighted Poincaré inequality, in the sense that
the weighted L2-norm of any test function is bounded by a weighted L2-norm of its
gradient, and the weights are built with geometric objects.

In the Euclidean case, the analogue of Theorem 1.1 was established in [21, 22],
and recently many extensions have been performed (see, in particular, [11, 12]). As
far as we know, the first applications in the sub-Riemannian setting, were performed
in [4, 13] for the Heisenberg group and in [14] for the Grushin plane. In several
cases, these type of geometric weighted inequalities lead to rigidity results (such
as classification, symmetry, or non existence, of solutions). Differently from the
Euclidean case, the weight on the left hand side of the inequality does not need to be
positive in general, due to the presence of J . Thus, the presence of noncommutating
vector fields, complicates the geometry of the level sets via the sign of J . Indeed,
if J ≤ 0, when the right hand side of the inequality in Theorem 1.1 vanishes, one
obtains that the level sets of u satisfy the geometric equations, see Corollary 4.2,

(6)





p +

〈
(Hu)T ν, v

〉

|∇Eu| = 0,

h = 0.

Also, a more geometric interpretation of the quantity J , in dependence of the intrinsic
tangent and normal vectors, will be given in Lemma 3.8.
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In this paper, Theorem 1.1 is a first attempt to adapt these geometric weighted
inequalities to stratified groups of step higher than 2 (for other different weighted
inequalities in R4 obtained via the Engel group, see Theorem 1.4 of [15]).

The higher the step of the group, the more complicated are the combinatorics
occurring in the inequality, and the more difficult is the geometric interpretation of
the quantities involved. Nevertheless, the Engel group still mantains a reasonable
level of geometric insight and provides a challenging source of problems for this
approach. For instance, we think that it would be interesting to investigate whether
or not rigidity results and geometric properties of stable solutions may be obtained
from these kind of Poincaré inequalities (or by other methods as well). In this spirit
we are able to prove a first non-existence result for semilinear equations in the Engel
group in Theorem 4.7.

To conclude this introduction we think that is interesting to propose some sug-
gestion for further research. In particular we think that it could be interesting to see
if a result like the one proved in Theorem 1.1 holds in more general Carnot groups.
Moreover, we think that it could be stimulating to study the geometric nature of
J , in particular it would be desirable to relate J with the sub-Riemannian metric
structure of E.

The organization of this paper is as follows. In Section 2, we recall what the Engel
group is and what its basic properties are. Then, we prove Theorem 1.1 in Section 3.
Finally, in Section 4, we derive the geometric equations (6) in Corollary 4.2, and we
provide a non-existence result in Theorem 4.7.

2. The Engel group

We recall the basic definitions and properties of the Engel group.

Definition 2.1. The Engel algebra is the finite dimensional Lie algebra e with
basis (X1, X2, X3, X4) where the only nonvanishing commutators relationship among
the generators are

(7) [X1, X2] = X3, [X1, X3] = [X2, X3] = X4.

Remark 2.2. It is easy to see that the Engel algebra is stratified of step 3, i.e.

e = e1 ⊕ e2 ⊕ e3,

where e1 := span{X1, X2}, e2 := span{X3} and e3 := span{X4} and

[e1, e1] = e2, [e1, e2] = e3, [e1, e3] = {0}.(8)

Definition 2.3. The Engel group, denoted by E, is the simply connected nilpo-
tent Lie group associated to e.

Since E is a Carnot group we can represent it by means of graded coordinates
associated to the basis (X1, X2, X3, X4); it follows that E = (R4, ·, {δr}{r>0}), where
∀(x1, x2, x3, x4), (y1, y2, y3, y4) ∈ E,

(x1, x2, x3, x4) · (y1, y2, y3, y4) :=
(
x1 + y1, x2 + y2, x3 + y3 +

1

2
(x1y2 − x2y1),

x4 + y4 +
1

2
[(x1y3 − x3y1) + (x2y3 − x3y2)]

+
1

12
[(x1 − y1 + x2 − y2)(x1y2 − x2y1)]

)
(9)
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and the homogeneous dilations on E are

δr(x1, x2, x3, x4) := (rx1, rx2, r
2x3, r

3x4), r > 0.

The rappresentation of the basis (X1, X2, X3, X4) on the graded coordinates gives

X1(x1, x2, x3, x4) = ∂1 − x2

2
∂3 − (

x3

2
+

x2

12
(x1 + x2))∂4,

X2(x1, x2, x3, x4) = ∂2 +
x1

2
∂3 − (

x3

2
− x1

12
(x1 + x2))∂4,

X3(x1, x2, x3, x4) = ∂3 +
1

2
(x1 + x2)∂4,

X4(x1, x2, x3, x4) = ∂4.

We fix a left invariant Riemannian metric on R4 that makes the above vector fields
orthonormal, i.e. at every p ∈ E we give a scalar product 〈·, ·〉p,E such that

〈Xi(p), Xi(p)〉p,E = 1, i ∈ {1, 2, 3, 4},
and

〈Xi(p), Xj(p)〉p,E = 0 if i 6= j.

As usual in the context of Carnot groups, for every p ∈ E we define the horizontal
fiber at p as the subspace of the tangent space at p generated by X1(p) and X2(p),
i.e.

HpE := span{X1(p), X2(p)} ⊂ TpE

and the horizontal subbundle of the tangent boundle associated to E as

HE :=
⋃
p∈E

HpE.

Finally, we briefly recall the notion of Carnot–Carathéodory distance on E, see [7]
for a more detailed treatment.

Definition 2.4. A locally Lipschitz curve λ : [0, T ] → R4 is said to be horizontal
if there are c1, c2 ∈ L∞([0, T ]) such that

λ̇(t) = c1(t)X1(λ(t)) + c2(t)X2(λ(t)) L1-q.o. t ∈ [0, T ]

and
c1(t)

2 + c2(t)
2 ≤ 1 in [0, T ].

The CC-distance between two points p, q ∈ E is defined as follows

dCC(x, y) := inf{T > 0 | ∃ λ : [0, T ] −→ R4 horizontal s.t. λ(0) = x, λ(T ) = y}.
Remark 2.5. It is a classical result that dCC is a distance on E, see [9]. More-

over, we have
dCC(x, y) = dCC(z · x, z · y) ∀x, y, z ∈ E

and
dCC(δr(x), δr(y)) = rdCC(x, y) ∀x, y ∈ E,∀r ∈ (0,∞).

Finally, let K b Ω be a compact set. Then there exists a constant α > 0 such that

dCC(x, y) ≥ α|x− y|(10)

for all x, y ∈ K.
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Definition 2.6. Let u : Ω → R be a C1 map then the horizontal gradient of u
is defined as follows

∇Eu(x) := X1u(x)X1 + X2u(x)X2.

Moreover, if u ∈ C1(Ω,R2), then the horizontal divergence of u is

divE u(x) := X1u1(x) + X2u2(x)

Finally, if u : Ω −→ R is C2, then the horizontal Laplacian of u is

∆Eu(x) := X1X1u(x) + X2X2u(x).

Remark 2.7. Let us explicitely observe that the intrinsic gradient does not
depend of the basis (X1, X2).

Remark 2.8. If, in Theorem 1.1, u does not depend on x4, then the situation
boils down to the one in the Heisenberg group (note indeed that X3X1u = X1X3u,
so Theorem 1.1 reduces to Theorem 2.3 in [13]).

3. Proof of Theorem 1.1

The proof of our first result needs some preliminary, technical computations, by
which we obtain some useful identities.

Lemma 3.1. Let j ∈ {1, 2}. If u ∈ C∞(Ω), then in E0 we have

(11) Xj|∇Eu| = 〈Xj(∇Eu), ν〉E.

Moreover, for each η ∈ C∞
0 (Ω),

∇E(|∇Eu|η) =
η

|∇Eu|(Hu)T∇Eu + |∇Eu|∇Eη(12)

and

(13) |∇E(|∇Eu|η)|2 =
η2

|∇Eu|2 |(Hu)T∇Eu|2+2η 〈∇Eu, (Hu)∇Eη〉E+|∇Eη|2|∇Eu|2.

Proof. Equation (11) is straightforward. Also, the proof of (12) follows from the
following simple calculation:

∇E(|∇Eu|η) = η∇E(|∇Eu|) + |∇Eu|∇Eη =
η

|∇Eu|(Hu)T∇Eu + |∇Eu|∇Eη.(14)

Furthermore,

|∇E(|∇Eu|η)|2 = 〈∇E(|∇Eu|η),∇E(|∇Eu|η)〉E
=

〈
η

|∇Eu|(Hu)T∇Eu,
η

|∇Eu|(Hu)T∇Eu

〉

E

+ 2

〈
η

|∇Eu|(Hu)T∇Eu, |∇Eu|∇Eη

〉

E

+ 〈|∇Eu|∇Eη, |∇Eu|∇Eη〉E .

Hence

|∇E(|∇Eu|η)|2 =

(
η

|∇Eu|
)2

|(Hu)T∇Eu|2 + 2η
〈
(Hu)T∇Eu,∇Eη

〉
E

+ |∇Eη|2|∇Eu|2

=

(
η

|∇Eu|
)2

|(Hu)T∇Eu|2 + 2η 〈∇Eu, (Hu)∇Eη〉E + |∇Eη|2|∇Eu|2,

and this proves (13). ¤
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Lemma 3.2. Let u ∈ C∞(Ω). Then

|Hu|2 − 〈
(Hu)2ν, ν

〉
E

= |(Hu)T v|2.(15)

Moreover, in E0

|(Hu)T v|2 = |∇Eu|2
{(

p +

〈
(Hu)T ν, v

〉

|∇Eu|
)2

+ h2

}
.(16)

Proof. We note that for each q ∈ E (ν(q), v(q)) is an orthonormal basis of HqE.
Then (15) follows, for instance, from Lemma 3 in [4].

In order to prove (16), we begin observing that

(Hu)T =

(
X1X1u X1X2u
X2X1u X2X2u

)

=

(
X1X1u X2X1u
X1X2u X2X2u

)
+

(
0 X1X2u−X2X1u

X2X1u−X1X2u 0

)

= Hu +

(
0 X3u

−X3u 0

)
.

(17)

Let also Z and Hν ∈ Mat(R, 2× 2) be defined as

Z := ν ⊗ (Hu)T ν and (Hν)ij := Xj(νi)

for i, j ∈ {1, 2}. So, we use (11) to obtain that

Zij + |∇Eu|(Hν)ij = νi〈Xj(∇Eu), ν〉E + |∇Eu|Xj

( Xiu

|∇Eu|
)

=
Xiu

|∇Eu| 〈Xj(∇Eu), ν〉E + XjXiu− Xiu

|∇Eu|Xj|∇Eu| = XjXiu,

that is,
Z + |∇Eu|Hν = Hu.

Hence, we can rewrite (17) in the following way

(Hu)T = (X3u)J + Z + |∇Eu|Hν .(18)

Furthermore, we immediately get:

(19) Zv =
〈
(Hu)T ν, v

〉
E

ν.

By plugging (19) into (18), we conclude that

(Hu)T v =
(
−X3u +

〈
(Hu)T ν, v

〉
E

)
ν + |∇Eu|Hνv(20)

and so

|(Hu)T v|2 =
〈
(Hu)T v, (Hu)T v

〉
E

=
(
−X3u +

〈
(Hu)T ν, v

〉
E

)2

+ |∇Eu|2|Hνv|2

+ 2
(
−X3u +

〈
(Hu)T ν, v

〉
E

)
|∇Eu| 〈Hνv, ν〉E .

From this and the definitions in (4) and (5), we obtain that the proof of (16) is
completed if we prove that

(21) 〈Hνv, ν〉E = 0

and that

(22) |Hνv| = | divE ν|.
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To this end, let us observe that, by (20),

(23) |∇Eu| 〈Hνv, ν〉E =
〈
(Hu)T v, ν

〉
E
− 〈(Hu)v, ν〉E + X3u.

Now, by (17),

(Hu)T v − (Hu)v =




− X1u

|∇Eu|X3u

− X2u

|∇Eu|X3u


 = −(X3u)ν,

hence 〈
(Hu)T v − (Hu)v, ν

〉
E

= −X3u

By plugging this into (23), we obtain (21).
To obtain (22), we argue as follows. By (21), we know that v is an eigenvector

for Hνv and then
Hνv = λv

with |λ| = |Hνv|. Hence, by (20),

(24) ±|∇Eu| |Hνv| = 〈|∇Eu|Hνv, v〉E = 〈(Hu)T v, v〉E =
2∑

i,j=1

(XiXju)vivj.

Now, we remark that

(25) ν2
i = 1− v2

i

To prove this, we take i = 1 (the case i = 2 being analogous), and we observe that

ν2
1 = v2

2 = 1− v2
1,

which establishes (25).
On the other hand, if i 6= j,

(26) νiνj = ν1ν2 = (−v2)(v1) = −vivj.

So, by (11), (25) and (26), we obtain

|∇Eu| | divE ν| = |∇Eu|
2∑

i=1

Xi

( Xiu

|∇Eu|
)

=
2∑

i=1

XiXiu− Xiu

|∇Eu| 〈Xi(∇Eu), ν〉E

=
2∑

i=1

XiXiu−
2∑

i,j=1

(XiXju)νiνj

=
2∑

i=1

XiXiu−
2∑

i=1

(XiXiu)ν2
i −

2∑

i 6=j=1

(XiXju)νiνj

=
2∑

i=1

XiXiu−
2∑

i=1

(XiXiu)(1− v2
i ) +

2∑

i6=j=1

(XiXju)vivj

=
2∑

i=1

(XiXiu)v2
i +

2∑

i6=j=1

(XiXju)vivj =
2∑

i,j=1

(XiXju)vivj.

(27)



A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group 365

By comparing (24) and (27), we see that

|∇Eu| |Hνv| = |∇Eu| | divE ν|,
which implies (22), as desired. ¤

Lemma 3.3. For each u ∈ C∞(Ω) it holds that

X1∆Eu = ∆EX1u + 2X3X2u + X4u,(28)
X2∆Eu = ∆EX2u− 2X1X3u + X4u,(29)
X3∆Eu = ∆EX3u− 2X4X1u− 2X4X2u, and(30)
X4∆Eu = ∆EX4u.(31)

Proof. For the first equality

X1∆Eu = X1(X1X1u) + X1(X2X2u) = ∆EX1u + X1X2X2u−X2X2X1u

= ∆EX1u + X3X2u + X2X1X2u−X2X2X1u

= ∆EX1u + 2X3X2u + X2X3u−X3X2u = ∆EX1u + 2X3X2u + X4u.

The second and the third equality follow in a similar way, indeed

X2∆Eu = X2(X1X1u) + X2(X2X2u) = ∆EX2u−X1X1X2u + X2X1X1u

= ∆EX2u−X3X1u + X1X2X1u−X1X1X2u = ∆EX2u−X3X1u−X1X3u

= ∆EX2u−X3X1u + X1X3u− 2X1X3u = ∆EX2u− 2X1X3u + X4u

and

X3∆Eu = X3(X1X1u) + X3(X2X2u) = X1X3X1u + X2X3X2u−X4X1u−X4X2u

= ∆EX3u− 2X4X1u− 2X4X2u.

The last is a direct consequence of X1X4u = X4X1u and X2X4u = X4X2u. ¤
Using Lemma 3.3, we obtain

Corollary 3.4. Let u ∈ C∞(Ω) be a solution of (1). Then

∆EX1u + 2X3X2u + X4u = ḟ(u)X1u,

∆EX2u− 2X1X3u + X4u = ḟ(u)X2u,

∆EX3u− 2X4X1u− 2X4X2u = ḟ(u)X3u.

Now, some observation related to the Coarea formula, in order to reduce the
computations in the whole of E to the one in E0.

Lemma 3.5. If u : Ω → R is Lipschitz with respect to the dCC distance, then for
every c ∈ R, the set {x ∈ Ω | ∇Eu(x) 6= 0} ∩ {x ∈ Ω | u(x) = c} has zero Lebesgue
measure.

Proof. For every f ∈ L1(Ω) by the Coarea formula proved in [19] we have
ˆ

Ω

f |∇Eu| dx =

ˆ +∞

−∞

( ˆ

{x∈Ω|u(x)=t}
f d|∂Et|E

)
dt

where |∂Et|E is the Engel group perimeter (see [7, 16, 17]).
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If we take as f the characteristic function of the set U ∩ {u = c} where U ⊆ Ω is
a bounded domain, then

ˆ

{x∈Ω | u(x)=t}
fd|∂Et|E = 0 ∀ t 6= c.

Hence ˆ

U∩{u=c}
|∇Eu|dx = 0

that implies the desired result. ¤
Using Lemma 3.5 and (10) it easily follows the following

Corollary 3.6. If u ∈ Liploc(Ω), then for every c ∈ R, the set {x ∈ Ω | ∇Eu(x) 6=
0} ∩ {x ∈ Ω | u(x) = c} has zero Lebesgue measure.

With this, we are in the position of proving the following geometric inequality:

Proposition 3.7. Let u ∈ C∞(Ω) be a stable weak solution of (1). Then, for
each η ∈ C∞

0 (Ω),
ˆ

E0

[|Hu|2 − 〈
(Hu)2ν, ν

〉
E
]η2 − 2

ˆ

E0

(X3X2uX1u−X3X1uX2u)η2

−
ˆ

E0

(X4u)(X1u−X2u)η2 ≤
ˆ

E

|∇Eη|2|∇Eu|2.

Proof. Multiplying by (X1u)η2 equation (28) in Corollary 3.4 and by (X2u)η2

equation (29) and then integrating by parts we obtain

−
ˆ

E

〈∇EX1u,∇E(X1uη2)
〉
E

+ 2

ˆ

E

X3X2u(X1u)η2 +

ˆ

E

X4u(X1u)η2

=

ˆ

E

ḟ(u)(X1u)2η2 −
ˆ

E

〈∇EX2u,∇E(X2uη2)
〉
E
− 2

ˆ

E

X1X3u(X2u)η2

+

ˆ

E

X4u(X2u)η2 =

ˆ

E

ḟ(u)(X2u)2η2.

Consequently, by summing term by term, we get

−
ˆ

E

(
|∇EX1u|2 + |∇EX2u|2

)
η2 −

ˆ

E

〈∇EX1u,∇Eη2
〉
E

X1u

−
ˆ

E

〈∇EX2u,∇Eη2
〉
E

X2u + 2

ˆ

E

(X3X2uX1u−X1X3uX2u)η2(32)

+

ˆ

E

(X4u)(X1u + X2u)η2 =

ˆ

E

ḟ(u)|∇Eu|2η2.(33)

On the other hand, since u is stable, by choosing |∇Eu|η as a test function in (2) we
obtain

0 ≤
ˆ

E

|∇E(|∇Eu|η)|2 +

ˆ

E

ḟ(u)|∇Eu|2η2.(34)
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By Corollary 3.6 we have that ∇E(|∇Eu|η) = 0 almost everywhere outside E0; hence
making use of (13) we obtain from (34) that

0 ≤
ˆ

E0

(
η2

|∇Eu|2 |(Hu)T∇Eu|2 + 2η
〈
(Hu)T∇Eu,∇Eη

〉
E

+ |∇Eη|2|∇Eu|2
)

+

ˆ

E

ḟ(u)|∇Eu|2η2.

So, noticing that 2η∇Eη = ∇Eη2, and using (32), after a simplification we obtain
that

ˆ

E

|Hu|2η2 −
ˆ

E0

η2

|∇Eu|2 |(Hu)T∇Eu|2 − 2

ˆ

E

(X3X2uX1u−X1X3uX2u)η2

−
ˆ

E

(X4u)(X1u + X2u)η2 ≤
ˆ

E0

|∇Eη|2|∇Eu|2.

Recalling that
X1X3u = X3X1u + X4u

we get the thesis. ¤
Then, from Proposition 3.7 and Lemma 3.2 we immediately obtain Theorem 1.1.
We end this section by giving some more geometric insight on the quantity J ,

in relation with the intrinsic normal and tangent vectors:

Lemma 3.8. For every u ∈ C2(Ω) and every x ∈ E0 it holds

J (x) = −|∇Eu|(x) 〈∇EX3u(x), v(x)〉E − |∇Eu|(x)2 〈X3ν(x), v(x)〉E(35)

Proof. By definition in E0

〈∇EX3u, v〉E =
1

|∇Eu|(X1X3uX2u−X2X3uX1u)(36)

and using (7) we obtain

〈∇EX3u, v〉E =
1

|∇Eu|
[
(X3X1uX2u−X3X2uX1u) + X4u(X2u−X1u)

]
.(37)

Moreover, in E0,

〈X3ν, v〉E =
1

|∇Eu|2
(
X3X1uX2u−X3X2uX1u

)
.(38)

Hence adding (37) and (38) we get the thesis. ¤
Using Theorem 1.1 and Lemma 3.8 it immediately follows that

Corollary 3.9. Let u ∈ C∞(Ω) be a stable weak solution of (1). Then, for each
η ∈ C∞

0 (Ω),
ˆ

E0

(
|∇Eu|2

{(
p +

〈
(Hu)T ν, v

〉
E

|∇Eu|
)2

+ h2

}
+ |∇Eu| 〈∇EX3u, v〉E

+ |∇Eu|2 〈X3ν, v〉E
)

η2 ≤
ˆ

E

|∇Eη|2|∇Eu|2.
(39)
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4. Some applications to entire stable solutions:
geometric equations and non-existence results

From now on, for every x = (x1, x2, x3, x4) ∈ E, we denote by

|x| :=
(
(x2

1 + x2
2)

6 + x6
3 + x4

4

) 1
12

the standard gauge norm in E (see [7], [10]), and we denote by

B(0, R) := {x ∈ E | |x| < R}
the gauge open ball centered at 0 of radius R.

The following Lemma is proved in [13].

Lemma 4.1. Let g ∈ L∞loc(R
n, [0, +∞)) and let q > 0. Let also for any τ > 0,

η(τ) :=

ˆ

B(0,τ)

g(x) dx.(40)

Then for every 0 < r < R,
ˆ

B(0,R)\B(0,r)

g(x)

|x|q dx ≤ q

ˆ R

r

η(τ)

τ q+1
dτ +

1

Rq
η(R).

Corollary 4.2. Let u be a stable solution of ∆Eu = f(u) in the whole of E with

J ≤ 0 in E0.(41)

For any τ > 0 and any x = (x1, x2, x3, x4) ∈ E, let us define

η(τ) :=

ˆ

B(0,τ)

|∇Eu(x)|2 dx.(42)

If

lim inf
R→∞

´ R√
R

η(τ)

τ 3
dτ +

η(R)

R2

(log R)2
= 0,(43)

then the level sets of u in the proximity of noncharacteristic points are such that

(44) divE ν = 0

and on such sets the following equation holds

p = − 1

|∇Eu| 〈Huv, ν〉E .(45)

Proof. This is a modification of the proof of Corollary 3.2 of [13], where we
take into account the more complicated algebraic calculations of the Engel group.
Given R > 1, we define

φR(x) :=





1 if x ∈ B(0,
√

R),

2(log R)−1 log(R/|x|) if x ∈ B(0, R) \B(0,
√

R),

0 if x ∈ E \B(0, R).

We observe that

X1|x|12 = 12(x2
1 + x2

2)
5x1 − Ax2 − 2x3x

3
4, and

X2|x|12 = 12(x2
1 + x2

2)
5x2 + Ax1 − 2x3x

3
4
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with A := 3x5
3 + (1/3)(x1 + x2)x

3
4. Since |x1| ≤ |x|, |x2| ≤ |x|, |x3| ≤ |x|2 and |x4| ≤

|x|3, we conclude that |A| ≤ C1|x|10 and so

|∇E|x|12| ≤ C2|x|11

for some C1, C2 > 0.
Notice also that, in B(0, R) \B(0,

√
R),

φR(x) = C(R)− (1/6)(log R)−1 log |x|12

for some C(R) ∈ R, thus

|∇EφR(x)| = (1/6)(log R)−1|x|−12|∇E|x|12| ≤ C3(log R)−1|x|−1

in B(0, R) \B(0,
√

R) for some C3 > 0. Therefore, by (41) and Theorem 1.1,
ˆ

E0

[
|∇Eu|2

{(
p +

〈
(Hu)T ν, v

〉

|∇Eu|
)2

+ h2
}]

φ2
R

≤
ˆ

E

|∇EφR|2|∇Eu|2 ≤ C4(log R)−2

ˆ

B(0,R)\B(0,
√

R)

|∇Eu|2
|x|2

for some C4 > 0. On the other hand, by Lemma 4.1,
ˆ

B(0,R)\B(0,
√

R)

|∇Eu|2
|x|2 ≤ 2

ˆ R

√
R

η(τ)

τ 3
dτ +

1

R2
η(R).

All in all,
ˆ

E0

[
|∇Eu|2

{(
p +

〈
(Hu)T ν, v

〉

|∇Eu|
)2

+ h2
}]

φ2
R

≤ 2C4(log R)−2

[ˆ R

√
R

η(τ)

τ 3
dτ +

1

R2
η(R)

]

Then the claim follows by sending R →∞, thanks to (43). ¤

Remark 4.3. Recalling Lemma 3.8, we observe that (41) is implied by the
following monotonicity conditions:

〈X3ν, v〉E ≥ 0 and 〈∇EX3u, v〉E ≥ 0

Remark 4.4. Condition (43) may be seen as a bound on the energy growth:
for instance, it is satisfied if η(R)/R2 stays bounded for large R, i.e., if the energy
in B(0, R) does not grow more than R2. Of course, this is quite a strong assumption
on the decay of ∇Eu in the variables (x3, x4) and it would be desirable to investigate
in which way such condition may be weakened.

Remark 4.5. We stress that equations (44) and (45) may be seen as geometric
equations along the level sets of the solution u. In particular, (44) may be stated as
saying that the level set is a minimal surface for the Engel framework (in analogy with
the Euclidean setting and in the terminology of [19]). Also, (45) is a prescription on
the imaginary curvature p, in relation with the Hessian, the normal, and the tangent
vectors.
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Remark 4.6. Let us observe that if u is a solution of (1.1) that does not depend
on x3 and x4 then u satisfies ∆u = f(u), where ∆ is the classical Euclidean Laplacian.
Moreover, by [13, Remark 3.4], every bounded stable solution of (1.1) that does not
depend on the last two coordinates and satisfies (43) has to be constant.

Theorem 4.7. There exists no stable solution of ∆Eu = f(u) satisfying
(i) the zeros of f̈ (if any) are isolated;
(ii) {x ∈ E | ∇Eu(x) = 0} = ∅;
(iii) u ∈ L∞(E);
(iv) 〈X3ν, v〉E ≥ 0 in E;
(v) 〈∇EX3u, v〉E ≥ 0 in E;
(vi) the set {(X1u + X2u) = 0} has zero Lebesgue measure;

(vii) lim inf
R→∞

´ R√
R

η(τ)

τ 3
dτ +

η(R)

R2

(log R)2
= 0, where η is as in Corollary 4.2.

Proof. We shall prove that if u ∈ C3(E) is a stable solution of (1) which satisfies
(i), (ii), (iii), (iv), (v), (vi) and (vii), then X3u = 0 and X4u = 0. Hence u is
independent of x3 and x4 and this gives the desired result. By (iii) and [8, Th. 2.10]
we have

|∇Eu| ∈ L∞(E).(46)

We claim that

X3u = 0 in E.(47)

To this end, we argue by contradiction, supposing that there exists Q ∈ E such that

X3u(Q) 6= 0.(48)

Thus we consider the following Cauchy problem{
φ
′
(s) = v(φ(s)),

φ(0) = Q,

where v is as in (3). By (ii) and the fact that |v| = 1 it follows that the solution
exists and it is defined for any s ∈ R. Moreover, by (ii)

u(φ(s))
′
=

〈
∇Eu(φ(s)), φ

′
(s)

〉
E

= |∇E(φ(s))| 〈ν(φ(s)), v(φ(s))〉E = 0 ∀s ∈ R,

that is, φ lies on the level set of u, namely

φ(s) ∈ {x ∈ E | u(x) = u(Q)} ∀s ∈ R.

Furthermore,

|∇Eu(φ(s))|′ =
〈
∇E|∇Eu|(φ(s)), φ(s)

′
〉

E
∀s ∈ R,

and by (14) (applied here with η ≡ 1) and Corollary 4.2 (recall also Remark 4.3) we
get

|∇Eu(φ(s))|′ =
1

|∇Eu(φ(s))|
〈
(Hu)T∇Eu(φ(s)), v(φ(s))

〉
E

= 〈ν(φ(s)), (Hu)v(φ(s))〉E = −|∇Eu(φ(s))| p(φ(s))

= X3u(φ(s)) ∀s ∈ R,

(49)
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which, via (48), implies

|∇Eu(φ(s))|′|s=0 6= 0.(50)

From (49) we deduce

|∇Eu(φ(s))|′′ = (X3u(φ(s)))
′
=

〈
∇EX3u(φ(s)), φ

′
(s)

〉
E

= 〈∇EX3u(φ(s)), v(φ(s))〉E ∀s ∈ R,
(51)

and by (iv) we deduce also that

|∇Eu(φ(s))|′′ ≥ 0 ∀s ∈ R.(52)

Therefore, defining Φ: R → R by

Φ(s) := |∇Eu(φ(s))| − |∇Eu(Q)|
we have that Φ ∈ C2(R), Φ(0) = 0, Φ

′
(s) 6= 0 ∀s ∈ R and Φ

′′
(s) ≥ 0 ∀s ∈ R, thanks

to (50) and (52). It follows that

sup
R

Φ = +∞,

but this is in contradiction with (46), hence (47) is established.
Now we claim that

X4u = 0.(53)

By Corollary 3.4, we have

∆EX3u− 2X4X1u− 2X4X2u = X3∆Eu = X3(f(u)) = ḟ(u)X3u

and so by (47) it follows that

X4(X1u + X2u) = 0.(54)

Moreover, by Corollary 3.4 and (47),
∆EX1u−X4u = ∆EX1u− 2X4u + X4u

= ∆EX1u− 2(X2X3 −X3X2)u + X4u

= ∆EX1u + 2X3X2u + X4u = ḟ(u)X1u

(55)

and

(56) ∆EX2u + X4u = ∆EX2u− 2X1X3u + X4u = ḟ(u)X2u.

By adding (55) and (56) we obtain

∆E(X1u + X2u) = ḟ(u)(X1u + X2u)(57)

and so, by Lemma 3.3,

∆EX4(X1u + X2u) = X4∆E(X1u + X2u) = X4

(
ḟ(u)(X1u + X2u)

)

= f̈(u)X4u(X1u + X2u) + ḟ(u)X4(X1u + X2u).
(58)

Accordingly, using (58) and (54), we conclude that

f̈(u)X4u(X1u + X2u) = 0 in E.

Hence, by (vi)

f̈(u)X4u = 0 almost everywhere in E
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and so, by continuity,

f̈(u)X4u = 0 everywhere in E.

This implies that (53) holds at any point of the open set G := {x ∈ E | f̈(u(x)) 6= 0}.
So, by continuity, (53) holds at any point of its closure G.

We show that (53) also holds at points of E\G (if any). For this, let us take xo ∈
E\G. Since the latter is an open set, there exists an open neighborhood V such that

xo ∈ V ⊆ (E \G) ⊆ E \G = {x ∈ E | f̈(u(x)) = 0}.
In particular, f̈(u(x)) = 0 for any x ∈ V . Thus, by (i), u(x) must be constant for
any x ∈ V . Therefore, X4u(x) = 0 for any x ∈ V , and, in particular, X4u(xo) = 0.

This shows that (53) holds at points of E \ G too, and so the proof of (53) is
completed.

Now, by (47) and (53), we conclude that u does not depend on x3 and x4 and
by Remark 4.6 we conclude that u is constant but this is impossible by (ii), which
proves Theorem 4.7. ¤

Remark 4.8. Of course, we do not believe that our Theorem 4.7 is optimal: we
just consider it a first attempt towards the understanding of semilinear equations in
the Engel framework and, as far as we know, this is the first non-existence result
in this setting. We think it would be interesting to develop a stronger theory and
possibly to drop some structural assumptions in Theorem 4.7.
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