
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 37, 2012, 375–406

VECTOR-VALUED SINGULAR INTEGRAL
OPERATORS ON MORREY TYPE SPACES AND

VARIABLE TRIEBEL–LIZORKIN–MORREY SPACES

Kwok-Pun Ho

The Hong Kong Institute of Education, Department of Mathematics and Information Technology
10, Lo Ping Road, Tai Po, Hong Kong, China; vkpho@ied.edu.hk

Abstract. A criteria on the vector-valued Banach function spaces X (B) is obtained so that
whenever a vector-valued singular integral operator is bounded on X (B), it can be extended to be a
bounded linear operator on the corresponding Morrey type spaces. Using this result, we define the
generalized Triebel–Lizorkin–Morrey spaces and obtain the atomic and molecular decompositions.
As a particular example of the generalized Triebel–Lizorkin–Morrey spaces, we introduce and study
the variable Triebel–Lizorkin–Morrey spaces.

1. Introduction

The main result of this paper is the boundedness of vector-valued singular inte-
gral operators on weighted vector-valued Morrey spaces (see Definition 2.5). More
precisely, we find that whenever a vector-valued singular integral operator is bounded
on a Banach function space satisfying some mild conditions (see Definition 2.6), then
this singular integral operator can be extended to be a bounded operator on the cor-
responding weighted vector-valued Morrey spaces. We call this result as the lifting
principle for the weighted vector-valued Morrey spaces. The introduction of the lift-
ing principle is motivated by the boundedness of the maximal operator on the Morrey
spaces in [12] and the boundedness of singular integral operator on the Morrey spaces
in [56]. For the statement and the proof of the lifting principle, see Theorem 3.1.

The notion of Morrey spaces is introduced in [54] to study the solutions of quasi-
linear elliptic differential equations by using their gradients. In [51, 52, 72], a family
of function spaces arising from combining the Littlewood–Paley characterization and
Morrey spaces is used to study the solutions of some non-linear differential equations,
in particular, the Navier–Stokes system in Morrey spaces [29, 40, 51]. The above re-
sult also inspires a substantial amount of researches on function spaces. For instance,
using the ideas from the definition of Triebel–Lizorkin spaces [24, 73] and the bound-
edness of the maximal operator on Morrey spaces [12, 71], Sawano, Tanaka, Tang,
Wang and Xu [66, 71, 74] prove that the Triebel–Lizorkin–Morrey spaces (in [71, 74],
they are called as the Morrey type Besov–Triebel spaces) are well-defined and possess
the atomic and molecular decompositions. Actually, it gives an affirmative answer to
a conjecture proposed by Mazzucato in [52].
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In this paper, we consider an extended version of Morrey spaces, we called it the
weighted vector-valued Morrey spaces (see Definition 2.5). The formulation of the
weighted vector-valued Morrey spaces consists of four components. The first one is
a general Banach function space. It plays the role of the Lebesgue spaces Lp in the
definition of Morrey spaces. The introduction of the weighted vector-valued Morrey
spaces by using a general Banach function space is motivated by the results obtained
in [32]. In [32], we find that the study of Triebel–Lizorkin spaces can be generalized
by replacing the Lebesgue spaces Lp and the sequence spaces lq by rearrangement-
invariant Banach function spaces (r.-i.B.f.s.) and sequence spaces with UMD property
(see [9, 10]), respectively.

To generalize the results in [32] to the weighted vector-valued Morrey spaces,
two main features of r.-i.B.f.s. X are essential. The first one is the Hölder equality
|E| = ‖χE‖X‖χE‖X′ where E is a Lebesgue measurable set with |E| < ∞ and X ′ is
the associated space of X (see [7, Chapter 2, Theorem 5.2]). The second one is the
notion of Boyd’s indices (see [7, Chapter 3, Definition 5.12]).

Even though the Boyd indices are not necessarily well-defined and the Hölder
equality does not necessarily hold on a general Banach space, we obtain some useful
extensions for these two properties of r.-i.B.f.s. We introduce the notion of tempered
Banach function space in Definition 2.6 so that a generalized reverse Hölder inequality
is obtained for the family B = {B(x0, r) : x0 ∈ Rn, r > 0} (see Proposition 2.4).

The main application of the notion of Boyd’s indices is on the mapping property
of the dilation operator (Dtf)(x) = f(tx), t > 0. For tempered B.f.s, we just
have a similar mapping property for the characteristic function of B ∈ B only (see
Proposition 2.5). This is definitely weaker than the result for r.-i.B.f.s. but this
weaker result is already strong enough to establish the lifting principle.

The second component for the weighted vector-valued Morrey spaces is a family
of sequence spaces (see Definition 2.2). The family of sequence spaces {lq(x)

ν }x∈Rn

given in [20] prompts the introduction of the family of sequence spaces used in this
paper.

The underlying measure for defining the weighted vector-valued Morrey spaces
is the weighted Lebesgue measures given by the Muckenhoupt Ap weight functions.
In order to identify the correct family of Banach function spaces associated with an
Ap-weighted Lebesgue measure, we are led to the notion of p-convexity. We find that
when ω ∈ Ap, the family of p-convex Banach function spaces shares some important
features of the weighted Lebesgue spaces Lp(ω) that are crucial on extending the
boundedness of singular integral operators for B.f.s. to the corresponding weighted
vector-valued Morrey spaces.

The final component is a “Morrey weight function”. In the Morrey spaces, it is
given by |B| 1p− 1

q , B ∈ B, 1 < p ≤ q < ∞. As the underlying measure is a weighted
Lebesgue measure, we introduce the corresponding Morrey weight functions adapted
to weighted Lebesgue measures in Definition 2.4.

We apply the lifting principle to study the “generalized Triebel–Lizorkin–Morrey
spaces” defined via the Littlewood–Paley function (see Definition 5.2). We find that
whenever the generalized Triebel–Lizorkin–Morrey spaces are well defined relies on
the boundedness of a particular singular integral operator. Furthermore, we also



Vector-valued singular integral operators on Morrey type spaces 377

show that once that particular singular integral operator is bounded, then the gener-
alized Triebel–Lizorkin–Morrey spaces admit the atomic and molecular decomposi-
tions. This extends a line of researches on the atomic and molecular decompositions
of several families of function spaces such as the Triebel–Lizorkin spaces [24, 73], the
Triebel–Lizorkin–Morrey spaces [52, 66, 74], the Littlewood–Paley spaces [32], the
Triebel–Lizorkin spaces F

α(·)
p(·),q(·)(R

n) and the variable Triebel–Lizorkin spaces intro-
duced in [20, 75].

In order to demonstrate the use of the above results, we consider variable Morrey
spaces and variable Triebel–Lizorkin–Morrey spaces. The variable exponent analysis
recently gains a lot of attentions [4, 5, 14, 15, 17, 18, 19, 20, 21, 36, 41, 44, 49, 50, 57,
75] because the boundedness of several important linear operators in analysis, espe-
cially, the Hardy–Littlewood maximal operator, can be established for the variable
Lebesgue spaces [14, 17, 19]. In addition, it provides a theoretical background on the
studies of electrorheological fluid dynamics [1, 2, 61, 63, 64] and imaging processing
[11].

The variable exponent Morrey spaces is introduced in [4, 41]. An extension of
Triebel–Lizorkin spaces with the Lebesgue spaces replaced by the variable Lebesgue
spaces is given in [20, 75]. In this paper, we obtain a similar extension for Morrey
spaces and Triebel–Lizorkin–Morrey spaces and this extension is achieved by using
the lifting principle.

Section 2 presents some definitions introduced in this paper, including the notion
of tempered Banach function spaces and the weighted vector-valued Morrey spaces.
The main result is stated and proved in Section 3. For the rest of this paper, they are
applications of the lifting principle. In Section 4, we have the application of the lifting
principle on the Littlewood–Paley characterization of function spaces. Section 5 gives
a general study on the generalized Triebel–Lizorkin–Morrey spaces. Section 6 delivers
the results for an important example of the generalized Triebel–Lizorkin–Morrey
spaces, the variable Triebel–Lizorkin–Morrey spaces.

2. Preliminarily results

We give some definitions and preliminarily results in this section.
Let S ′(Rn) denote the class of tempered distributions and S(Rn) denote the

class of Schwartz functions. Moreover, S0(R
n) = {f ∈ S(Rn) :

´
Rn xγf(x) dx =

0, ∀γ ∈ Nn}. For any x ∈ Rn and r > 0, let B(x, r) = {y ∈ Rn : |x − y| < r} and
B = {B(x0, r) : x0 ∈ Rn, r > 0}.

We adopt the definition of quasi-Banach function spaces from [7, 58].

Definition 2.1. Let ω be a measure on Rn. A quasi-Banach lattice X ⊂
M(ω,C) is said to be a quasi-Banach function space (q-B.f.s.) if

(1) ‖ · ‖X is a quasi-norm,
(2) |f(x)| ≤ |g(x)| a.e. on (Rn, ω) and g ∈ X then f ∈ X and ‖f‖X ≤ ‖g‖X ,
(3) 0 ≤ fi ↑ f implies ‖fi‖X ↑ ‖f‖X ,
(4) for any ω-measurable set E with ω(E) < ∞, χE ∈ X .

If ‖ · ‖X is a norm, X is a Banach space and for any ω-measurable set E with
ω(E) < ∞,

´
E

f dω ≤ CE‖f‖X for some CE > 0, then X is called a Banach function
space (B.f.s.).
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The following definition is inspired by the family of sequence spaces {lq(x)
ν }x∈Rn

introduced in [20, p. 1737].

Definition 2.2. A family of Banach lattices B = {B(x)}x∈Rn is called a family
of variable Banach sequence spaces (v.B.s.) if B(x) ⊂ {{ai}i∈Z : ai ∈ C} and there
exists a constant C > 0 independent of x ∈ Rn such that for any k ∈ Z,

(2.1) |ak| ≤ C‖{ai}i∈Z‖B(x), ∀x ∈ Rn.

For any v.B.s. B = {B(x)}x∈Rn , denote the class of B-valued ω-measurable func-
tions by M(ω,B). More precisely,

M(ω,B) = {f = {fi}i∈Z : fi(x) and ‖f(x)‖B(x) are ω-measurable}.
Let B be a v.B.s. and ω be a measure on Rn. Suppose that X is a q-B.f.s. on

(Rn, ω), define
X (B) = {f ∈M(ω,B) : ‖‖f(x)‖B(x)‖X < ∞}

and write
‖f‖X (B) = ‖‖f(x)‖B(x)‖X .

We recall the well known definition of doubling measure from [13]. A measure ω
on Rn is said to be doubling if there exists a constant C > 0 such that

ω(B(x, 2r)) ≤ Cω(B(x, r)), ∀x ∈ Rn, r > 0.

We state the definition of Muckenhoupt weight functions.

Definition 2.3. For 1 < p < ∞, a locally integrable function ω : Rn → [0,∞)
is said to be an Ap weight if

sup
B∈B

(
1

|B|
ˆ

B

ω(x) dx

)(
1

|B|
ˆ

B

ω(x)−
p′
p dx

) p
p′

< ∞

where p′ = p
p−1

. A locally integrable function ω : Rn → [0,∞) is said to be an A1

weight if
1

|B|
ˆ

B

ω(y) dy ≤ Cω(x), a.e. x ∈ B

for some constant C > 0. We define A∞ = ∪p≥1Ap.

For any ω ∈ A∞ and any Lebesgue measurable set E, write ω(E) =
´

E
ω(x) dx.

We have the following characterizations of A∞ and Ap weights.

Theorem 2.1. A locally integrable function ω : Rn → [0,∞) belongs to A∞ if
and only if there exist an δω > 0 and a constant C0 > 0 such that for any B ∈ B and
all measurable subsets E of B, we have

(2.2)
ω(E)

ω(B)
≤ C0

( |E|
|B|

)δω

.

Proposition 2.2. If ω ∈ Ap, then there exists a constant C > 0 such that for
any x ∈ Rn, r > 0 and λ > 1

ω(B(x, λr)) ≤ Cλnpω(B(x, r)).



Vector-valued singular integral operators on Morrey type spaces 379

For the proof of the preceding results, the reader is referred to [30, Theorem
9.3.3(d) and Proposition 9.1.5(9)].

We recall the notion of p-th power (1
p
-convexification). For any 0 < p < ∞ and

any B.f.s. X , define the p-th power of X , X p by

f ∈ X p ⇐⇒ |f |1/p ∈ X ,

and X p is equipped with the quasi-norm ‖f‖X p = ‖|f |1/p‖p
X . The reader is referred to

[58, Section 2.2] for a complete discussion on the notion of p-power of quasi-Banach
function space. For 0 < p ≤ 1, X p is a B.f.s. (see [27, Proposition 1.11]) while for
1 < p < ∞, it is a q-B.f.s. (see [58, Chapter 2, Proposition 2.22]).

We need the notion of p-convexity to identify the appropriate B.f.s. on (Rn, ω)
with ω ∈ Ap.

Let 0 < p < ∞. A q-B.f.s. X is said to be p-convex if there exists a constant
C > 0 such that ∥∥∥∥

( n∑
i=1

|fi|p
)1/p

∥∥∥∥
X
≤ C

( n∑
i=1

‖fi‖p
X

)1/p

for any {fi}n
i=1 ⊂ X .

The notion of p-convexity 1 ≤ p < ∞ for Banach lattices was introduced in [45].
For the extension of the notion of p-convexity to quasi-Banach space, the reader is
referred to [16, p. 156]. The following proposition gives a procedure to obtain an
equivalent norm for a p-convex q-B.f.s.

Proposition 2.3. Let 1 ≤ p < ∞. If the q-B.f.s. X is p-convex, then

(2.3) η[p](f) = inf{
n∑

i=1

‖fi‖X p : |f | ≤
n∑

i=1

|fi|, fi ∈ X p, i = 1, 2, . . . , n, n ∈ N}

is a lattice norm and is equivalent to ‖ · ‖X p . Hence, X admits

η(f) =
(
η[p](|f |p)

)1/p

as an equivalent lattice norm.

The proof of the above proposition is given by [48, Volume II, p. 54] and [58,
Proposition 2.23]. We find that whenever X is p-convex, we can consider X as the
1
p
-th power of the B.f.s. generated by the norm η[p]. Therefore, it gives an access

to incorporate the Hölder inequality and the norm η[p] into the estimate of singular
integral operators. For detail, the reader is referred to the proof of Theorem 3.1.

The final component for constructing the weighted vector-valued Morrey spaces
is the family of Morrey weight functions given in the following definition.

Definition 2.4. Let 0 < q ≤ ∞ and ω be a measure on Rn. A Lebesgue
measurable function u(x, r) : Rn × (0,∞) → (0,∞) is said to be a Morrey weight
function if there exist a 0 ≤ λ < 1

q
and constants C1, C2 > 0 so that for any x ∈ Rn,

u(x, r) > C1, r ≥ 1,

u(x, 2r)

u(x, r)
≤

(
ω(B(x, 2r))

ω(B(x, r))

)λ

, r > 0,(2.4)

C−1
2 ≤ u(x, t)

u(x, r)
≤ C2, 0 < r ≤ t ≤ 2r.(2.5)

We denote the class of Morrey weight functions by Wq,ω.
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If ω ≡ 1, then we write Wq,ω by Wq. In particular, W1 contains the weighted
function u(x, r) = rλ(x) where 0 ≤ λ(x) < n given in [4, Section 4] for the study of
the variable Morrey spaces on bounded open sets of Rn. Moreover, the above weight
function is also used in [35] to study the weighted Hardy–Morrey spaces.

We are now ready to define one of the main families of function spaces considered
in this paper, the weighted vector-valued Morrey spaces.

Definition 2.5. Let q > 0, ω be a doubling measure and B be a v.B.s. Suppose
that X is a q-B.f.s. on (Rn, ω) and u ∈ Wq,ω. The weighted vector-valued Morrey
space MX

ω,u(B) is the collection of all f ∈M(ω,B) satisfying

‖f‖MX
ω,u(B) = sup

z∈Rn,R>0

1

u(z,R)
‖χB(z,R)f‖X (B) < ∞.

Let B(x) = C, ∀x ∈ Rn. We write MX
ω,u(C) = MX

ω,u. In case X = Lp(ω),
1 ≤ p < ∞, we write MX

ω,u by Mp
ω,u. Furthermore, when ω ≡ 1, we further simplify

the notation of Mp
ω,u by Mp

u.
If ω is a weight function, u(x, r) = ω(B(x, r))κ, 0 < κ < 1 and X = Lp(ω), then

MX
ω,u is the weighted Morrey spaces considered in [43]. When ω ≡ 1 and X is a

r.-i.B.f.s., MX
ω,u is the Morrey-type spaces associated with r.-i.B.f.s. defined in [32].

The weighted vector-valued Morrey spaces also include the variable exponent Morrey
spaces given in [41, Definition 1.2] when u(x, r) = rλ(x), 0 ≤ λ(x) ≤ n and X is the
variable Lebesgue space Lp(·)(Rn).

In [20, Lemma 6.3, Theorem 3.11 and Lemma 7.1] and [24, Theorem 3.3], a special
technique, so called the “r-trick”, is used to study the function spaces in [20, 24]. In
fact, the notion of p-th power is an extension of the r-trick from Lebesgue spaces to
B.f.s. The reader is referred to Section 5 for the details.

For any q-B.f.s. X , we denote the associate space (the Köthe dual) of X by X ′

(see [58, p.35]). We introduce an important notion used in this paper.

Definition 2.6. Let ω be a doubling measure on Rn. A q-B.f.s. X on (Rn, ω)
is called tempered if the Hardy–Littlewood maximal operator with respect to ω

(Mω f)(x) = sup
r>0

1

ω(B(x, r))

ˆ

B(x,r)

|f(y)| dω

is bounded on (X ′)q for some q > 1. We define the supreme of those q > 1 such that
the maximal operator is bounded on (X ′)q to be e′X and let the exponent of X , eX ,
be the conjugate of e′X . That is,

1
eX

+ 1
e′X

= 1.

When X is a rearrangement-invariant (r.-i.) q-B.f.s., the exponent of X is the up-
per Boyd index of X (see [55, Theorem 5] for quasi-Banach spaces and [7, Chapter 3,
Definition 5.12 and Theorem 5.17] for Banach spaces). So, the notion of exponent can
be considered as an extension of the notion of Boyd’s indices to non-rearrangement-
invariant q-B.f.s. The reader is also referred to [34] for a generalization of the Boyd
indices to B.f.s and some of its applications such as the Fefferman–Stein vector-valued
maximal inequalities and the Littlewood–Paley characterization of B.f.s.

Since the boundedness of Mω on (X ′)q is equivalent to the boundedness of

(Mq
ω f)(x) = sup

r>0

(
1

ω(B(x, r))

ˆ

B(x,r)

|f(y)|qdω

)1/q
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on X ′. Using Jensen’s inequality, we have Mr
ω f ≤ Mq

ω f when 1 ≤ r ≤ q. As
‖(Mr

ω f)‖r
X ′ = ‖Mω(|f |r)‖(X ′)r , Mr

ω is bounded on X ′ when 1 ≤ r < e′X . In particular,
Mω is bounded on X ′. This fact is used to obtain the following proposition.

Proposition 2.4. Let ω be a doubling measure. If X is a tempered B.f.s. on
(Rn, ω), then we have a constant C > 0 so that for any B ∈ B,

ω(B) ≤ ‖χB‖X‖χB‖X ′ ≤ Cω(B).

Proof. The first inequality follows from the definition of associate space. For the
second inequality, we consider the projection operator PB(g), B = B(x0, r), x0 ∈ Rn

and r > 0, defined by

(PBg)(y) =

(
1

ω(B)

ˆ

B

|g| dω

)
χB(y).

As ω is a doubling measure, PB is uniformly dominated by the maximal operator
Mω. Precisely, there exists a constant C > 0 such that for any B = B(x0, r),
PB(f) ≤ C Mω(f). Hence, supB ‖PB‖X ′→X ′ < C‖Mω ‖X ′→X ′ where ‖ · ‖X ′→X ′ denote
the operator norm of mapping on X ′.

The uniformly boundedness of PB and [7, Chapter 1, Theorem 2.9] ensure that

‖χB‖X‖χB‖X ′ = sup

{∣∣∣
ˆ

B

g dω
∣∣∣‖χB‖X ′ : g ∈ X ′, ‖g‖X ′ ≤ 1

}
≤ Cω(B). ¤

Proposition 2.5. Let ω be a doubling measure. If X is a tempered B.f.s. on
(Rn, ω), then for any 1 ≤ q < e′X , there exists a constant C > 0 such that for any
x0 ∈ Rn and r > 0, we have

(2.6)
‖χB(x0,2jr)‖X ′
‖χB(x0,r)‖X ′ ≤ C

(
ω(B(x0, 2

jr))

ω(B(x0, r))

) 1
q

, ∀j ∈ N

and

(2.7)
‖χB(x0,r)‖X
‖χB(x0,2jr)‖X

≤ C

(
ω(B(x0, r))

ω(B(x0, 2jr))

)1− 1
q

, ∀j ∈ N.

Proof. Since ω is a doubling measure, for any B = B(x0, r) ∈ B and j ∈ N, we
have a constant C > 0 such that

C
ω(B(x0, r))

ω(B(x0, 2jr))
≤ Mω(χB)(x)

when x ∈ B(x0, 2
jr), j ∈ N. Thus,

ω(B(x0, r))

ω(B(x0, 2jr))
‖χB(x0,2jr)‖(X ′)q ≤ C‖Mω(χB)‖(X ′)q ≤ C‖χB‖(X ′)q .

Inequality (2.6) follows from the above inequalities. Finally, Proposition 2.4 and (2.6)
yield (2.7). ¤

The results in Propositions 2.4 and 2.5 for r.-i.q-B.f.s. are given in [33].
On one hand, the above estimate plays a decisive role on the establishment of

the main result for the boundedness of singular integral operators on the weighted
vector-valued Morrey spaces. On the other hand, it also justifies the introduction of
the notion of exponent. Even though inequalities (2.6)–(2.7) are no longer valid for
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a general f ∈ X , the estimate of the characteristic function of B(x, r) based on the
characteristic function of B(x, 2jr) is sufficient to obtain our main result.

The subsequent proposition shows that MX
ω,u contains the collection of simple

functions if ω belongs to A∞. Thus, in the following sections, we only pay our at-
tention to those weighted vector-valued Morrey spaces associated with A∞-weighted
Lebesgue measures.

Proposition 2.6. Let 1 ≤ p < ∞ and ω ∈ A∞. If X p is a tempered B.f.s. and
u ∈ WpeXp ,ω, then χE ∈MX

ω,u for any ω-measurable bounded set E.

Proof. Let E be a ω-measurable bounded set with E ⊆ B(0, R), R > 0. For
any x0 ∈ Rn and k ∈ Z, write Dk = B(x0, 2

−k). When k ∈ N, Dk ∩ E 6= ∅ only if
D0 ⊂ B(0, R + 2). Thus, Theorem 2.1, inequality (2.7) and the definition of WpeXp ,ω

offer a q > 0 satisfying 1 ≤ q < e′X p and λ < 1
p

(
1− 1

q

)
so that

‖χDk∩E‖X
u(x0, 2−k)

≤ ‖χDk
‖

1
p

X p

u(x0, 2−k)
≤ C

‖χD0‖
1
p

X p

u(x0, 1)

(
ω(B(x0, 2

−k))

ω(B(x0, 1))

) 1
p
(1− 1

q
)−λ

≤ C‖χB(0,R+2)‖X
for some constant C independent of k and x0. If k < 0, then

‖χDk∩E‖X
u(x0, 2−k)

≤ ‖χE‖X
u(x0, 2−k)

≤ C

for some C > 0 independent of k. As u satisfies (2.5), the above inequalities assure
that χE ∈MX

ω,u. ¤
We show the applications of Proposition 2.6 in Lemma 4.1 for the Littlewood–

Paley characterization of function spaces and in Lemma 5.3 for the convergence of
the ψ transform.

3. The lifting principle

The study of linear operators on Morrey spaces using interpolation is obtained
in [59, 60, 68, 69, 70]. Using the idea from the boundedness of the Hardy–Littlewood
maximal operator on Morrey spaces [12], the boundedness of the singular integral
operators on Morrey spaces is obtained in [53, 56].

The investigation of the vector-valued singular integral operators is started in
[6]. The reader is referred to [8, 9, 10, 28, 62] for the development of the theory of
vector-valued singular integral operators.

One of the main results of this paper is the boundedness of singular integral
operators on weighted vector-valued Morrey spaces. We begin with the definition of
v.B.s.-valued singular integral operators.

Definition 3.1. Let ω ∈ A∞, B1 = {B1(x)} and B2 = {B2(x)} be v.B.s. A
linear operator T : M(ω,B1) → M(ω,B2) is called a v.B.s.-valued singular integral
operator if there exists K(x, y) : B1(y) → B2(x) such that

(Tf)(x) =

ˆ
K(x, y)f(y) dy, ∀x ∈ Rn \ supp f,

and

‖K(x, y)‖B1(y)→B2(x) ≤ C|x− y|−n, ∀(x, y) ∈ R2n \ {(x, x) : x ∈ Rn}
for some C > 0. We call K(x, y) the kernel of T .
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In order to simplify the presentation, we introduce the following notations.

Definition 3.2. Let 1 ≤ p < ∞. We say that (ω, u,X ) belongs to the class Mp

if ω ∈ Ap, X is a p-convex B.f.s. on (Rn, ω), X p is a tempered B.f.s. and u ∈ WpeXp ,ω.

According to Proposition 2.3, when X is p-convex for some 1 ≤ p < ∞, X p

possesses an equivalent norm η[p]. Thus, (X p, η[p]) is a Banach function space. The
associated space of X p is nontrivial (see [7, Chapter 1, Theorem 2.2]) and, hence, the
notion of tempered Banach function space for X p is well-defined.

Let p > 1 and ω ∈ Ap. By the openness property of the Ap class, Ap = ∪1<r<pAr,
we have a r < p such that ω ∈ Ar. Therefore, for any u ∈ Wp,ω, we have
(ω, u, Lp(ω)) ∈ Mr.

The following is our main result. It is inspired by the results in [56, Theorems 1
and 2] and some similar results are obtained in [65]. It shows that any v.B.s.-valued
singular integral operator which is bounded on the B.f.s. can be defined and, more-
over, is bounded on the corresponding weighted vector-valued Morrey spaces.

Theorem 3.1. (The Lifting Principle) Let 0 < s ≤ 1 and 1 ≤ p < ∞. If
(ω, u,X ) ∈ Mp and B1 = {B1(x)} and B2 = {B2(x)} are v.B.s., then a bounded
v.B.s.-valued singular integral operator T : X s(B1) → X s(B2) can be extended to be
a bounded operator from MX s

ω,us(B1) to MX s

ω,us(B2).

Proof. Let f ∈ MX s

ω,us(B1). For any x0 ∈ Rn and r > 0, define f1 = fχB(x0,2r)

and f2 = f(1 − χB(x0,2r)) = f − f1. As T is bounded from X s(B1) to X s(B2), we
assert that

‖(χB(x0,r))(Tf1)‖X s(B2) ≤ C‖f1‖X s(B1) ≤ C(u(x0, 2r))
s‖f‖MXs

ω,us (B1).

Since u satisfies (2.5), taking supreme over x0 ∈ Rn and r > 0, we find that

‖Tf1‖MXs
ω,us (B2) ≤ C‖f‖MXs

ω,us (B1).

Therefore, it remains to consider f2. For any x ∈ B(x0, r), we have

Tf2(x) =

ˆ
K(x, y)f2(y) dy

because x ∈ R2n \ suppf2. That is,

‖Tf2(x)‖B2(x) ≤ C

ˆ

Rn\B(x0,2r)

‖f2(y)‖B1(y)

|x− y|n dy.

Write Bk = B(x0, 2
kr) and define Sk = Bk+1 \Bk when k ≥ 1. For any x ∈ B(x0, r),

we have
|x− y|−n ≤ C2−knr−n, ∀y ∈ Sk

for some constant C > 0. Hence, we assert that

(3.1) ‖Tf2(x)‖B2(x) ≤ C

rn

∞∑

k=1

2−kn

ˆ

Sk

‖f(y)‖B1(y)
1

ω(y)
ω(y) dy.

Write p
s

= θ. As s ≤ p, the Hölder inequality yields

(3.2)
ˆ

Sk

‖f(y)‖B1(y)
1

ω(y)
ω(y) dy ≤

(ˆ

Sk

‖f(y)‖θ
B1(y)ω(y) dy

) 1
θ
(ˆ

Sk

ω(y)−θ′+1 dy

) 1
θ′
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where θ′ is the conjugate of θ. The Hölder inequality on the lattice norm η[p] (see [7],
Chapter 1, Theorem 2.4) gives

(3.3)
ˆ

Sk

‖f(y)‖θ
B1(y)ω(y) dy ≤

∥∥χSk
(·)‖f(·)‖θ

B1(·)
∥∥

η[p]
‖χSk

‖η′
[p]

where η′[p] is the associate norm for η[p] (see [7, Chapter 1, Definition 2.1]). Since η[p]

is an equivalent norm of ‖ · ‖X p , η′[p] is also equivalent to ‖ · ‖(X p)′ . Thus,

(3.4)
( ˆ

Sk

‖f(y)‖θ
B1(y)ω(y) dy

) 1
θ ≤ C‖χSk

(·)‖f(·)‖B1(·)‖X s‖χSk
‖

1
θ

(X p)′ .

By multiplying χB(x0,r) on both sides of (3.1), and, then, applying the norm ‖ · ‖X s

on both sides of the resulting inequality, we obtain

‖χB(x0,r)(·)‖Tf2(·)‖B2(·)‖X s

≤ C

rn

∞∑

k=1

2−kn‖χSk
(·)‖f(·)‖B1(·)‖X s‖χB(x0,r)‖X s‖χSk

‖
1
θ

(X p)′
( ˆ

Sk

ω(y)−θ′+1 dy
) 1

θ′ .

For any λ < 1/peX p , there exists a 1 < q < e′X p satisfying λ < 1
p
(1 − 1

q
). Thus,

the belonging ω ∈ Ap ⊆ Aθ and inequality (2.7) yield

‖χB(x0,r)‖X s‖χSk
‖1/θ

(X p)′ ≤ C

(
ω(B(x0, r))

ω(B(x0, 2kr))

) s
p
(1− 1

q
)

‖χBk
‖

s
p

X p‖χBk
‖

1
θ

(X p)′

≤ C

(
ω(B(x0, r))

ω(B(x0, 2kr))

) s
p
(1− 1

q
)

ω(Bk)
1
θ

≤ C

(
ω(B(x0, r))

ω(B(x0, 2kr))

) s
p
(1− 1

q
)

|Bk|
(ˆ

Bk

ω(y)−θ′+1 dy
)− 1

θ′ .(3.5)

Thus,
1

(u(x0, r))s
‖χB(x0,r)(·)‖Tf2(·)‖B2(·)‖X s

≤ C

∞∑

k=0

(
ω(B(x0, r))

ω(B(x0, 2kr))

) s
p
(1− 1

q
)

1

(u(x0, r))s
‖χSk

(·)‖f(·)‖B1(·)‖X s

≤ C

∞∑

k=0

(
ω(B(x0, r))

ω(B(x0, 2kr))

) s
p
(1− 1

q
) (

u(x0, 2
kr)

u(x0, r)

)s

‖f‖MXs
ω,us (B1)

≤ C

∞∑

k=0

2knsδω(− 1
p
(1− 1

q
)+λ)‖f‖MXs

ω,us (B1)(3.6)

where we used (2.2) for the last inequality.
As 0 ≤ λ < 1

p
(1 − 1

q
) and the constant C > 0 on the above inequalities is

independent of x0 and r, the lifting principle is established by taking supreme over
x0 ∈ Rn and r > 0 on the above inequalities. ¤

In order to show that the generalized Triebel–Lizorkin–Morrey spaces are well-
defined, we need to apply the lifting principle to a family of singular integral operators
on X s, 0 < s ≤ 1. This is the reason why we consider the function spaces X s,
0 < s ≤ 1, in the lifting principle instead of X . Especially, when X is a Lebesgue
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space, the above technique becomes the r-trick. The reader is referred to Section 5
for the details.

Here are some straightforward applications of the preceding theorem. The fol-
lowing result is an application of Theorem 3.1 to [48, Volume II, Theorem 1.f.14] (see
also [45]).

Corollary 3.2. Let (ω, u,X ) ∈ Mp. Suppose that T : X → X is a bounded
singular integral operator. Then, there is a constant C > 0 such that for any
{fi}∞i=0 ⊂MX

ω,u

∥∥∥∥
( ∞∑

i=0

|Tfi|2
)1/2∥∥∥∥

MX
ω,u

≤ C
∥∥∥
( ∞∑

i=0

|fi|2
)1/2∥∥∥

MX
ω,u

.

Similarly, we have the subsequent vector-valued inequalities on Morrey spaces.

Corollary 3.3. Let 1 < p, r < ∞ and u ∈ Wp. If {Ti}i∈N are a family convolu-
tion operators with their kernels {Ki(x)}i∈N satisfying the Hörmander condition

ˆ

|x|>2|y|
sup

i
|Ki(x− y)−Ki(x)| dx ≤ C

for some constant C > 0, then we have
∥∥∥∥
( ∞∑

i=0

|Tifi|r
)1/r∥∥∥∥

Mp
u

≤ C

∥∥∥∥
( ∞∑

i=0

|fi|r
)1/r∥∥∥∥

Mp
u

.

The lifting principle gives us an access to investigate the weighted vector-valued
Morrey space through the results from the corresponding vector-valued Banach func-
tion spaces. For the rest of this paper, we use the lifting principle to introduce
and study some new Morrey type spaces related to several Banach function spaces
appeared in [4, 5, 20, 24, 25, 26, 32, 35, 41, 42, 43, 44, 47, 52, 56, 66, 67, 71, 73, 74, 75].

We present the Littlewood–Paley characterization of Morrey type space in the
subsequent section. We use the lifting principle to introduce and study a generaliza-
tion of Triebel–Lizorkin–Morrey space in Section 5. Finally, we apply the results in
Section 5 to study the Morrey space with variable exponent in Sections 6.

4. Littlewood–Paley characterization

As the first “non-straightforward” application of the lifting principle, we consider
the Littlewood–Paley characterization of function spaces. In this section, we extract
the conditions imposed on the B.f.s. X so that the corresponding weighted vector-
valued Morrey spaces MX

ω,u possess the Littlewood–Paley characterization.
We begin with the definition of Littlewood–Paley characterization. For any ϕ ∈

S0(R
n) satisfying

(4.1) supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}, and |ϕ̂(ξ)| ≥ C, 3/5 ≤ |ξ| ≤ 5/3

for some C > 0, define ϕj(x) = 2jnϕ(2jx), j ∈ Z.

Definition 4.1. For any B.f.s. X satisfying S0(R
n) ↪→ X ↪→ S ′(Rn)/P where

P is the class of polynomials on Rn, we say that X possesses the Littlewood–Paley
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characterization if we have the Banach space isomorphism X = Ḟ 0
l2,X where

Ḟ 0
l2,X =

{
f ∈ S ′(Rn)/P : ‖f‖Ḟ 0

l2,X
=

∥∥(
∑
j∈Z

|f ∗ ϕj|2)1/2
∥∥
X < ∞

}

and ‖ · ‖Ḟ 0
l2,X

is an equivalent norm of ‖ · ‖X .
Define Gϕ by

Gϕ(f) = {f ∗ ϕj}j∈Z, ∀f ∈ S ′(Rn)/P .

Note that a necessary condition for X possessing the Littlewood–Paley characteri-
zation is the boundedness of the operator Gϕ : X → X (l2). In addition, a sufficient
condition for X having the Littlewood–Paley characterization is the boundedness of
the operators Gϕ and its adjoint G∗ϕ : X (l2) → X . Let ϕ, ψ ∈ S0(R

n) satisfy (4.1) and
∑

j∈Z ϕ̂(2−jξ)ψ̂(2−jξ) = 1, ξ 6= 0 where ϕ̂ and ψ̂ are the Fourier transforms of ϕ and
ψ, respectively. Using the Littlewood–Paley analysis [31], the adjoint operator of Gϕ

(with respect to the Lebesgue measure) is defined by

G∗ϕ({fj}j∈Z) =
∑
j∈Z

fj ∗ ψj.

We need to impose a stronger condition on the B.f.s. X in order to overcome a
technical obstacle on establishing the Littlewood–Paley characterization of MX

ω,u.

Definition 4.2. We say that a B.f.s. X on (Rn, ω) is of polynomial growth if
there exist a β > 0 and a constant C > 0 so that for any x0 ∈ Rn and r ≥ 1, we
have ‖χB(x0,r)‖X ≤ Cω(B(x0, r))

β.
We write (ω, u,X ) ∈ Pp if X is of polynomial growth and (ω, u,X ) ∈ Mp.

For example, according to (2.6), if X is a tempered B.f.s., then X ′ is of polynomial
growth. Furthermore, as long as the maximal operator is bounded on X q for some
0 < q < ∞, X is of polynomial growth. The proof of this assertion follows from the
proof of Proposition 2.5. For brevity, we leave the proof to the reader.

Lemma 4.1. Let 1 ≤ p < ∞. If (ω, u,X ) ∈ Pp, then S(Rn) ↪→ MX
ω,u ↪→

S ′(Rn)/P .
Proof. From the proof of Proposition 2.6, for any r > 0, we have

‖χB(0,r)‖MX
ω,u
≤ C sup

|x|≤1+r

(‖χB(x,1)‖X , ‖χB(0,r)‖X ) ≤ Cω(B(0, 2 + r))β.

Since ω ∈ Ap, for M > npβ + 1, we have a constant CM > 0 such that for any
ϕ ∈ S(Rn),

‖ϕ‖MX
ω,u
≤

∑
j∈N

2−Mj‖χB(0,2j)‖MX
ω,u
≤ C

∑
j∈N

2−Mj2(j+1)npβ < ∞.

Thus, S(Rn) ↪→MX
ω,u.

From (3.2)–(3.4), we find that for any ϕ ∈ S ′(Rn) and 0 < α < 1, there exists a
constant C > 0 such that

∣∣∣∣
ˆ

f(x)ϕ(x) dx

∣∣∣∣ ≤ C

∞∑

k=0

2−k(n+α)‖χSk
f‖X‖χSk

‖
1
p

(X p)′

(ˆ

Sk

ω(y)−p′+1 dy

) 1
p′

where S0 = B(0, 2) and Sk = B(0, 2k+1) \B(0, 2k), k ∈ N.
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Then, (3.5)–(3.6) guarantee that f ∈ S ′(Rn) with order zero where we use the
notion of order for Schwartz distribution introduced in [31]. Furthermore, according
to [31, Theorem 3.1], MX

ω,u ∩ P only contains constant function. So, it suffices to
show that F ≡ 1 does not belong to MX

ω,u because MX
ω,u is a lattice. We prove by

contradiction. Assuming that F ∈MX
ω,u. According to the definition of WpeXp ,ω, we

have a 0 < λ < 1
peXp

so that

u(0, 2k)

u(0, 1)
≤

(
ω(B(0, 2k))

ω(B(0, 1))

)λ

, ∀k ∈ N.

Thus, we have a q satisfying 1 < q < e′X p and 0 < λ < 1
p
(1 − 1

q
). For any k ∈ N,

inequality (2.7) guarantees that
(

ω(B(0, 2k))

ω(B(0, 1))

) 1
p
(1− 1

q
) ‖χB(0,1)‖X

u(0, 2k)
≤ C

‖χB(0,2k)‖X
u(0, 2k)

≤ C‖χF‖MX
ω,u

.

Subsequently,
(

ω(B(0, 2k))

ω(B(0, 1))

) 1
p
(1− 1

q
)

≤ C
u(0, 2k)

u(0, 1)
≤ C

(
ω(B(0, 2k))

ω(B(0, 1))

)λ

.

Since ω(B(0, 2k)) → ∞ as k → ∞, the above inequality contradicts the fact that
0 < λ < 1

p
(1− 1

q
). Thus, we conclude that MX

ω,u ∩ P = {0}. ¤
We now state the result for the Littlewood–Paley characterization of MX

ω,u.

Theorem 4.2. Let 1 ≤ p < ∞ and (ω, u,X ) ∈ Pp. If Gϕ is bounded from X to
X (l2) and G∗ϕ is bounded from X (l2) to X , thenMX

ω,u possesses the Littlewood–Paley
characterization.

Proof. The kernel of the operator Gϕ, K(x, y) = {ϕj(x− y)}j∈Z satisfies for any
m ∈ N, there exists a C > 0 such that

(4.2)
( ∑

j∈Z

|ϕj(x− y)|2
) 1

2

≤ C

( ∑
j∈Z

22jn

(1 + 2j|x− y|)2m

) 1
2

≤ C|x− y|−n,

for all x, y ∈ Rn, x 6= y. Thus, Theorem 3.1 and the boundedness of Gϕ on X establish
the embedding MX

ω,u ↪→ Ḟ 0
l2,MX

ω,u
and the inequality ‖f‖Ḟ 0

l2,MX
ω,u

≤ C‖f‖MX
ω,u

.

Similarly, as the kernel of G∗ϕ also satisfies (4.2), Theorem 3.1 asserts that

‖G∗ϕ({fj}j∈Z)‖MX
ω,u
≤ C

∥∥∥∥
( ∑

j∈Z

|fj|2
)1/2∥∥∥∥

MX
ω,u

.

Hence, letting fj = f ∗ ϕj, we have
∥∥ ∑

j∈Z

f ∗ ϕj ∗ ψj

∥∥
MX

ω,u
≤ C‖f‖Ḟ 0

l2,MX
ω,u

.

In view of the Littlewood–Paley analysis [31] and the fact that MX
ω,u ∩P = {0},

the embedding Ḟ 0
l2,MX

ω,u
↪→MX

ω,u holds. ¤
For the sake of illustrating the use of Theorem 4.2, we consider two examples.
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In the first example, we consider the case ω ≡ 1. The boundedness of the operator
G∗ϕ : X (l2) → X can be obtained from the boundedness of Gϕ : X ′ → X ′(l2) via the
Lorentz–Luxemburg theorem (see [7, Chapter 1, Theorem 2.7]). More precisely, we
have the following corollary. For simplicity, we leave the proof of the subsequent
corollary to the reader.

Corollary 4.3. Let (| · |, u,X ) ∈ P1. If Gϕ is bounded from X to X (l2) and from
X ′ to X ′(l2), then MX

u possesses the Littlewood–Paley characterization.

Let (| · |, u,X ) ∈ P1 and (| · |, v,X ′) ∈ P1. If both X and X ′ possess the Little-
wood–Paley characterization, then MX

v and MX ′
u also possess the Littlewood–Paley

characterization. In particular, if X is r.-i. with Boyd’s indices strictly bigger than
one and strictly less than infinity, then MX

u and MX ′
v possess the Littlewood–Paley

characterization (see [32, Theorem 5.6]).
We consider the Morrey spaces generated by weighted Lebesgue spaces Lp(ω)

associated with Ap weights as the second example.

Corollary 4.4. Let 1 < p < ∞ and ω ∈ Ap. If u ∈ Wp,ω, then Mp
ω,u possesses

the Littlewood–Paley characterization.

Proof. Obviously, we have (ω, u, Lp(ω)) ∈ Pr for some 0 < r < p. The bounded-
ness of Gϕ from Lp(ω) to Lp(ω)(l2) follows from the proof of [47, Theorem 3.1]. For
the boundedness of G∗ϕ, we find that

‖G∗ϕ({fj}j∈Z)‖Lp(ω)

= sup
‖g‖

Lp′ (ω)
≤1

∣∣∣∣∣
ˆ ∑

j∈Z

(fj ∗ ψj)(x)g(x)ω(x) dx

∣∣∣∣∣

= sup
‖g‖

Lp′ (ω)
≤1

∣∣∣∣∣
ˆ ∑

j∈Z

fj(x)((gω) ∗ ψj))(x) dx

∣∣∣∣∣

≤ sup
‖g‖

Lp′ (ω)
≤1

‖{fj}j∈Z‖Lp(ω)(l2)

( ˆ ( ∑
j∈Z

|((gω) ∗ ψj)(x)|2
) p′

2
ω(x)−

p′
p dx

) 1
p′

where p′ is the conjugate of p. In view of the fact that ω−
p′
p ∈ Ap′ , we obtain

( ˆ ( ∑
j∈Z

|((gω) ∗ ψj)(x)|2
) p′

2
ω(x)−

p′
p dx

) 1
p′
≤ C‖gω‖

Lp′ (ω−
p′
p )

by using the boundedness of Gϕ from Lp′(ω−
p′
p ) to Lp′(ω−

p′
p )(l2). Finally, as

‖gω‖p′

Lp′ (ω−
p′
p )

=

ˆ
|g|p′ωp′ω−

p′
p dx =

ˆ
|g|p′ω dx,

we obtain the boundedness of G∗ϕ : Lp(ω)(l2) → Lp(ω) and, hence, our desired result
follows from Theorem 4.2. ¤

Notice that the weighted Morrey spaces given in [43, Definition 2.1] are particular
cases of Mp

ω,u. Thus, they also admit the Littlewood–Paley characterization.
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5. Generalized Triebel–Lizorkin–Morrey spaces

The second application of the lifting principle is a study of a family of function
spaces defined via the Littlewood–Paley function. We call them the generalized
Triebel–Lizorkin–Morrey spaces.

The conjecture from [52] inspires a new direction of researches for function spaces.
More precisely, the study of Triebel–Lizorkin spaces can be combined with Morrey
spaces to produce the Triebel–Lizorkin–Morrey spaces [52, 66, 71, 74] which are
generalizations of Triebel–Lizorkin spaces and Morrey spaces. In this section, we
further extend these generalizations by introducing the generalized Triebel–Lizorkin–
Morrey spaces.

We apply the lifting principle to show that if X satisfies some vector-valued
inequalities, then the generalized Triebel–Lizorkin–Morrey spaces are well-defined.
We extend our analysis by considering the quasi-Banach function space X p, 1 < p <
∞. To show that the generalized Triebel–Lizorkin–Morrey spaces associated with
X p is well-defined, it requires the validity of a family of vector-valued inequalities on
X s for 0 < s ≤ 1. At the end of this section, we obtain the atomic and molecular
decompositions for the generalized Triebel–Lizorkin–Morrey spaces.

We now state the definition of the generalized Triebel–Lizorkin–Morrey spaces.

Definition 5.1. Let 0 < q < ∞ and B be a v.B.s. Define Bq by Bq =
{B(x)q}x∈Rn .

When 1 < q < ∞, Bq is a family of quasi-Banach spaces.

Definition 5.2. Let 1 ≤ p, q, r < ∞, (ω, u,X ) ∈ Mp and B be a v.B.s. The
generalized Triebel–Lizorkin–Morrey space FBq

MXr
ω,ur

(Φ) consists of those f ∈ S ′(Rn)

satisfying
‖f‖FBq

MXr
ω,ur

(Φ) = ‖{f ∗ ϕj}∞j=0‖MXr
ω,ur (Bq) < ∞

where ϕ0 ∈ S(Rn) and ϕj(x) = 2jnϕ(2jx), j ≥ 1, ϕ ∈ S(Rn). The pair Φ = (ϕ0, ϕ)
satisfies

ϕ̂0 ⊂ {ξ ∈ Rn : |ξ| ≤ 1} and ϕ̂ ⊆ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}
and ϕ̂0 + ϕ̂1 = 1 on {ξ ∈ Rn : |ξ| ≤ 1} and ϕ̂(2ξ) + ϕ̂(ξ) + ϕ̂(ξ/2) = 1 on {ξ ∈
Rn : 1/2 ≤ |ξ| ≤ 2}.

When r = q = 1, we write FBq

MXr
ω,ur

by FB
MX

ω,u
.

The assumptions imposed on the pair (ϕ0, ϕ) can be relaxed so that the Little-
wood–Paley analysis is valid and the family of function spaces FBq

MXr
ω,ur

(Φ) is indepen-
dent of (ϕ0, ϕ). For the sake of brevity, we skip the details and refer the reader to
[24, 25, 31].

The above definition encompasses several “Triebel–Lizorkin–Morrey” type spaces.
Obviously, it covers the classical Triebel–Lizorkin space [73] and the function spaces
studied in [20, 52, 66, 71, 74, 75]. It also includes some non-Triebel–Lizorkin–Morrey
type spaces. For instance, the family of generalized Triebel–Lizorkin–Morrey spaces
covers the inhomogeneous version of the Littlewood–Paley spaces associated with
r.-i.q-B.f.s. introduced in [32].

In order to have a well defined definition for FBq

MXr
ω,ur

= FBq

MXr
ω,ur

(Φ), we have to
show that it is independent of the functions ϕ0 and ϕ used in Definition 5.2. We



390 Kwok-Pun Ho

have two methods to show that FBq

MXr
ω,ur

is well defined. Both of them rely on the
lifting principle given in Theorem 3.1. The following definition gives us a criteria on
the v.B.s. so that the linear operators used in the subsequent theorems are singular
integral operators.

Definition 5.3. We say that (ω, u,X ,B1,B2) belongs to Vp if (ω, u,X ) ∈ Mp

and there exist a constant C independent of x, y ∈ Rn and a bounded non-negative
function γ(x, y) so that for any x, y ∈ Rn with x 6= y,

(5.1) |x− y|−γ(x,y)‖{2−γ(x,y)jaj}∞j=0‖B2(x) ≤ C‖{aj}∞j=0‖B1(y).

Write Γ = supx,y∈Rn γ(x, y).

Notice that we can take γ(x, y) ≡ 0 if and only if there exists a Banach se-
quence space B such that B(x) = B for all x ∈ Rn. Moreover, as long as we have
(ω, u,X ,B1,B2) ∈ Vp, we also have (ω, u,X ,Bq

1,Bq
2) ∈ Vp for any 0 < q < ∞.

Lemma 5.1. Let 0 < s ≤ 1, 1 ≤ p < ∞ and (ω, u,X ,B1,B2) ∈ Vp. Suppose
that {φj}∞j=0 ⊂ S(Rn) satisfy

(5.2) |φj(x)| ≤ C2nj(1 + 2j|x|)−n−Γ, ∀j ∈ N ∪ {0}
for some C > 0. If there is a constant B > 0 so that

(5.3) ‖{φj ∗ fj}∞j=0‖X s(B2) ≤ B‖{fj}∞j=0‖X s(B1),

then there exists a constant A > 0 such that

‖{φj ∗ fj}∞j=0‖MXs
ω,us (B2) ≤ A‖{fj}∞j=0‖MXs

ω,us (B1).

Proof. Fix x, y ∈ Rn with x 6= y. Let U1(y) = {a ∈ B1(y) : ‖a‖B1(y) ≤ 1}. The
kernel of the operator T ({fj}∞j=0) = {ϕj ∗ fj}∞j=0, K(x, y), satisfies

‖K(x, y)‖B1(y)→B2(x)

≤ sup
{aj}∞j=0∈U1(y)

‖{ϕj(x− y)aj}∞j=0‖B2(x)

≤ C sup
{aj}∞j=0∈U1(y)

∥∥∥∥∥
{

2njaj

(1 + 2j|x− y|)n+γ(x,y)

}∞

j=0

∥∥∥∥∥
B2(x)

≤ C sup
{aj}∞j=0∈U1(y)

|x− y|−γ(x,y)−n‖{2−γ(x,y)jaj}∞j=0‖B2(x) ≤ C
1

|x− y|n
for some C > 0 independent of x, y ∈ Rn. With the above estimate, Theorem 3.1
offers us our desired result. ¤

Definition 5.4. Let B be a v.B.s. We say that a linear operator T is bounded
uniformly on B if there exists a constant C > 0 independent of x ∈ Rn so that
‖Ta‖B(x) ≤ C‖a‖B(x) for all a ∈ B and x ∈ Rn.

Theorem 5.2. Let 1 ≤ p < ∞ and (ω, u,X ,B,B) ∈ Vp. Suppose that the B.f.s.
X satisfies (5.3) with s = 1 and B1 = B2 = B. If the shifting operators

R({aj}∞j=0) = {aj+1}∞j=0

L({aj}∞j=0) = {aj−1}∞j=0 with a−1 = 0,

are bounded uniformly on B, then the function space FB
MX

ω,u
is well defined.
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Proof. Let Φ = (ϕ0, ϕ) and Ψ = (ψ0, ψ) be two pairs of functions satisfy the
conditions for defining the function space FB

MX
ω,u

in Definition 5.2. Lemma 5.1 yields

‖{ψj ∗ fj}∞j=0‖MX
ω,u(B) ≤ A‖{fj}∞j=0‖MX

ω,u(B).

For any f ∈ FB
MX

ω,u
(Φ), applying the above inequality with f0 = ϕ0 ∗ f + ϕ1 ∗ f and

fj = ϕj−1 ∗ f + ϕj ∗ f + ϕj+1 ∗ f when j ≥ 1, we have

‖{ψj ∗ f}∞j=0‖MX
ω,u(B) = ‖{ψj ∗ fj}∞j=0‖MX

ω,u(B) ≤ A‖{fj}∞j=0‖MX
ω,u(B)

≤ 3A‖{ϕj ∗ f}∞j=0‖MX
ω,u(B)

because ψj ∗fj = ψj ∗f , j ∈ N∪{0} and R and L are bounded. The independence of
the definition of the function space FB

MX
ω,u

from the pair of functions (ϕ0, ϕ) satisfying
the conditions in Definition 5.2 follows from the above inequality. ¤

We apply the above result to the weighted Lebesgue spaces. Let 1 < p, q < ∞
and ω ∈ Ap. If we assign X = Lp(ω) and B1(x) = B2(x) = lq for all x ∈ Rn, then
inequality (5.3) is valid for all 0 < s ≤ 1 (see [3, Theorem 5.2]). Therefore, the Ap-
weighted versions of the Triebel–Lizorkin–Morrey spaces considered in [66, 71, 74]
are well defined.

Notice that the drawback of Theorem 5.2 is the restriction q = r = 1. That
is, the “function space” component and the “sequence space” component of FBq

MXr
ω,ur

are Banach spaces. In order to study the case 1 ≤ q, r < ∞, we present the second
method for showing the independence of the definition of FBq

MXr
ω,ur

on the pair (ϕ0, ϕ).
We use the ϕ-ψ transform introduced by Frazier and Jawerth in [22, 23, 24, 25].

We recall the definition of the inhomogeneous ϕ-ψ transforms from [24, Sec-
tion 12].

Let Q = {Qν,k : ν ∈ N ∪ {0}, k ∈ Zn} where Qν,k = {(x1, . . . , xn) ∈ Rn : kj ≤
2νxj < kj + 1, j = 1, . . . , n} and k = (k1, . . . , kn). Denote the lower-left corner of
the dyadic cube Q by xQ = 2−νk, the side-length by l(Q) and the Lebesgue measure
of Q by |Q|. Moreover, we write ϕQ(x) = 2nνϕ(2νx− k) when Q = Qν,k.

For any f ∈ S ′(Rn), denote the Fourier transform of f by f̂ . Let ϕ0, ψ0 ∈ S(Rn)
and ϕ, ψ ∈ S0(R

n) satisfying

supp ϕ̂0, supp ψ̂0 ⊆ {ξ ∈ Rn : |ξ| ≤ 2},
|ϕ̂0(ξ)|, |ψ̂0(ξ)| ≥ c > 0, if |ξ| ≤ 5/3,

supp ϕ̂, supp ψ̂ ⊆ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2},
|ϕ̂(ξ)|, |ψ̂(ξ)| ≥ c > 0, if 3/5 ≤ |ξ| ≤ 5/3,

ϕ̂0(ξ)ψ̂0(ξ) +
∞∑

ν=1

ϕ̂(2−νξ)ψ̂(2−νξ) = 1, ∀ξ ∈ Rn.

For any complex-valued sequence s = {sQ}Q∈Q and f ∈ S ′(Rn), define Sϕ(f) =
{〈f, ϕQ〉}Q∈Q and Tψ(s) =

∑
Q∈Q sQψQ.

In order to study the ϕ-ψ transform, we need to introduce the sequence space
associated with FBq

MXr
ω,ur

.
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Definition 5.5. Let 1 ≤ p, q, r < ∞ and (ω, u,X ,B,B) ∈ Vp. The sequence
space fB

q

MXr
ω,ur

consists of those complex-valued sequence s = {sQ}Q∈Q satisfying

‖s‖fBq

MXr
ω,ur

=
∥∥∥
{ ∑

k∈Zn

|sQj,k
|χ̃Qj,k

}∞
j=0

∥∥∥
MXr

ω,ur (Bq)
< ∞

where χ̃Q = |Q|−1/2χQ and Q ∈ Q.
When q = r = 1, we write fB

q

MXr
ω,ur

by fBMX
ω,u

.

If u ≡ 1, we write FBq

MXr
ω,ur

and fB
q

MXr
ω,ur

by FBq

X r and fB
q

X r , respectively.
To study the case 1 < q, r < ∞, it requires a stronger condition imposed on the

B.f.s. and the v.B.s., we call that the admissibility condition.
We introduce some notations used to formulate the admissibility condition. Let

ηm(x) = (1 + |x|)−m and ην,m(x) = 2nνηm(2νx), m, ν ∈ N ∪ {0}. For any 0 < θ, β
and any sequence a = {aj}∞j=0, define

−→
S θ(a) = {

i∑
j=0

2(j−i)(θ+ε)aj}∞i=0 and
←−
S β(a) = {

∞∑
j=i

2(j−i)(β−ε)aj}∞i=0.

Definition 5.6. Let θ, β > 0, X be a B.f.s. and B be a v.B.s. We say that (X ,B)
is admissible with order (θ, β) if

(1) there exist M > 0 and 0 < s0 ≤ 1 so that for any 0 < s, t < s0 and m > M ,

‖{ηj,m ∗ fj}∞j=0‖X s(Bt) ≤ C‖{fj}∞j=0‖X s(Bt)

for some C > 0; and
(2) for any ε > 0, there exists C > 0 independent of x ∈ Rn so that

(5.4) ‖−→S θ(a)‖B(x) ≤ C‖a‖B(x) and ‖←−S β(a)‖B(x) ≤ C‖a‖B(x).

Let 1 ≤ p, q < ∞. If X = Lp(Rn) and B(x) = lq, ∀x ∈ Rn, then (X ,B) satisfies
Condition (1) of Definition 5.6 with s0 = 1 and M = n. Let α ≥ 0 and 1 ≤ s < ∞.
When B(x) = lα,s, ∀x ∈ Rn where

lα,s =
{

a = (ai)
∞
i=0 : ‖a‖lα,s =

( ∞∑
i=0

(2iα|ai|)s
) 1

s

}
,

{B(x)}x∈Rn fulfills Condition (2) of Definition 5.6 with θ = β = α.
The admissibility condition also reveals the reason why we consider X s with

0 < s ≤ 1 instead of X in the lifting principle, Theorem 3.1.
The introduction of condition (1) in the preceding definition is motivated by

[20, Theorem 3.2]. For condition (2), it is related to an obstacle arising from the
definition of the ψ-transform. The ψ-transform is defined by an infinite series while
the convergence of this series is not guaranteed. The subsequent result overcomes
this difficulty by showing that whenever (X ,B) is admissible, the series used to define
the ψ-transform converges in S ′(Rn).

Lemma 5.3. Let 1 ≤ p, q, r < ∞, 0 < θ, β and (ω, u,X ,B,B) ∈ Vp. If (X ,B)
is admissible with order (θ, β), then the ψ-transform is a well-defined mapping from
fB

q

MXr
ω,ur

to S ′(Rn).
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Proof. Let s = {sQ}Q∈Q ∈ fB
q

MXr
ω,ur

and f =
∑

Q∈Q sQψQ. Take 0 < h <

min( s0

r
, s0

q
). For any given g ∈ S(Rn) and |Q| = 2−nµ, µ ∈ N, according to [24,

Lemmas 3.6 and B.1], we assert that for any L > max(M,n + Γ)/h,

|g ∗ ψQ(x)| ≤ C2−µ(L−qβ−n
2
) (1 + |xQ − x|)−L

where M is the constant given in Condition (1) of Definition 5.6.
Multiplying sQ on both sides of the above inequality and, then, taking summation

over Q ∈ Q, we obtain

∑
Q∈Q

|sQ||g ∗ ψQ(x)| ≤ C

∞∑
µ=0

2−µ(L−qβ−n
2
)

∑

l(Q)=2−µ

|sQ|/(1 + |x− xQ|)L.

An estimate from [24, p. 50] assures that

(5.5)
∑
Q∈Q

|sQ||g ∗ ψQ(x)| ≤ C

∞∑
µ=0

2µ(qβ− ε
2
)

(( ∑

k∈Zn

|sQµ,k
|χ̃Qµ,k

)h ∗ ηµ,hL

) 1
h

as hL > max(M,n + Γ).
Write Aν =

(( ∑
k∈Zn |sQν,k

|χ̃Qν,k

)h ∗ ην,hL

) 1
h . Inequalities (2.1) and (5.5) assure

that ∥∥∥∥
∑
Q∈Q

|sQ||g ∗ ψQ(x)|
∥∥∥∥
MXr

ω,ur

≤ C‖‖←−S qβ({Aν}ν∈N)‖Bq(x)‖MXr
ω,ur

.

For any 1 < q, the boundedness of
←−
S β on B is equivalent to the boundedness of←−

S qβ on Bq. Thus, ‖←−S qβ({Aν}ν∈N)‖Bq(x) ≤ C‖({Aν}ν∈N)‖Bq(x) for some C > 0
independent of x ∈ Rn. Using Condition (1) of Definition 5.6 and Lemma 5.1, we
obtain

∥∥∥∥
∑
Q∈Q

|sQ||g ∗ ψQ(x)|
∥∥∥∥
MXr

ω,ur

≤ C‖{Aν}ν∈N‖MXr
ω,ur (Bq)

≤ C
∥∥{Ah

ν}∞ν=0

∥∥ 1
h

MXhr

ω,uhr (Bhq)
≤ C‖s‖fBq

MXr
ω,ur

< ∞.

Proposition 2.6 guarantees that
∑

Q∈Q |sQ||g ∗ ψQ| is finite almost everywhere.
Therefore, f is a well-defined tempered distribution. ¤

Recall that in the lifting principle, we consider the family of function spaces X s,
0 < s ≤ 1, instead of X . As claimed at the end of Section 3, it is related to the
r-trick. In fact, the admissibility condition is defined in order to incorporate the
r-trick to our study of FBq

MXr
ω,ur

. The following theorem reveals in detail on how to
integrate the lifting principle, the admissibility condition and the r-trick together to
show the boundedness of the ϕ-ψ transform.

Theorem 5.4. Let 1 ≤ p, q, r < ∞ and (ω, u,X ,B,B) ∈ Vp. If (X ,B) is admis-
sible, then the ϕ-transform Sϕ : FBq

MXr
ω,ur

→ fB
q

MXr
ω,ur

is bounded and the ψ-transform

Tψ : fB
q

MXr
ω,ur

→ FBq

MXr
ω,ur

is also bounded. Hence, FBq

MXr
ω,ur

is well defined.
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Proof. Take 0 < h < min( s0

r
, s0

q
). For any f ∈ FB

MX
ω,u

, we have

‖Sϕf‖FBq

MXr
ω,ur

=
∥∥∥
{ ∑

k∈Zn

|(ϕν ∗ f)(xQν,k
)|χQQν,k

}∞
ν=0

∥∥∥
MXr

ω,ur (Bq)
.

Using the idea from Peetre’s inequality (see [22, (2.11)] or [73, Sections 1.4.1 and
1.4.2] or [20, Lemma A.6]), for sufficiently large m, we find that

‖Sϕf‖FBq

MXr
ω,ur

≤ C
∥∥∥
({ην,m ∗ |ϕν ∗ f |h)

1
h}∞ν=0

∥∥∥
MXr

ω,ur (Bq)

= C
∥∥∥{ην,m ∗ |ϕν ∗ f |h}∞ν=0

∥∥∥
1
h

MXhr

ω,uhr (Bhq)
.

Therefore, the admissibility condition and Lemma 5.1 conclude that

‖Sϕf‖FBq

MXr
ω,ur

≤ C
∥∥{|ϕν ∗ f |h}∞ν=0

∥∥ 1
h

MXhr

ω,uhr (Bhq)
= C‖f‖FBq

MXr
ω,ur

.

We consider the ψ-transform. Suppose that s = {sQ}Q∈Q ∈ fB
q

MXr
ω,ur

and f =

Tψ(s) =
∑

Q∈Q sQψQ. Using Lemma 5.3, it remains to show that f ∈ FBq

MXr
ω,ur

. For
any Φ = (ϕ0, ϕ) satisfying the conditions in Definition 5.2, we use the estimate from
[24, p. 50] and find that

|ϕν ∗ f | ≤ C

ν+1∑

µ=max(ν−1,0)

(( ∑

k∈Zn

|sQµ,k
|χ̃Qµ,k

)h

∗ ηµ,m

) 1
h

.

As (X ,B) is admissible, R and L are bounded uniformly on B. Thus, Lemma 5.1
ensures that

‖Tψ(s)‖FBq

MXr
ω,ur

= ‖{f ∗ ϕν}∞ν=0‖MXr
ω,ur (Bq)

≤ C

∥∥∥∥
{ ν+1∑

µ=max(ν−1,0)

( ∑

k∈Zn

|sQµ,k
|χ̃Qµ,k

)h

∗ ηµ,m

}∞
ν=0

∥∥∥∥
1
h

MXhr

ω,uhr (Bhq)

≤ C
∥∥∥
{ ∑

k∈Zn

|sQµ,k
|χ̃Qµ,k

}∞
ν=0

∥∥∥
MXr

ω,ur (Bq)
= C‖s‖fBq

MXr
ω,ur

.

With the boundedness of the ϕ-ψ transform, the rest of the proof follows from some
simple modifications of the arguments from [24, Theorem 2.2]. For the sake of brevity,
we leave it to the reader. ¤

The following presents another application of the ϕ-ψ transform. We show that
FBq

MXr
ω,ur

and fB
q

MXr
ω,ur

are quasi-Banach spaces. We have a supporting lemma for this
result. We use the techniques developed in [32, Lemma 1.6, Theorems 1.7 and 2.5]
to obtain the following results.

Lemma 5.5. Let 1 ≤ p, q, r < ∞ and (ω, u,X ,B,B) ∈ Vp. There exists a ρ > 0
such that for any {Fi}∞i=0 ⊂MX r

ω,ur(Bq),
∞∑
i=0

‖Fi‖ρ

MXr
ω,ur (Bq)

< ∞ =⇒
∞∑
i=0

Fi ∈MX r

ω,ur(Bq).
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Proof. We find that ‖ · ‖1/q
Bq satisfies the triangle inequality. Since ‖ · ‖

(MXr
ω,ur )

1
q

is a quasi-norm, Aoki–Rolewicz theorem (see [39, Theorem 1.3]) provides a ρ > 0 so
that ∥∥∥∥

( ∞∑
i=0

‖Fi‖1/q
Bq

)q∥∥∥∥
MXr

ω,ur

≤ C

( ∞∑
i=0

‖Fi‖ρ

MXr
ω,ur (Bq)

) 1
ρ

.

As X is complete, the completeness of MX r

ω,ur follows from a simple modification
of the classical Morrey space (see [46, Section 4.4]). In view of the assumption∑∞

i=0 ‖Fi‖ρ

MXr
ω,ur (Bq)

< ∞ and the sub-additive of ‖ · ‖1/q
Bq , we conclude that

∑∞
i=0 Fi ∈

MX r

ω,ur(Bq) and satisfies

¤(5.6)
∥∥∥∥

∞∑
i=0

Fi

∥∥∥∥
MXr

ω,ur (Bq)

≤ C

( ∞∑
i=0

‖Fi‖ρ

MXr
ω,ur (Bq)

) 1
ρ

.

Theorem 5.6. Let 1 ≤ p, q, r < ∞ and (ω, u,X ,B,B) ∈ Vp. Then fB
q

MXr
ω,ur

is

a quasi-Banach space. In addition, if (X ,B) is admissible, then FBq

MXr
ω,ur

is also a
quasi-Banach space.

Proof. Let ρ be the constant given in Lemma 5.5. For any Cauchy sequence
ci = {ci,Q}Q∈Q, i ∈ N∪{0}, without loss of generality, we can assume that

∑∞
i=1 ‖ci−

ci−1‖ρ

fBq

MXr
ω,ur

< ∞. Write

Ci(x) =

{ ∑

|Q|=2−jn

|ci,Q − ci−1,Q|χ̃Q(x)

}∞

j=0

, i ∈ N.

We have
∑∞

i=0 ‖Ci‖ρ

MXr
ω,ur (Bq)

=
∑∞

i=1 ‖ci−ci−1‖ρ

fBq

MXr
ω,ur

< ∞. Thus, Lemma 5.5 assures

that C∞ =
∑∞

i=0 Ci exists in MX r

ω,ur(Bq). As dyadic cubes with equal Lebesgue
measure are either disjoint or identical, we conclude that

C∞ =

{ ∑

|Q|=2−jn

( ∞∑
i=0

|ci,Q − ci−1,Q|
)
χ̃Q(x)

}∞

j=0

, i ∈ N ∪ {0}

is well defined. Thus, for any Q ∈ Q,
∑∞

i=1 |ci,Q − ci−1,Q| < ∞. Indeed,

c∞ = lim
i→∞

ci =

{
c0,Q +

∞∑
i=1

(ci,Q − ci−1,Q)

}

Q∈Q

exists. In view of (5.6), we obtain

‖c− cl‖fBq

MXr
ω,ur

=
∥∥∥C∞ −

l∑
i=1

Ci

∥∥∥
MXr

ω,ur (Bq)
≤ C

( ∞∑

i=l+1

‖ci − ci−1‖ρ

fBq

MXr
ω,ur

) 1
ρ

→ 0

as i goes to infinity.
We now turn to the completeness of FBq

MXr
ω,ur

. Let {Fi}∞i=1 be a Cauchy sequence

in FBq

MXr
ω,ur

. Theorem 5.4 shows that {Sϕ(Fi)}∞i=1 is a Cauchy sequence in fB
q

MXr
ω,ur

.
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Therefore, limi→∞ Sϕ(Fi) = s = {sQ}Q∈Q exists. Define F = Tψ(s). Theorem 5.4
and the identity Tψ ◦Sϕ = id ensure that

‖F − Fi‖FBq

MXr
ω,ur

= ‖Tψ(s)− Tψ ◦Sϕ(Fi)‖FBq

MXr
ω,ur

≤ ‖s− Sϕ(Fi)‖fBq

MXr
ω,ur

→ 0

as i goes to infinity. Hence, FBq

MXr
ω,ur

is a quasi-Banach space. ¤

We state and sketch the proof of the atomic decompositions of FBq

MXr
ω,ur

. The reader
is referred to [24, (4.1)–(4.3) and (12.6)–(12.7)] for the definition of inhomogeneous
smooth N -atom, N ∈ N.

Theorem 5.7. Let 1 ≤ p, q, r < ∞, N ∈ N and (ω, u,X ,B,B) ∈ Vp. If (X ,B)
is admissible, then there exist a sequence s = {sQ}Q∈Q ∈ fB

q

MXr
ω,ur

and a family of
smooth N -atoms {aQ}Q∈Q so that f =

∑
Q∈Q sQaQ and ‖s‖fBq

MXr
ω,ur

≤ C‖f‖FBq

MXr
ω,ur

for

some constant C > 0.

Proof. Using the ideas from [25, Theorem 5.11 and Lemma 5.12], for any f ∈
S ′(Rn), we have f =

∑
Q∈Q sQaQ where {aQ}Q∈Q is a family of inhomogeneous

smooth N -atoms and
sQ = |Q|1/2 sup

y∈Q
|(ϕj ∗ f)(y)|

where Φ = (ϕ0, ϕ) satisfies the conditions in Definition 5.2. Furthermore, using the
idea from Peetre’s inequality again, when m is large enough, we find that

∑

|Q|=2−jn

sQχ̃Q =
∑

|Q|=2−jn

sup
y∈Q

|(ϕj ∗ f)(y)|χQ ≤ C(ηj,m ∗ |ϕj ∗ f |h) 1
h

where h is given by the proof of Theorem 5.4. The admissibility of (X ,B) and
Lemma 5.1 provide the inequality ‖s‖fBq

MXr
ω,ur

≤ C‖f‖FBq

MXr
ω,ur

. ¤

Definition 5.7. Let 0 < θ, β < ∞, 1 ≤ p, q, r < ∞, (ω, u,X ,B,B) ∈ Vp and
(X ,B) be admissible with order (θ, β). We call that {mQ}Q∈Q is a family of smooth
molecules for FBq

MXr
ω,ur

if there exist δ > 0 and M0 > J such that
ˆ

xλmQ(x) dx = 0, |λ| ≤ N, |Q| < 1,

|∂γmQ(x)| ≤ |Q|−1/2−|γ|/n(1 + l(Q)−1|x− xQ|)−M0 , |γ| ≤ [qθ],

|∂γmQ(x)− ∂γmQ(y)| ≤ |Q|−1/2−|γ|/n−δ/n|x− y|δ
× sup

|z|≤|x−y|
(1 + l(Q)−1|x− z − xQ|)−M0 , |γ| = [qθ],

where J =
max(M, n + Γ)

s0

max(q, r, 1) and N = [J − n− qβ].

For instance, when X = Lp(Rn) and B(x) = lα,s, we have J = n
min(1,p,s)

and
N = [J − n− α] which are precisely the results given in [24].

Theorem 5.8. Let 0 < θ, β < ∞, 1 ≤ p, q, r < ∞ and (ω, u,X ,B,B) ∈ Vp.
Suppose that (X ,B) is admissible with order (θ, β). If f =

∑
Q∈Q sQmQ converges
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in S ′(Rn) where {mQ}Q∈Q is a family of smooth molecules for FBq

MXr
ω,ur

, then

(5.7) ‖f‖FBq

MXr
ω,ur

≤ C‖s‖fBq

MXr
ω,ur

for some constant C > 0.

Proof. Let (ϕ0, ϕ) satisfy the conditions in Definition 5.2 and Q ∈ Q with
|Q| = 2−µn. We find that |ϕν ∗ f(x)| ≤ Iν + IIν where

Iν =
ν−1∑
µ=0

∑

l(Q)=2−µ

|sQ||mQ ∗ ϕν(x)|,

IIν =
∞∑

µ=ν

∑

l(Q)=2−µ

|sQ||mQ ∗ ϕν(x)|.

When ν ≤ µ, according to [24, Lemmas 3.6 and B.1], we assert that

|mQ ∗ ϕν(x)| ≤ C2
nν
2 2(ν−µ)(J+ ε

2
−qβ−n

2
) (1 + 2ν |xQ − x|)−J−ε

for some ε > 0.
For IIν , we obtain

IIν ≤ C2
nν
2

∞∑
µ=ν

2(ν−µ)(J+ ε
2
−qβ−n

2
)

∑

l(Q)=2−µ

|sQ|/(1 + 2ν |x− xQ|)J+ε

≤ C

∞∑
µ=ν

2(µ−ν)(qβ− ε
2
)

(( ∑

k∈Zn

|sQµ,k
|χ̃Qµ,k

)h ∗ ηµ,hJ+hε

) 1
h

where h is slightly less than min( s0

r
, s0

q
) so that hJ + hε > max(M,n + Γ). We have

the last inequality because

2µ|x− y| ≤ 2µ−ν(2ν |x− xQ|+ 2), ∀y ∈ Q.

Similarly, when µ ≤ ν, we have

|mQ ∗ ϕν(x)| ≤ C2
nν
2 2(µ−ν)(qθ+n

2
+ ε

2
) (1 + 2µ|xQ − x|)−J−ε .

Thus,

Iν ≤ C

ν−1∑
µ=0

2(µ−ν)(qθ+ ε
2
)

(( ∑

k∈Zn

|sQµ,k
|χ̃Qµ,k

)h ∗ ηµ,hJ+hε

) 1
h

.

The boundedness of
−→
S θ and

←−
S β on B offer the boundedness of

−→
S qθ and

←−
S qβ on Bq

when q ≥ 1. Thus, the admissibility condition yields the convergence of the molecular
expansion and inequality (5.7). ¤

6. Function spaces of variable smoothness and integrability

One of the pioneer studies of the variable exponent analysis is [44]. The main
family of function spaces considered in [44] is the variable Lebesgue spaces.
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Definition 6.1. Let p(x) : Rn → (0,∞) be a Lebesgue measurable function.
The variable Lebesgue space Lp(·)(Rn) consists of all Lebesgue measurable functions
f : Rn → C so that

‖f‖Lp(·)(Rn) = inf

{
λ > 0:

ˆ

Rn

∣∣∣∣
f(x)

λ

∣∣∣∣
p(x)

dx ≤ 1

}
< ∞.

We call p(x) the exponent function of Lp(·)(Rn).

The variable Lebesgue space is a Banach space when 1 ≤ p(x) ≤ ∞ (see [44,
Theorem 2.5]). The following is a fundamental result for variable Lebesgue spaces
given in [44, Theorem 2.6].

Theorem 6.1. If 1 < p(x) < ∞, then the associate space of Lp(·)(Rn) is
Lp′(·)(Rn) where p′ satisfies 1

p(x)
+ 1

p′(x)
= 1.

We call p′(x) the conjugate function of p(x).
The monotone convergence theorem shows that Lp(·)(Rn) fulfills condition (3) of

Definition 2.1. As χE ∈ Lp(·)(Rn) ∩ Lp′(·)(Rn) when |E| < ∞, Lp(·)(Rn) is a B.f.s.
One of the important breakthroughs on the variable exponent analysis is the

establishment of the boundedness of the maximal operator on variable Lebesgue
spaces given in [15, 17, 57]. The following gives the condition on the exponent
functions of the variable Lebesgue spaces Lp(·)(Rn) so that the maximal operator is
bounded on Lp(·)(Rn).

Definition 6.2. A continuous function g on Rn is locally log-Hölder continuous
if there exists clog > 0 such that

|g(x)− g(y)| ≤ clog

log(e + 1/|x− y|) , ∀x, y ∈ Rn.

We denote the class of locally log-Hölder continuous function by C log
loc (Rn).

Furthermore, a continuous function is globally log-Hölder continuous if g ∈
C log

loc (Rn) and there exists g∞ ∈ R so that

|g(x)− g∞| ≤ clog

log(e + 1/|x− y|) , ∀x ∈ Rn.

The class of globally log-Hölder continuous function is denoted by C log(Rn).

For any Lebesgue measurable function p(x) : Rn → (0,∞), define p− = infx∈Rn

p(x) and p+ = supx∈Rn p(x).
The succeeding result is now a well-known fact. For the proof of the following

theorem, the reader is referred to [15, 17, 57].

Theorem 6.2. If p ∈ C log(Rn) and 1 < p− ≤ p+ < ∞, then the Hardy–
Littlewood maximal operator

(M f)(x) = sup
r>0

1

|B(x, r)|
ˆ

B(x,r)

|f(y)| dy

is bounded from Lp(·)(Rn) to Lp(·)(Rn).

The above result provides an access for us to apply the results from the previous
sections to Lp(·)(Rn). We first show that Lp(·)(Rn) is a tempered B.f.s. whenever
p ∈ C log(Rn) and 1 < p− ≤ p+ < ∞.
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Lemma 6.3. If p ∈ C log(Rn) and 1 < p− ≤ p+ < ∞, then Lp(·)(Rn) is a
tempered B.f.s. with eLp(·)(Rn) = p+, e′

Lp(·)(Rn)
= p′− and (| · |, u, Lp(·)(Rn)) ∈ M1

provided that u ∈ Wp+ .

Proof. As p ∈ C log(Rn) and 1 < p− ≤ p+ < ∞, we find that

p ∈ C log(Rn) =⇒ p′ ∈ C log(Rn)

and 1 < p′− ≤ p′+ < ∞.
We have (Lp(·)(Rn)′)q = Lp′(·)/q(Rn) and p′(·)/q ∈ C log(Rn) for any 0 < q <

∞. Thus, Lp(·)(Rn) is a tempered B.f.s. with e′
Lp(·)(Rn)

= p′−. For the exponent of
Lp(·)(Rn), we assert that

eLp(·)(Rn) =
e′

Lp(·)(Rn)

e′
Lp(·)(Rn)

− 1
=

p′−
p′− − 1

= p+.

The final assertion follows from the fact that the Lebesgue measure belongs to A1

and Lp(·)(Rn) is 1-convex. ¤
We provide two remarkable properties for the variable Lebesgue spaces based on

the results from Section 5.

Definition 6.3. Let p ∈ L∞. For any B ∈ B, define pB by

1

pB

=
1

|B|
ˆ

B

1

p(x)
dx.

Proposition 6.4. Let p ∈ C log(Rn) and 1 < p− ≤ p+ < ∞. There exist
C1, C2 > 0 so that for any B ∈ B,

(6.1) C1|B|
1

pB ≤ ‖χB‖Lp(·)(Rn) ≤ C2|B|
1

pB .

Hence, Lp(·)(Rn) is of polynomial growth with β = 1/p−.

Proof. By [18, Lemma 3.4], we have a constant C2 so that ‖χB‖Lp(·)(Rn) ≤
C2|B|

1
pB . Furthermore, as Lp(·)(Rn) is a tempered B.f.s., Proposition 2.4 and the

fact that
1

pB

+
1

p′B
=

1

|B|
( ˆ

B

1

p(x)
+

1

p′(x)
dx

)
= 1

guarantee the validity of the first inequality in (6.1). ¤
Similarly, applying Proposition 2.5 to Lp(·)(Rn) with p ∈ C log(Rn) and 1 < p− ≤

p+ < ∞, we obtain the subsequent results.

Proposition 6.5. Let p ∈ C log(Rn) and 1 < p− ≤ p+ < ∞. For any 1 ≤ q < p′−
and 1 ≤ p < p−, there exist constants C1, C2 > 0 such that for any x0 ∈ Rn and
r > 0, we have

C22
jn(1− 1

p
) ≤ ‖χB(x0,2jr)‖Lp′(·)(Rn)

‖χB(x0,r)‖Lp′(·)(Rn)

≤ C12
jn
q , ∀j ∈ N

and

C22
jn(1− 1

q
) ≤ ‖χB(x0,2jr)‖Lp(·)(Rn)

‖χB(x0,r)‖Lp(·)(Rn)

≤ C12
jn
p , ∀j ∈ N.
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Some similar inequalities are obtained in [37, Lemma 1]. We now give the defi-
nition of variable Morrey spaces.

Definition 6.4. Let p(x) : Rn → (0,∞) be a Lebesgue measurable function and
u ∈ Wp+ . The variable Morrey space Mp(·)

u consists of all Lebesgue measurable
functions f : Rn → C so that

‖f‖Mp(·)
u

= sup
z∈Rn,R>0

1

u(z, R)
‖χB(z,R)f‖Lp(·)(Rn) < ∞.

The above definition includes the variable Morrey spaces introduced in [41] as a
special case if the bounded open set used in Definition 3.1 of [41] is replaced by Rn.

We have the subsequent generalization of [14, Corollary 2.5].

Corollary 6.6. Let p ∈ C log(Rn) and u ∈ Wp+ . Suppose that T (f) = K ∗ f

where K is a locally integrable function defined on Rn \ {0} with |K̂(ξ)| ≤ C,

|K(x)| ≤ C

|x|n and |∇K(x)| ≤ C

|x|n+1
, x 6= 0

for some C > 0. Then, for any 1 < q < ∞, there exists a constant C > 0 such that

∥∥∥
( ∑

j∈N

|Tfj|q
) 1

q
∥∥∥
Mp(·)

u

≤ C
∥∥∥
( ∑

j∈N

|fj|q
) 1

q
∥∥∥
Mp(·)

u

.

Since (| · |, u, Lp(·)(Rn)) ∈ M1 when u ∈ Wp+ , the preceding corollary is proved by
applying the lifting principle to the singular integral operators in [14, Corollary 2.5].
In fact, the weighted version of the above result is also valid if we apply the lifting
principle to the corresponding results in [42]. For brevity, we leave the details to the
reader.

The following theorem is a consequence of Corollary 4.3. It gives an extension of
the result in [20, Theorem 4.2] to Mp(·)

u .

Theorem 6.7. Let p ∈ C log(Rn) and u ∈ Wp+ . If 1 < p− ≤ p+ < ∞, thenMp(·)
u

possesses the Littlewood–Paley characterization.

Proof. According to Proposition 6.4, Lp(·)(Rn) is a B.f.s. of polynomial growth.
Lemma 4.1 assures that S0(R

n) ↪→ Mp(·)
u ↪→ S ′(Rn)/P . In addition, [20, Theo-

rem 4.2] ensures that both Lp(·)(Rn) and Lp′(·)(Rn) possess the Littlewood–Paley
characterization. That is, the operator Gϕ is bounded from Lp(·)(Rn) to Lp(·)(Rn)(l2)

and from Lp′(·)(Rn) to Lp′(·)(Rn)(l2). Thus, Corollary 4.3 asserts thatMp(·)
u possesses

the Littlewood–Paley characterization. ¤
We adopt the Standing Assumption introduced in [20] for the study of variable

Morrey spaces.

Definition 6.5. The Lebesgue measurable functions p(x), q(x), α(x) : Rn →
(0,∞) satisfy the Standing Assumptions if p, q ∈ C log(Rn) with 0 < p− ≤ p+ < ∞
and 0 < q− ≤ q+ < ∞, α ∈ C log

loc (R
n) ∩ L∞ and that limx→∞ α(x) exists. We write

(p, q, α) ∈ S if they satisfy the Standing Assumptions.
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Let q(x) ∈ C log(Rn) with 0 < q− ≤ q+ < ∞. For any family of Lebesgue
measurable functions {fν}ν∈N, define

‖fν(x)‖
l
q(x)
ν

=

( ∞∑
ν=0

|fν(x)|q(x)

) 1
q(x)

and l
q(·)
ν = {lq(x)

ν }x∈Rn . Moreover, let α be as in the Standing Assumptions, we define

‖fν(x)‖
l
α(x),q(x)
ν

=

( ∞∑
ν=0

(2να(x)|fν(x)|)q(x)

) 1
q(x)

and l
α(·),q(·)
ν = {lα(x),q(x)

ν }x∈Rn . Whenever 1 < q− ≤ q+ < ∞ and α satisfies the
Standing Assumptions, l

α(·),q(·)
ν is a family of variable Banach sequence spaces.

Lemma 6.8. Let p ∈ C log(Rn) with 1 < p− ≤ p+ < ∞ and u ∈ Wp+ . If
(α, p, q) ∈ S and 1 < q− ≤ q+ < ∞, then (| · |, u, Lp(·)(Rn), l

α(·),q(·)
ν , l

α(·),q(·)
ν ) ∈ V1.

Proof. When q(y) ≤ q(x) and α(x) ≤ α(y), we have the embedding l
α(y),q(y)
ν ↪→

l
α(x),q(x)
ν . Therefore, (5.1) is fulfilled with γ(x, y) = 0.

If q(x) < q(y), then Hölder’s inequality guarantees that

‖{2− ν
r(x,y) aν}∞ν=0‖l

q(x)
ν

≤ ‖{2− ν
r(x,y)}∞ν=0‖l

r(x,y)
ν

‖{aν}∞ν=0‖l
q(y)
ν

where 1
q(x)

= 1
r(x,y)

+ 1
q(y)

. Moreover, |x − y| 1
q(y)

− 1
q(x) is bounded above because q ∈

C log(Rn) with 1 < q− ≤ q+ < ∞ implies 1
q
∈ C log(Rn). As 0 < 1

r(x,y)
≤ 1

q−
− 1

q+
, we

have inequality (5.1) for l
q(x)
ν with γ(x, y) = 1

r(x,y)
= 1

q(x)
− 1

q(y)
.

Similarly, when α(y) < α(x), we find that |x − y|α(y)−α(x) is bounded above in
view of α ∈ C log

loc (Rn) ∩ L∞(Rn).
In conclusion, (5.1) is valid for l

α(·),q(·)
ν with

γ(x, y) = (α(x)− α(y))χ{(x,y)∈R2n:α(y)<α(x)} +
( 1

q(x)
− 1

q(y)

)
χ{(x,y)∈R2n:q(x)<q(y)}. ¤

The previous lemma shows that the function space C log(Rn) is not only related to
the boundedness of the maximal operator on Lp(·)(Rn) but also offers a condition for
the study of vector-valued singular integral operators on Lp(·)(Rn) as demonstrated
in the proof of Lemma 5.1.

We give the definitions of variable Triebel–Lizorkin–Morrey spaces and the cor-
responding sequence spaces.

Definition 6.6. Let (p, q, α) ∈ S and u ∈ Wp+ . The variable Triebel–Lizorkin–
Morrey space Eα(·)

p(·),q(·),u consists of those f ∈ S ′(Rn) satisfying

‖f‖Eα(·)
p(·),q(·),u

= ‖‖{2να(x)(f ∗ ϕν)(x)}∞ν=0‖l
q(x)
ν
‖Mp(·)

u
< ∞

where the pair Φ = (ϕ0, ϕ) satisfies the conditions in Definition 5.2.

When u ≡ 1, the variable Triebel–Lizorkin–Morrey spaces reduce to the Triebel–
Lizorkin spaces F

α(·)
p(·),q(·) defined in [20]. In addition, the “inhomogeneous” version of

the variable Triebel–Lizorkin spaces introduced in [75] is a member of Eα(·)
p(·),q(·),u.
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On one hand, the family of variable Triebel–Lizorkin–Morrey spaces is an exten-
sion of the Triebel–Lizorkin–Morrey spaces in [52, 66, 71, 74]. On the other hand,
it generalizes the function spaces in [20, 75] by replacing the underlying variable
Lebesgue spaces by variable Morrey spaces.

As shown in Section 5, we need an analogue family of sequence spaces for the
variable Triebel–Lizorkin–Morrey spaces.

Definition 6.7. Let (p, q, α) ∈ S and u ∈ Wp+ . The variable Triebel–Lizorkin–
Morrey sequence space e

α(·)
p(·),q(·),u consists of those complex-valued sequence s = {sQ}Q∈Q

satisfying

‖s‖
e
α(·)
p(·),q(·),u

=
∥∥∥
∥∥∥2να(x)

{ ∑

k∈Zn

|sQν,k
|χ̃Qν,k

}∞
ν=0

∥∥∥
l
q(x)
ν

∥∥∥
Mp(·)

u

< ∞.

In order to apply the results form Section 5 to the variable Triebel–Lizorkin–
Morrey spaces, we verify the admissibility of (Lp(·)(Rn), l

α(·),q(·)
ν ) in the following

lemma.

Lemma 6.9. Let u ∈ Wp+ and (p, q, α) ∈ S with 1 < p− ≤ p+ < ∞ and
1 < q− ≤ q+ < ∞. Then (Lp(·)(Rn), l

α(·),q(·)
ν ) is admissible with order (α+, α−).

Proof. According to [20, Theorem 3.2], we have

(6.2) ‖{ηj,m ∗ fj}∞j=0‖Lp(·)(Rn)(l
q(·)
ν )

≤ B‖{fj}∞j=0‖Lp(·)(Rn)(l
q(·)
ν )

whenever m > n. Furthermore,

‖{ηj,2m ∗ fj}∞j=0‖Lp(·)(Rn)(l
q(·),α(·)
ν )

= ‖{2jα(x)(ηj,2m ∗ fj)}∞j=0‖Lp(·)(Rn)(l
q(x)
ν )

≤ C‖ηj,m ∗ (2jα(·)|fj|)}∞j=0‖Lp(·)(Rn)(l
q(·)
ν )

.

We have the last inequality because [20, Lemma 6.1] gives

2να(x)ην,2m(x− y) ≤ C2να(y)ην,m(x− y), x, y ∈ Rn.

Consequently, inequality (6.2) guarantees that

‖{ηj,2m ∗ fj}∞j=0‖Lp(·)(Rn)(l
q(·),α(·)
ν )

≤ C‖{fj}∞j=0‖Lp(·)(Rn)(l
q(·),α(·)
ν )

.

We find that (Lp(·)(Rn))s = Lp(·)/s(Rn) and (l
q(·),α(·)
ν )t = l

q(·)/t,tα(·)
ν for any 0 < s, t <

∞. Thus, (Lp(·)(Rn), l
α(·),q(·)
ν ) satisfies Condition (1) of Definition 5.6.

Finally, we show that l
α(·),q(·)
ν fulfills Condition (2) of Definition 5.6. For any

a = {aj}∞j=0, we have

2iα(x)

i∑
j=0

2(j−i)(α++ε)aj =
i∑

j=0

2(j−i)(α++ε−α(x))2jα(x)aj.

Young’s inequality assures that

‖−→S α+(a)‖
l
α(x),q(x)
i

= ‖{2iα(x)

i∑
j=0

2(j−i)(α++ε)aj}∞i=0‖l
q(x)
i

≤ C‖{2jα(x)aj}∞j=0‖l
q(x)
j

= ‖a‖
l
α(x),q(x)
i
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for some C > 0 independent of x because 1 < q− ≤ q+ < ∞. Similarly, we obtain
‖←−S α−(a)‖

l
α(x),q(x)
j

≤ C‖a‖
l
α(x),q(x)
j

for some C > 0 independent of x. Therefore, we

conclude that (Lp(·)(Rn), l
α(·),q(·)
ν ) is admissible with order (α+, α−). ¤

Using the results from Section 5, we obtain the following theorems.

Theorem 6.10. Let (p, q, α) ∈ S and u ∈ Wp+ . The ϕ-transform Sϕ : Eα(·)
p(·),q(·),u →

e
α(·)
p(·),q(·),u and the ψ-transform Tψ : e

α(·)
p(·),q(·),u → Eα(·)

p(·),q(·),u are bounded. Moreover,
Eα(·)

p(·),q(·),u and e
α(·)
p(·),q(·),u are quasi-Banach spaces.

Theorem 6.11. Let (p, q, α) ∈ S, N ∈ N and u ∈ Wp+ . There exist a sequence
s = {sQ}Q∈Q ∈ e

α(·)
p(·),q(·),u and a family of smooth N -atoms {aQ}Q∈Q so that f =∑

Q∈Q sQaQ and ‖s‖
e
α(·)
p(·),q(·),u

≤ C‖f‖Eα(·)
p(·),q(·),u

for some C > 0.

Theorem 6.12. Let f =
∑

Q∈Q sQmQ where {mQ}Q∈Q is a family of smooth
molecules for Eα(·)

p(·),q(·),u. Then

‖f‖Eα(·)
p(·),q(·),u

≤ C‖s‖
e
α(·)
p(·),q(·),u

for some C > 0.

As shown in [20, Theorem 3.8], the smoothness and the vanishing moment con-
ditions imposed on the smooth molecules for Eα(·)

p(·),q(·),u when u ≡ 1 can be further
refined. More precisely, the vanishing moment conditions and the smoothness con-
ditions can be localized on each dyadic cube associated with the molecules. In fact,
that refinement on the molecular decompositions for Eα(·)

p(·),q(·),u is also valid. On the
other hand, the main focus of this paper is the applications of the lifting principle for
singular integral operators on the weighted vector-valued Morrey spaces. The refine-
ment relies heavily on some techniques specially adapted to the variable Lebesgue
spaces and l

α(·),q(·)
ν . So, the improvement of the molecular decompositions for Eα(·)

p(·),q(·),u
and the analysis of the convergence of the refined molecular expansions will appear
elsewhere.
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