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Abstract. We study the spectra of algebras of holomorphic functions with prescribed radii of
boundedness, and use these results to study the τω and τδ spectra of H(U), where U is an open
subset of a non-separable Banach space. We construct τδ-continuous characters on H(U) which
are not evaluations at points of U . We also discuss subsets of `∞ which are bounding for H(U),
U ⊂ `∞.

Introduction

In the beginning of the 1970’s algebras of holomorphic functions with prescribed
radii of boundedness were defined and studied by Coeuré [8] and by Matos [18]. It
is well-known today that each holomorphic function can be extended to some open
subset of the bidual of its original domain, making possible evaluation at points in the
bidual. The trick which enables this extension is now an important tool in infinite-
dimensional holomorphy known as the Aron–Berner extension. However, when the
above cited papers were written, this tool was still years away [1], so a detailed study
of the spectrum of such an algebra was not possible.

In the 70’s and 80’s Mujica ([19] [20], [21]) studied the spectra of algebras H(U)
of analytic functions on an open subset U of a Fréchet space E, both with the τω and
the τδ topologies, obtaining important results. Mujica characterized homomorphisms
of these algebras and proved that if U is pseudoconvex and E has the approximation
property, the τω spectrum identifies with evaluations on the set U , and also that if
E is separable and has the bounded approximation property, then the τδ spectrum
identifies with evaluations on U .

In this paper we first study the spectrum of algebras of holomorphic functions
with prescribed radii of boundedness, and then apply our results to the study of
the spectra of H(U). We restrict our attention, however, to convex and balanced
open subsets of Banach spaces. We obtain that in the non-separable setting, τδ-
continuous characters in general are not evaluations at points of U , even if E has
the bounded approximation property. The prime example of a non-separable Banach
space with the bounded approximation property is `∞; thus we are naturally led to
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consider bounding subsets of `∞ and of its unit ball, and we characterize sets which
are bounding with respect to holomorphic functions on the unit ball of `∞.

The algebras Ht(U) of holomorphic functions with prescribed radii of bound-
edness are introduced in section 1, and their spectra studied in detail in section 2,
together with the spectra of (H(U), τω) and (H(U), τδ). Section 3 is devoted to the
study of bounding subsets of `∞.

We shall use standard notation and notions from infinite-dimensional holomorphy
theory as presented, e.g., in [12] or [20].

1. Holomorphic functions with prescribed radii of boundedness

Throughout, U will denote an open subset of a Banach space E, and

t : U → (0,∞]

a function such that t(a) ≤ d(a, ∂U). Define the algebra of holomorphic functions
with t-radii on U as

Ht(U) = {f ∈ H(U) : rf (a) ≥ t(a) for all a ∈ U},
where rf (a) denotes the radius of boundedness of f at a; i.e., f is bounded on all
balls centered at a and with radii strictly less than rf (a). On this space introduce
the locally convex topology τt, induced by the following family of seminorms

pa,r(f) = sup
B(a,r)

|f |, where a ∈ U and r < t(a),

where B(a, r) denotes the open ball of E centered at a and of radius r > 0.

Proposition 1.1. Ht(U) is a complete locally convex algebra.

Proof. The submultiplicativity of the seminorms is clear. We prove completeness:
say (fi) is a τt-Cauchy net. Then for any a ∈ U and r < t(a), if x ∈ B(a, r); given
ε > 0 there is an i such that if j, k ≥ i,

|fj(x)− fk(x)| ≤ pa,r(fj − fk) < ε.

Thus (fi(x)) is a Cauchy net, so we may define f : U → C by f(x) = limi fi(x). Note
that fi → f uniformly on each B(a, r), so f ∈ H(U). Also,

rf (a) = lim
i

rfi
(a) ≥ t(a) for all a ∈ U. ¤

Note that when t ≤ t′ we have a continuous inclusion Ht′(U) → Ht(U). One
may consider on Ht(U) the topologies τ0, τω and τδ (the compact-open topology, the
Nachbin or compactly-ported topology, and the countable covers topology [12]). It
is easy to see that τt is finer than τω: indeed, if p is ported by a compact subset K
of U , from the open cover {B(a, r) : a ∈ K, r < t(a)} extract a finite subcover

K ⊂
n⋃

i=1

B(ai, ri);

since p is ported by K, there is a c > 0 such that

p(f) ≤ c max
i

pai,ri
(f) for all f ∈ Ht(U).

Although we will be mainly interested in the non-separable case, it should be men-
tioned here that when E is a separable space, the Ht(U)’s are Fréchet algebras (take
only a’s in a countable dense subset D of U and rational r’s). Also, τt is finer than
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the τδ topology: given p a τδ-continuous seminorm, consider the countable cover
{B(a, r) : a ∈ D, r < t(a), r ∈ Q} to obtain an inequality as above. In fact, in the
separable case, one may check that

lim
→
Ht(U) = (H(U), τδ),

and that this inductive limit is regular.
Note that the bounded subsets of Ht(U) are the subsets B such that for all a ∈ U

and r < t(a), there is a constant Ca,r such that

pa,r(f) ≤ Ca,r for all f ∈ B.

Thus τt-bounded subsets of Ht(U) are locally bounded. The inverse does not hold in
general.

2. The spectra of Ht(U), (H(U), τω) and (H(U), τδ)

Every holomorphic function on an open subset of a Banach space can be evaluated
at some points of the bidual of the space. Indeed, any homogeneous continuous
polynomial on the space can be extended in a canonical way to the bidual [1], a fact
which used in conjunction with Taylor series expansions produces local extensions
agreeing on intersections. We will use this fact and the fact that the norm of a
continuous polynomial is the same as that of its extension [9].

Denote by B′′(a, t(a)) the open ball of E ′′ centered at a and of radius t(a). We
define

Ut =
⋃
a∈U

B′′(a, t(a)).

Clearly [1], [9] all functions f ∈ Ht(U) can be extended to f : Ut → C.

Proposition 2.1. For each z ∈ Ut, the evaluation ez(f) = f(z) is a continuous
character of Ht(U).

Proof. That the Aron–Berner extension is a homomorphism was proved in [23].
For the continuity, say ‖z − a‖ < r < t(a), and ε > 0. Then for large enough n, and
all y ∈ B′′(a, r), ∣∣∣∣∣f(y)−

n∑

k=0

Pka(y − a)

∣∣∣∣∣ < ε/2,

where
∑∞

k=0 Pka is the Taylor series expansion of f at a. By [9, Theorem 1], one may
find x ∈ B(a, r) such that |∑n

k=0 Pka(z − a)−∑n
k=0 Pka(x− a)| < ε/2, so

|ez(f)| = |f(z)| =
∣∣∣∣∣
∞∑

k=0

Pka(z − a)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

k=0

Pka(z − a)

∣∣∣∣∣ + ε/2

≤
∣∣∣∣∣

n∑

k=0

Pka(x− a)

∣∣∣∣∣ + ε ≤ |f(x)|+ 3

2
ε.

Thus |ez(f)| ≤ pa,r(f). ¤

Definition 1. We will denote the spectrum of Ht(U) by Mt(U). Also,

π : Mt(U) → E ′′

will indicate the restriction mapping π(ϕ) = ϕ|E′ .
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We have just proved that Ut ⊂ π(Mt(U)). For every ϕ ∈ Mt(U) there are
ai ∈ U and 0 < ri < t(ai), i = 1, . . . , n, such that with p(f) = sup{|f(x)| : x ∈⋃n

i=1 B(ai, ri)} we have

|ϕ(f)| ≤ p(f) for all f ∈ Ht(U).

In other words, the constant c in |ϕ| ≤ cp can be taken to be one by the usual
algebraic trick of considering fn, taking n-th roots and letting n →∞. We will use
the notation p ∼ (

a1,...,an

r1,...,rn

)
for the above seminorm. We will also write Pka for the

k-homogeneous continuous polynomial in the Taylor expansion of f at a. We adapt
the following from the study of the bounded case Hb(U) [3].

Proposition 2.2. Say ϕ ∈ Mt(U) is p-continuous, with p ∼ (
a1,...,an

r1,...,rn

)
. Then for

each w ∈ E ′′ with ‖w‖ < min1≤j≤n{t(aj)− rj},

ϕw(f) =
∞∑

k=0

ϕ
(
Pk(·)(w)

)

defines a p′-continuous character (for p′ ∼ (
a1,...,an

r′1,...,r′n

)
) whenever rj < r′j < t(aj) for

j = 1, . . . , n.

Proof. Let V =
⋃n

j=1 B(aj, rj). Note that if rj < r′j < t(aj) for j = 1, . . . , n, then
given x ∈ V , if x ∈ B(aj, rj), then B(x, r′j − rj) ⊂ B(aj, r

′
j) ⊂ U , and we may apply

the Cauchy inequality

‖Pkx‖ ≤ 1

(r′j − rj)k
sup

B(x,r′j−rj)

|f | ≤ 1

(r′j − rj)k
sup
V ′
|f |,

where V ′ =
⋃n

j=1 B(aj, r
′
j).

Taking w ∈ E ′′ with ‖w‖ < min1≤j≤n{t(aj) − rj}, we have for each k, that
Pk(·)(w) ∈ Ht(U): indeed, x 7→ Pkx(w) is holomorphic, and if a ∈ U and r < t(a),
taking r < r′ < t(a) and x ∈ B(a, r), B(x, r′ − r) ⊂ B(a, r′) ⊂ U and

|Pkx(w)| ≤ ‖Pkx‖‖w‖k = ‖Pkx‖‖w‖k ≤ ‖w‖k

(r′ − r)k
sup

B(x,r′−r)

|f | ≤ ‖w‖k

(r′ − r)k
par′(f) < ∞.

Thus par

(
Pk(·)(w)

)
< ∞, and Pk(·)(w) ∈ Ht(U). Hence

∣∣∣ϕ
(
Pk(·)(w)

)∣∣∣ ≤ p
(
Pk(·)(w)

)
.

Now for rj < r′j < t(aj),
∞∑

k=0

∣∣∣ϕ
(
Pk(·)(w)

)∣∣∣ ≤
∞∑

k=0

p
(
Pk(·)(w)

)
≤

∞∑

k=0

max
1≤j≤n

pajrj

(
Pk(·)(w)

)

≤
∞∑

k=0

max
1≤j≤n

[ ‖w‖
(r′j − rj)

]k

pajr′j(f) = p′(f)
∞∑

k=0

(‖w‖
ρ

)k

< ∞,

if ‖w‖ < ρ = minj{r′j − rj}. Thus for such w

ϕw(f) =
∞∑

k=0

ϕ
(
Pk(·)(w)

)
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is defined and p′-continuous with p′ ∼ (
a1,...,an

r′1,...,r′n

)
. ¤

Observe that π(ϕw) = π(ϕ) + w: indeed, if γ ∈ E ′, γ(x) = γ(a) + γ(x − a), so
P0a = γ(a) and P1a = γ. Thus P0a(w) = γ(a) and P1a(w) = w(γ). Then

ϕw(γ) = ϕ(γ) + ϕ(w(γ)) = ϕ(γ) + w(γ) = (π(ϕ) + w)(γ).

Recall that in the bounded case (Hb(E)), ϕw(f) = ϕ(f ◦ Tw), where Tw is the trans-
lation in w. Such an equality is not possible here, even if U = E: indeed, f ◦Tw may
be undefined (consider t(x) = e−‖x‖

2), or even if defined, may not be an element of
Ht(E) (consider t ≡ 1).

Now, continuing as in [3], given ϕ ∈ Mt(U) p-continuous for p ∼ (
a1,...,an

r1,...,rn

)
we may

define
Vϕp = {ϕw : ‖w‖ < min

1≤j≤n
{t(aj)− rj}},

and when E is a symmetrically regular Banach space (Vϕp)ϕ,p form a basis for a
Hausdorff topology on Mt(U) making π : Mt(U) → E ′′ a local homeomorphism. In
fact, one obtains the following Proposition. The proof is as in [3] and we omit it.

Proposition 2.3. If E is symmetrically regular, Mt(U) admits an analytic struc-
ture over E ′′.

Recall that if t ≤ t′ we have a continuous inclusion Ht′(U) → Ht(U). By trans-
position we also have the mappings

Mt(U) → Mt′(U).

We prove now that these are continuous for the topology defined above on the
Mt(U)’s.

Proposition 2.4. For the topology defined above, the map Mt(U) → Mt′(U) is
continuous whenever t ≤ t′.

Proof. Let ϕ ∈ Mt(U), and call its image ϕ′. Say ϕ′ is p-continuous, where the
seminorm p is p ∼ (

a1,...,an

r′1,...,r′n

)
, and consider the neighborhood

Wϕ′p = {ϕ′w : ‖w‖ < min
1≤j≤n

{t′(aj)− r′j}}.

Since r′j − t′(aj) < 0, t(aj) + (r′j − t′(aj)) < t(aj). Now, for each j, take rj > 0 such
that

t(aj) + (r′j − t′(aj)) < rj < t(aj),

and take the seminorm q ∼ (
a1,...,an

r1,...,rn

)
. Note that we have

t(aj)− rj < t′(aj)− r′j for each j.

Now consider the neighborhood of ϕ ∈ Mt(U):

Vϕq = {ϕw : ‖w‖ < min
1≤j≤n

{t(aj)− rj}}.

Since ‖w‖ < min1≤j≤n{t(aj)− rj} < min1≤j≤n{t′(aj)− r′j}, it is easily seen that Vϕq

maps into Wϕ′p. ¤
Note that for every t we have the mappings

Hb(U) → Ht(U) → (H(U), τω).
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Considering the corresponding spectra and transposing we have

Mω(U)

²²

// Mt(U)

²²

// Mb(U)

²²
π(Mω(U)) // π(Mt(U)) // π(Mb(U)) // E ′′

and for separable E,

Mδ(U)

²²

// Mt(U)

²²

// Mb(U)

²²
π(Mδ(U)) // π(Mt(U)) // π(Mb(U)) // E ′′

We wish to determine the sets on the lower rows. For this we now suppose that
U is convex.

Proposition 2.5. If U is convex and t concave, we have π(Mt(U)) = Ut.

Proof. We have seen ⊃, so we now consider ⊂. First, note that Ut is convex.
Indeed, take z1 and z0 in Ut, and say zi ∈ B(ai, t(ai)). Now for any α ∈ [0, 1],

‖(αz1 + (1− α)z0)− (αa1 + (1− α)a0)‖ = ‖α(z1 − a1) + (1− α)(z0 − a0)‖
≤ α‖z1 − a1‖+ (1− α)‖z0 − a0‖ < αt(a1) + (1− α)t(a0) ≤ t(αa1 + (1− α)a0),

so αz1 + (1− α)z0 ∈ Ut.
Now consider the set of complex-affine functions over E ′′,

A(E ′′) = {L + c : L ∈ E ′′′, c ∈ C}.
Set ϕ ∈ Mt(U) and z = π(ϕ). If ϕ is p-continuous, with p ∼ (

a1,...,an

r1,...,rn

)
, let

V =
n⋃

j=1

B′′(aj, rj).

We want to see that for any L + c ∈ A(E ′′), |L(z) + c| ≤ supV |L + c| = p(L + c).
Suppose not, that is, say there are L ∈ E ′′′ (which we may suppose of norm one) and
c ∈ C such that

|L(z) + c| > sup
V
|L + c|.

By Goldstine’s theorem, we may take γ ∈ E ′ of norm one such that γ almost coincides
with L on the finite set {z, a1, . . . , an}. Now consider each ball B′′(a, r) (we drop the
index j for a moment). Since L has norm 1,

(L + c)B′′(a, r) = L(a) + c + r∆,

where ∆ is the unit disk of C. Similarly

γB′′(a, r) = γ(a) + c + r∆.

Since γ almost coincides with L on a,

sup
B′′(a,r)

|L + c| ' sup
B′′(a,r)

|γ + c|,

and so, the same over V . But we had

|γ(z) + c| ' |L(z) + c| > sup
V
|L + c| ' sup

V
|γ + c|.
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Since z = π(ϕ), π(ϕ)(γ) = z(γ) = γ(z), we have

|ϕ(γ + c)| > sup
V
|γ + c|.

This contradicts the p-continuity of ϕ. Thus |L(z)+ c| ≤ supV |L+ c| = p(L+ c), for
all L and c, so z is in the complex-affine hull of V . By a result of Noverraz [22], this
is in the closed convex hull of V , but this is contained in Ut, which we have seen to
be convex. ¤

Proposition 2.6. If U is convex, there are Ut such that π(Mt(U)) = Ut and⋂
t Ut = U .

Proof. We show first that the distance function d : U → (0,∞] defined by d(x) =
d(x, ∂U) is concave: let a1 and a0 in U , and take ri < t(ai) (so that B(ai, ri) ⊂ U).
For each α ∈ [0, 1] we set aα = αa1 + (1 − α)a0 and rα = αr1 + (1 − α)r0. Then
B(aα, rα) ⊂ U . Indeed, if x ∈ B(aα, rα), set for i = 0, 1,

xi =
ri

rα

(x− aα) + ai.

Each xi is in B(ai, ri), for ‖xi − ai‖ = ri

rα
(x − aα) < ri. Thus each xi is in U . Since

U is convex, the following point is also in U :

αx1 + (1− α)x0 =
αr1 + (1− α)r0

rα

(x− aα) + αa1 + (1− α)a0

=
rα

rα

(x− aα) + aα = x.

Thus, d(aα) ≥ rα = αr1 + (1 − α)r0 for all r1 < t(a1) and r0 < t(a0). Hence
d(aα) ≥ αd(a1) + (1− α)d(a0); d is concave.

Now for each ε > 0, let

tε(a) = min{ε, εd(a, ∂U)}.
Being the minimum of two concave functions, tε is concave, thus Utε is convex for all
ε, so π(Mtε(U)) = Utε . Also, ⋂

ε>0

Utε = U.

Indeed, if z 6∈ E, since E is a closed subspace of E ′′, one may take d(z, E) > ε > 0;
if z ∈ E but is not in U , for each a ∈ U d(a, z) ≥ d(a, ∂U) ≥ t(a) thus z does not
belong to B(a, t(a)) for any t. ¤

As an immediate consequence we have the following Corollary, where we denote
with Mω(U) the spectrum of (H(U), τω) and with Mδ(U) the spectrum of (H(U), τδ).

Corollary 2.7. If U is convex, then
i) π(Mω(U)) = U , and
ii) when E is separable, π(Mδ(U)) = U .

We comment that if we put t = d the algebras Ht(U) obtained are those consid-
ered in [13]. If U is either the whole space E or a ball, then Hd(U) = Hb(U), and we
also have π(Mb(U)) = Ud.

Isidro [15] and Mujica [19] studied Mω(U) in the 70’s. Mujica shows that if
U is pseudoconvex, and E has the approximation property then Mω(U) = U . He
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later shows [21] that if E is separable and has the bounded approximation property,
Mδ(U) = U .

We have just seen, for convex open U that if E is separable, π(Mδ(U)) = U ,
without approximation property. We will see later that if E is non-separable, then
one may have π(Mδ(U)) 6= U , even with the bounded approximation property. Our
examples will be in `∞, and will take us to study bounding subsets for H(`∞) and
for H(B`∞).

We will need the following definition.

Definition 2. A subset A of U will be called U -bounding if all f ∈ H(U) are
bounded on A. We will write ‖f‖A = supA |f |.

For completeness, we present now our results on spectra, using the following
characterization, Theorem 3.3,—which we will prove in the next section—of sets
which are bounding with respect to H(B`∞).

A subset A ⊂ B`∞ is B`∞-bounding if and only if the following two conditions
hold:

i) there is an 0 < r < 1 such that A ⊂ rB`∞ , and
ii) A is a bounding set for H(`∞).

We then have the following.

Proposition 2.8. i) Mδ(`∞) 6= `∞; in fact, π(Mδ(`∞)) 6= `∞, and
ii) Mδ(B`∞) 6= B`∞ ; in fact, π(Mδ(B`∞)) 6= B`∞ .

Proof. We are going to construct a τδ-continuous character ϕ of H(B`∞) such
that π(ϕ) is not an evaluation on `∞.

Since any bounded set in c0 is bounding for `∞ by Josefson’s general result
[16, Corollary 2], if we take vn =

∑n
i=1 rei with 0 < r < 1, then {vn : n ∈ N} is

bounding for H(B`∞) by Theorem 3.3 below. Take U an ultrafilter on N containing
{{n, n + 1, . . .}, n = 1, 2, . . .}. Then we can define

ϕ(f) = lim
U

f(vn),

for f ∈ H(B`∞).
First, we check that π(ϕ) is not in c0: consider ek ∈ `1 ⊂ `′∞. We have

π(ϕ)k = π(ϕ)(ek) = ϕ(ek) = lim
U

ek(vn) = r, for all k.

But π(ϕ) is not (r, r, r, . . .) either: consider an element γ ∈ `′∞ (this is a holomorphic
function on `∞ and on its unit ball) such that γ((r, r, r, . . .)) = 1, but γ ≡ 0 when
restricted to c0. Then

π(ϕ)(γ) = ϕ(γ) = lim
U

γ(vn) = lim
U

0 = 0 6= 1 = γ((r, r, r, . . .)).

Hence π(ϕ) 6∈ `∞. ¤

3. On U -bounding subsets of `∞

Dineen devoted a deep paper [11] to the study of `∞-bounding sets, that is,
bounding sets for entire functions on `∞. His main result [11, Theorem 1] is that the
canonical basis A = {en}n∈N of c0 is an `∞-bounding set. He also proved that any
bounded sequence whose terms have disjoint supports is bounding.

We characterize RB`∞-bounding subsets. We first need a series of results.
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In the next Proposition we follow Dineen ([11, Proposition 2], see also [12, Ex-
ample 3.20 (c)]).

Proposition 3.1. Let U be a balanced subset of a Banach space E. A subset
A of U is U -bounding if and only if for each f ∈ H(U),

lim
n→∞

n2‖Pn‖A = 0 ,

where Pn is the n-homogeneous term in the Taylor series of f about 0.

Proof. ⇒) Consider βn = n3. Note that limn(βn)
1
n = 1. Then

fβ(x) =
∞∑

n=0

βnPn(x)

defines a holomorphic function on U by [10, Proposition 3.15]. Also, for each compact
subset K of U , there is a constant cβ,K such that

|βn|‖Pn‖K =

∥∥∥∥
1

n!
D̂nfβ(0)

∥∥∥∥
K

≤ cβ,K < ∞.

Thus {βn Pn : n ∈ N} is bounded for the τ0 topology. But since A is U -bounding,
‖f‖A is a τδ-continuous seminorm (see Proposition 3.18 and the proof of Example 3.20
(c) in [12]). Since the τδ topology has the same bounded sets as the τ0 topology,
{βn Pn : n ∈ N} is bounded for the τδ topology. Hence, for some cβ,A,

|βn|‖Pn‖A = nn2‖Pn‖A ≤ cβ,A < ∞ for all n,

so n2 ‖Pn‖A ≤ cβ,A

n
for all n, and letting n →∞,

lim
n→∞

n2‖Pn‖A = 0.

⇐) For any x ∈ A,

|f(x)| ≤
∞∑

n=0

|Pn(x)| ≤
∞∑

n=0

‖Pn‖A ≤ M

∞∑
n=1

1

n2
< ∞. ¤

Lemma 3.2. Let A ⊂ B`∞ such that sup{||x|| : x ∈ A} = 1. Then A is not a
bounding set for H(B`∞).

Proof. We prove first that if f =
∑

n Pn ∈ H(B`∞) and C ⊂ B`∞ is a bounding
set, then

sup{‖g‖C : g ∈ Ff} < ∞, where Ff =

{∑
n

βnPn : β ∈ B`∞

}
.

The proof is a trivial consequence of Proposition 3.1. Since C is bounding, then

lim
n

n2‖Pn‖C = 0 .

In our case, ‖βnPn‖C ≤ ‖Pn‖C < ∞ for all n. Thus∥∥∥∥∥
∑

n

βnPn

∥∥∥∥∥
C

≤
∑

n

|βn|‖Pn‖C ≤
∑

n

‖Pn‖C ≤ M
∑

n

1

n2
< ∞,

where M = supn n2‖Pn‖C < ∞. In other words, if we consider in H(B`∞) the locally
convex topology of uniform convergence on bounding sets, the family Ff is bounded.
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By hypothesis we can find a sequence (xn) ⊂ A ⊂ B`∞ such that

1 ≥ ||xn|| > (
n

n + 1
)1/n,

for every n ∈ N. We write

xn = (x1,n, x2,n, . . . , xk,n, . . .) for n ≥ 1.

For each n we can find a coordinate kn such that

|xkn,n| > (
n

n + 1
)1/n.

We have now two possibilities. The set K = {kn : n ∈ N} is bounded or not. i) If K
is a bounded set, we can find s ∈ K and a subsequence (xnl

)∞l=1 such that knl
= s for

every l. Thus, by taking again a subsequence if necessary, there is a ∈ C such that
|a| = 1 and the sequence (xs,nl

)∞l=1 converges to a; then the function f(z) = 1
zs−a

,
which is in H(B`∞) is unbounded on A, a contradiction, or

ii) K is not a bounded set. In this case, taking in account that the sequence
( n

n+1
)1/n is strictly increasing, we can assume passing to an appropriate subsequence

that kn+1 > kn for every n. Now let

f(z) =
∞∑

h=1

hzh
kh

.

Then f ∈ Hb(B`∞). If we assume that A is bounding then

sup{‖g‖A : g ∈ Ff} < ∞.

But if, for each (h, n) ∈ N2, we take λh,n ∈ C such that |λh,n| = 1 and
λh,n(xkh,n)h = |xkh,n|h and, for each n, we define gn ∈ Ff , by

gn(z) =
∞∑

h=1

λh,nhzh
kh

,

we have,

gn(xn) =
∞∑

h=1

h|xkh,n|h ≥ n|xkn,n|n > n

(
n

n + 1

)n/n

=
n2

n + 1
,

so supg∈Ff
‖g‖ ≥ supn∈N

n2

n+1
= ∞, a contradiction. Thus A is not bounding. ¤

We have therefore the following characterization of B`∞-bounding sets.

Theorem 3.3. A subset A ⊂ RB`∞ is RB`∞-bounding if and only if the following
two conditions hold:

i) there is an 0 < r < 1 such that A ⊂ rRB`∞ , and
ii) A is a bounding set for H(`∞).

Proof. It is clearly enough to consider R = 1. Recall [16, Theorem 1] that
a bounded set D ⊂ `∞ is a bounding set for H(`∞) if and only if it is strongly
bounding, i.e., D is bounding for H(cB`∞) for every c > supz∈D ‖z‖.

Now, if A ⊂ B`∞ is H(B`∞)-bounding, by the Lemma above for some 0 < r < 1
we will have A ⊂ rB`∞ . A is trivially `∞-bounding.

If A is `∞-bounding, and ‖z‖ < r for all z ∈ A, since r < 1, A is B`∞-bounding
by Josefson’s Theorem. ¤
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Note, for example, that if 0 < rk < 1 with limk rk = 1, then {rkek : k ∈ N} is not
B`∞-bounding. In fact, it is not even bounding with regard to functions in Hb(B`∞).
Indeed, since lims rk

s = 1, we can find 1 ≤ n1 < n2 < . . . < nk < . . . such that
rk
nk

> 1/2 for all k. Consider
g(x) =

∑

k

kxk
nk

.

If ‖x‖ ≤ t < 1, then |kxk
nk
| ≤ ktk, and

∑
k kxk

nk
converges uniformly on tB`∞ for each

t < 1. Thus g ∈ Hb(B`∞). But

g(rnk
enk

) = krk
nk

> k/2,

so {rkek : k ∈ N} is not a bounding set with regard to functions in Hb(B`∞).
We remark that Theorem 3.3 is not valid for general U , bounded convex and

balanced open subsets of `∞.
Indeed, Lempert [17] constructed a bounded convex and balanced open subset U

of `∞ containing A = {en : n ∈ N} and such that A is not U -bounding. He defined
a norm ||| · ||| on `∞ by

|||z||| = 2

3
sup

j1<j2<j3

|zj1|+ |zj2|+ |zj3|, z = (z1, z2, . . .) ∈ `∞.

This norm is equivalent to the sup norm, in fact if U is its open unit ball,
1

2
B`∞ ⊂ U ⊂ 3

2
B`∞ .

Observe that |||en||| = 2
3
for all n ∈ N, so

A ⊂ 2

3
U ⊂ rU for

2

3
< r < 1,

however, Lempert showed that the function f(z) =
∑∞

j=1 jzj
j is holomorphic on U

and supn |f(en)| = ∞.
Recall that an entire function f on c0 admits a holomorphic extension to `∞

if and only if f is of bounded type on c0. Also, by our previous results, a function
f ∈ H(Bc0) admits a holomorphic extension to B`∞ if and only if f is of bounded type
on Bc0 . In contrast, consider U0 = U ∩ c0, and Lempert’s function f(x) =

∑∞
j=1 jxj

j

on U0. Then f is not of bounded type on U0, but can be extended to U . In fact, the
f(z) written above is its Aron–Berner extension.

The set A = {en}n∈N is RB`∞-bounding, for every R > 1 [16]. Thus, one could
construct continuous characters on (H(RB`∞), τδ) using ultrafilters, as we did in
Proposition 2.8, i.e,

ϕ(f) = lim
U

f(en).

But this approach will always produce the evaluation at 0. This is a consequence of
the well-known fact that every holomorphic function on RB`∞ is weakly continuous
when restricted to rBc0 for 0 < r < R. That can be obtained, for example, by
applying that rBc0 is a bounding set for H(RB`∞) (1978 Josefson [16]), that every
continuous polynomial on c0 is weakly continuous when restricted to bounded sets
(1957 Bogdanowicz [12, Proposition 1.59]) and [12, Lemma 4.50]. This can also
be obtained, at least for H(`∞), as follows. By Josefson’s result every f ∈ H(`∞)
is bounded on limited sets; and by Carrión et al. [6, Proposition 3.3], f is weakly
continuous on such sets. Since {en} is weakly null, ϕ(f) = lim f(en) = f(0).
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We will prove here a stronger result. Namely that the sequence (f(en) − f(0))
belongs to the space of summable sequences `1 for every f ∈ H(RB`∞). Aron and
Globevnik proved this claim for the case of homogeneous continuous polynomials on
c0 in [4]. Lempert showed us that this statement is true for the case of an entire
function f on `∞ during a visit he made to Valencia in 2006. We present here a
slight improvement of that result. For that we need two lemmata.

Lemma 3.4. Let E be a Banach space, x1, . . . , xn ∈ E and S > 1. If f is an
entire function on E such that f(0) = 0, then there exist θ1, . . . , θn ∈ [0, 2π] such
that

|f(x1)|+ · · ·+ |f(xn)| ≤ 1

S − 1
|f(S(eiθ1x1 + · · ·+ eiθnxn))|

.

Proof. For each m ≥ 1, let (rm,j)
∞
j=1 be the generalized Rademacher functions

such that

E(rm,j1 . . . rm,jm) =

{
1 if j1 = · · · = jm,

0 otherwise,

|f(x1)|+ · · ·+ |f(xn)| =
n∑

k=1

|
∞∑

m=1

Pm(xk)| ≤
∞∑

m=1

n∑

k=1

|Pm(xk)|

=
∞∑

m=1

n∑

k=1

Pm(αm,kxk) =
∞∑

m=1

ˆ

Ω

Pm(rm,1αm,1x1 + · · ·+ rm,nαm,nxn)dµ,

for suitable (αm,k) complex numbers of absolute value one. Then

|f(x1)|+ · · ·+ |f(xn)| ≤
∞∑

m=1

‖Pm‖A =
∞∑

m=1

1

Sm
‖Pm‖SA ≤ 1

S − 1
‖f‖SA,

where A = {λ1x1 + · · ·+ λnxn : |λj| ≤ 1}. Observe that SA is a compact convex and
balanced subset of X. The function g : Cn → C defined by

g(λ1, . . . , λn) = f(λ1x1 + · · ·+ λnxn),

is clearly an entire function on Cn and

‖g‖B = ‖f‖SA

where B is the closed polydisk centered at 0 and of radius (S, . . . , S). The conclusion
now follows from the maximum modulus theorem for the polydisk. ¤

Lemma 3.5. Let x1, . . . , xn ∈ B`∞ with disjoint supports and S > 1 such that
S‖xj‖ < 1 for j = 1, . . . , n. If f is a holomorphic function on B`∞ such that f(0) = 0,
then there exist θ1, . . . , θn ∈ [0, 2π] such that

|f(x1)|+ · · ·+ |f(xn)| ≤ 1

S − 1
|f(S(eiθ1x1 + · · ·+ eiθnxn))|.

Proof. Observe that {λ1x1 + · · · + λnxn : |λj| ≤ S} is a compact subset of B`∞ .
Denote Qm =

∑m
k=1 Pk, for each m ≥ 1. By Lemma 3.4 there exist θm

1 , . . . , θm
n ∈

[0, 2π] such that

|Qm(x1)|+ · · ·+ |Qm(xn)| ≤ 1

S − 1
|Qm(S(eiθm

1 x1 + · · ·+ eiθm
n xn))|,
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for all m. Considering a subsequence (mh) such that θmh
j is convergent to some

θj ∈ [0, 2π], for j = 1, . . . , n, by taking limits in both sides of above inequality we get

|f(x1)|+ · · ·+ |f(xn)| ≤ 1

S − 1
|f(S(eiθ1x1 + · · ·+ eiθnxn))|. ¤

Theorem 3.6. If (xn) is a bounded sequence in `∞ with disjoint supports and
R > supn ‖xn‖, then (f(xn)− f(0)) ∈ `1 for every holomorphic function f on RB`∞ .

Proof. Clearly it is enough to prove that (f(xn) − f(0)) ∈ `1 when f is a
holomorphic function on B`∞ such that f(0) = 0 and (xn) is a sequence in B`∞ with
disjoint supports and supn ‖xn‖ < 1. If this is not true, then there exist a holomorphic
function f on B`∞ with f(0) = 0 and a sequence (xn) in `∞ with disjoint supports
and supn ‖xn‖ < 1 such that

∑∞
n=1 |f(xn)| diverges. Then we can find a subsequence

(pj) with p1 = 1, such that
pj+1−1∑
n=pj

|f(xn)| > j.

We take S > 1 such that M := S supn ‖xn‖ < 1. By Lemma 3.5 there exists for
each j a finite sequence λn,j ∈ C with n = pj, . . . , pj+1 − 1 such that |λn,j| = S for
all n and j and such that

j <

pj+1−1∑
n=pj

|f(xn)| ≤ 1

S − 1
|f(uj)|,

where

uj =

pj+1−1∑
n=pj

λn,jxn ∈ B`∞

for all j. That shows that the sequence (uj) contained in MB`∞ and of disjoint
supports in not B`∞-bounding. This is a contradiction by Theorem 3.3, and Dineen’s
result regarding `∞-bounding sets ([11], Theorem 1 and Comment (1)). ¤

In the following result for B`∞ we follow closely Dineen’s proof of the analogous
result for `∞ [11]. Thus we present a direct proof which does not require the use of
our characterization (Theorem 3.3) or Josefson’s results.

Theorem 3.7. If (vn) ⊂ B`∞ is a sequence of elements with disjoint supports
and supn ‖vn‖ < 1, then A = {vn} is B`∞-bounding.

Proof. We consider first vn = rnen, where 0 < rn < 1 with supn rn < 1. If
A = {rnen} were not bounding, by Proposition 3.1 there would exist f ∈ H(B`∞), a
subsequence (nj) of the positive integers and ε > 0 with

n2
j‖Pnj

‖A > ε,

(where the Pk’s are the homogeneous continuous polynomials in the Taylor series
expansion of f at zero) and thus for each j ∈ N, there are nj and mj such that

n2
j |Pnj

(rmj
emj

)| > ε,

so n2
j

ε
|Pnj

(rmj
emj

)| > 1 for all j. For each j set

βnj
=

n2
j

ε

Pnj
(rmj

emj
)

|Pnj
(rmj

emj
)| .
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Note that |βnj
|

1
nj = (

n2
j

ε
)

1
nj → 1 as j →∞ we may define fβ ∈ H(B`∞) by setting

fβ(x) =
∞∑

j=1

βnj
Pnj

(x), for all x ∈ B`∞ .

We have, for each j,
1

nj!
̂Dnjfβ(0)(rmj

emj
) = βnj

Pnj
(rmj

emj
) =

n2
j

ε
|Pnj

(rmj
emj

)| > 1.

The proof now follows very closely Dineen’s original proof ([11, Theorem 1]). We
give it only for the sake of completeness.

If S is a subset of the positive integers N, `∞(S) denotes the subspace of `∞
consisting of those elements whose support lies in S. If S is infinite then `∞(S) is a
closed complemented subspace of `∞ isomorphic to `∞. In order to simplify notation
we write

‖f‖S = sup
x∈`∞(S), ‖x‖≤1

|f(x)|
for any f defined on `∞.

Since we can replace `∞ by `∞(S) we may assume without loss of generality that
we have an element fβ(x) =

∑∞
j=1 βnj

Pnj
(x) ofH(B`∞) where (nj)

∞
j=1 is a subsequence

of the positive integers and 1
nj !

̂Dnjfβ(0)(rjej) > 1, for all j.
For each nj let Anj

be the symmetric nj-linear mapping on `∞ such that Ânj
=

1
nj !

̂Dnjfβ(0).
Thus Ân1(r1e1) > 1 and Ân1 ∈ P(n1`∞). Let k1 = 1 and by [11, Proposition 4]

choose S1 infinite such that k1 /∈ S1 and

sup
|λ|≤1, λ∈C

∑
0<r≤n1

(
n1

r

)
‖An1(λr1e1)

n1−r‖S1 ≤
1

n1!
.

Suppose ki and Si have been chosen for 1 ≤ i ≤ l − 1. Choose kl ∈ Sl−1 and
Cl = {k1, . . . , kl}. Take Sl ⊂ Sl−1 such that Sl does not contain 1, 2, . . . , kl and

(1) sup
y∈`∞(Cl), ‖y‖≤1

∑
r>0

(
nkl

r

)
‖Ankl

(y)nkl
−r‖Sl

≤ 1

nkl
!
,

since Cl is finite and we are taking the supremum over a compact set of a finite sum
of continuous functions each one of them can be made small by [11, Proposition 4].
By restricting everything to `∞(S) where S =

⋃∞
l=1{kl} we can suppose kl = l. Let

C⊥
l =

⋃∞
n=l+1{kn} then Cl

⋃
C⊥

l = S. Let Rnl
denote the restriction of Ânl

to `∞(Cl)
and define Tnl

∈ P(nl`∞(S)) by

Tnl
(x + y) = Rnl

(x) for all x ∈ `∞(Cl) and y ∈ `∞(C⊥
l ) .

Now

‖Ânl
− Tnl

‖S ≤ sup
x∈`∞(Cl), y∈`∞(C⊥l ), ‖x‖=‖y‖=1

|Anl
(x + y)nl − Anl

(x)nl |

≤ sup
x∈`∞(Cl), ‖x‖≤1

∑
r>0

(
nl

r

)
‖Anl

(y)nl−r‖Sl
≤ 1

nl!
,

since C⊥
l ⊂ Sl and (1). Hence

∑∞
l=1 Tnl

∈ H(B`∞).
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If vl = rlel, then

Tnl
(vl) = Rnl

(vl) = Ânl
(vl) = Ânkl

(rkl
ekl

) > 1.

For λ ∈ C and y ∈ C⊥
2

Tn2(v1 + λv2 + y) = Tn2(v1 + λv2) =

n2−1∑
i=0

αi(Tn2)λ
i + Tn2(v2)λ

n2

where αi(Tn2) are complex numbers independent of λ. By Cauchy’s inequalities there
exists λ2 ∈ C |λ2| = 1 such that for all y ∈ C⊥

2

|Tn2(v1 + λ2v2)| = |Tn2(v1 + λ2v2 + y)| ≥ 1.

Suppose λ2, . . . , λk ∈ C have been chosen such that |λi| ≤ 1 and

|Tni
(v1 +

i∑
j=2

λjvj + y)| ≥ 1.

for all y ∈ C⊥
i and i = 2, . . . , k. Then

Tnk+1
(v1 +

k∑
j=2

λjvj + λvk+1 + y) = Tnk+1
(v1 +

k∑
j=2

λjvj + λvk+1)

=

nk+1−1∑
i=0

αi(Tnk+1
)λi + Tnk+1

(vk+1)λ
nk+1 ,

where αi(Tnk+1
) are complex numbers independent of λ. By Cauchy’s inequalities

there exists λk+1 ∈ C, |λk+1| ≤ 1, such that for all y ∈ C⊥
k+1

|Tnk+1
(v1 +

k+1∑
j=2

λjvj + y)| ≥ 1.

If x0 = (r1, λ2r2, λ3r3, . . . , λnrn, . . .), then ‖x0‖ ≤ supn rn < 1 and |Tnk+1
(x0)| ≥ 1,

hence the sequence (Tnk+1
(x0))k is not a null sequence which contradicts the fact∑∞

k=1 Tnk
∈ H(B`∞).

For the general case, if the vn’s have disjoint supports, set rn = ‖vn‖. Then
{‖vn‖en} is bounding. Define L : B`∞ → B`∞ by

L(a) =
∞∑

k=1

ak
vk

‖vk‖ .

Now for any f ∈ H(B`∞),

|f(vn)| = |f(L(‖vn‖en))| = |(f ◦ L)(‖vn‖en)| ≤ c for all n. ¤
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