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Abstract. In this paper, we obtain a basic inequation, investigate the relation between the
growth as well as the singular direction of algebroid functions and those of their coefficients, and
give some applications of the results.

1. Introduction and main results

Let Aν(z) ( 6≡ 0), Aν−1(z), · · · , A0(z) (z ∈ C) be entire functions without any
common zero, where ν (≥ 1) ∈ N. Then the equation

(1) ψ(z, w) ≡ Aν(z)wν + Aν−1(z)wν−1 + · · ·+ A0(z) = 0

defines a ν-valued algebroid function w = w(z) in the complex plane (see [2, 4]).
When ν = 1, w(z) is a meromorphic function. If ψ(z, w) is irreducible in the polyno-
mial ring M [w] of meromorphic functions (see [4, 8]), then w(z) is called a ν-valued
irreducible algebroid function. In this paper, we do not require that the polynomial
ψ(z, w) be irreducible. A general ν-valued algebroid function w(z) might be decom-
posed into n (1 ≤ n ≤ ν) νi-valued irreducible algebroid functions (including the case
of w = c being constant), and

∑n
i=1 νi = ν (see [7, 8]).

Let Sz denote the set of the critical points of w(z)(see [2, 4, 8]). Then for any
z0 ∈ C \ Sz, there exists ν single-valued branches w1(z), w2(z), · · · , wν(z) of w(z)
satisfying the equation (1) in some neighborhood of z0, i.e.

ψ(z, w) ≡ Aν(z)(w − w1(z))(w − w2(z)) · · · (w − wν(z)) = 0, z ∈ U(z0).

We sometimes use w(z) := {wi(z)}ν
i=1 to denote a ν-valued algebroid functions (see

[7, 8]).
In addition, the coefficient Aj(z) of wj in ψ(z, w) is called the coefficient of

the algebroid function w(z), where the coefficient Aν(z) of wν is called the leading
coefficient of w(z), and the coefficient A0(z) of w0 = 1 is called the constant coefficient
of w(z). If not particularly explained, we generally consider that there is at least one
transcendental entire function among {Aj(z)}ν

j=0.

Definition 1. Let w(z) = {wi(z)}ν
i=1 be an algebroid function defined by (1).

Then

T (r, w) = m(r, w) + N(r, w) =
1

ν

ν∑
i=1

m(r, wi) +
1

ν
N

(
r,

1

Aν

)
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is said the characteristic function of w(z) or its Nevanlinna characteristic, where
m(r, w) is the proximity function, and N(r, w) is the counting function of poles of
w(z) (see [2, 4]). The Nevanlinna characteristic of the coefficient Aj(z) is

T (r, Aj) = m(r, Aj) + N(r, Aj) = m(r, Aj).

ρ(w) denotes the order of w(z), and ρ(Aj) denotes the order of Aj(z). They are
respectively

ρ(w) = lim sup
r→∞

log+ T (r, w)

log r
, ρ(Aj) = lim sup

r→∞

log+ T (r, Aj)

log r
.

Definition 2. Let Aν(z), · · · , A0(z) be the coefficients in (1). Set

A(z) = max{|Aj(z)|; j = 0, 1, · · · , ν} (z ∈ C),

and define

µ(r, A) =
1

2πν

ˆ 2π

0

log A(reiθ) dθ, ρ(A) = lim sup
r→∞

log+ µ(r, A)

log r
,

where µ(r, A) is said the Valiron characteristic of w(z) (see [11, 2]), and ρ(A) is the
order of µ(r, A).

Definition 3. Suppose that w(z) is a ν-valued algebroid function defined by (1).
If for arbitrary δ (0 < δ < π/2), in the angular region 4(θ0, δ) = {z | | arg z − θ0| <
δ, 0 ≤ θ0 < 2π},

(2) lim sup
r→∞

log n(r,4(θ0, δ), a)

log r
= ρ (0 < ρ < ∞)

holds for any a ∈ C ∪ ∞ except at most 2ν values, then the radial arg z = θ0 is
called a Borel direction of w(z), where ρ is the order of w(z), and n(r,4(θ0, δ), a)
denotes the number of a-points of w(z) in the sector {|z| ≤ r} ∩ 4(θ0, δ) counting
multiplicities (see [12, 6]).

If (2) is replaced by

(3) lim sup
r→∞

N(r,4(θ0, δ), a)

T (r, w)
> 0,

then the radial arg z = θ0 is called a T direction of w(z) (see [13]), where

N(r,4(θ0, δ), a) =
1

ν

ˆ r

0

n(t,4(θ0, δ), a)− n(0,4(θ0, δ), a)

t
dt

+
1

ν
n(0,4(θ0, δ), a) log r.

Some people have studied the growth of algebroid function from the characteristic
function, but an algebroid function is an implicit function, so it is very difficult to
calculate its order. However, if we can obtain the order by virtue of its coefficients,
then the problem will become simple. This has been studied by Valiron [11], He [2],
Katajamäki [4], Sun [9] and so on, where Katajamäki [4] indicated Theorem A by a
basic inequation of Selberg [10].
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Theorem A. Let w(z) be a ν-valued irreducible algebroid function defined by
(1). Then

(4) ρ(w) = max

{
ρ

(
Ai

Aν

)
, i = 0, 1, · · · , ν − 1

}
,

where

ρ

(
Ai

Aν

)
= lim sup

r→∞

log+ T (r, Ai

Aν
)

log r

is the order of Ai(z)/Aν(z).

Sun and Kong [9] obtained the following result by means of the canonical product
theorem (see [16]).

Theorem B. Let w(z) be a ν-valued irreducible algebroid function defined by
(1). Then

(5) ρ(w) = max

{
ρ

(
Ai

A0

)
, i = 1, · · · , ν

}
.

For the entire functions {Aj(z)}ν
j=0 without any common zero, put

Ω = {w | Atν (z)wν + Atν−1(z)wν−1 + · · ·+ At0(z) = 0},
where (tν , tν−1, · · · , t0) is one of the permutation of (0, 1, · · · , ν). Then Ω contains
(ν + 1)! equations at most, and each equation defines an algebroid function. Hence
Ω contains at most (ν + 1)! algebroid functions. Obviously, w(z) defined by (1) is
one element in Ω. When Aν(z), · · · , A0(z) are all non-vanishing, every element in
Ω is a ν-valued algebroid function; otherwise, there are less-than-ν-valued algebroid
functions in Ω.

We have considered the relation between the growth of the algebroid functions in
Ω and that of {Aj(z)}ν

j=0 (see [14, 15]), and we continue to study the relation. Here
Theorem 1 is obtained. It makes Theorems A and B become its special cases.

Theorem 1. Let {Aj(z)}ν
j=0 be ν + 1 entire functions without common zeros.

Then

ρ(w) = max

{
ρ

(
Ai

Al

)
; i ∈ {0, 1, · · · , ν} \ {l}

}
(∀w(z) ∈ Ω)

for any Al(z) 6≡ 0 (0 ≤ l ≤ ν).

The following Theorem 2 gives the relation between the singular direction of
algebroid functions in Ω and that of their coefficients. In a sense, it gives a way
to determine the existence of Borel direction and T direction of a class of algebroid
functions.

Theorem 2. Suppose that {Aj(z)}ν
j=0 are ν+1 entire functions with no common

zeros, where Al(z) (0 ≤ l ≤ ν) is transcendental and the rest functions are constant.
1. If ρ(Al) = ρ (0 < ρ < ∞), then Borel direction of Al(z) is also that of w(z)

for arbitrary w(z) ∈ Ω.
2. If Al(z) exists T direction, then T direction of Al(z) is also that of w(z) for

arbitrary w(z) ∈ Ω.
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2. Lemmas

In this section, we give three basic inequations, which are needed in the proofs
of the theorems.

Lemma 1. [2, 11] Suppose that w(z) is an algebroid function defined by (1).
Then ∣∣∣T (r, w)− µ(r, A) +

1

ν
log |cw|

∣∣∣ ≤ log 2,

where cw is the first non-zero coefficient of the Laurent expansion of the leading
coefficient of w(z) at the origin.

Remark. w(z) is an irreducible algebroid function in Lemma 1 in the original
literature, but the proof process of the result has nothing to do with the reducibility
of w(z) (see [2, 11]). Therefore, the result is true for a general algebroid function, so
that it is true for each element in Ω. Moreover, the lemma shows that ρ(w) = ρ(A).

Lemma 2. [14] Let w(z) ∈ Ω. Then for any coefficient At(z) and non-vanishing
coefficient Au(z), t, u ∈ {0, 1, · · · , ν}, we have

µ(r, A) ≥ 1

ν
T

(
r,

At

Au

)
+ O(1), namely ρ

(
At

Au

)
≤ ρ(w).

We obtained the basic inequation in Lemma 2 in 2008. In this paper, we obtain
another basic inequation. The result is the following Lemma 3.

Lemma 3. Let {Aj(z)}ν
j=0 be ν + 1 entire functions without common zeros. If

Au(z) ( 6≡ 0), 0 ≤ u ≤ ν, then

µ(r, A) ≤ ν − 1

ν

∑

j 6=u, 0≤j≤ν

T

(
r,

Aj

Au

)
+ O(1).

In particular, if Au(z) is a unique transcendental function among {Aj(z)}ν
j=0 and the

rest functions are constants, then

µ(r, A) ≤ 1

ν
T (r, Au) + O(1).

Proof. Set fju(z) = max{|Aj(z)|, |Au(z)|} = |Aj(z)

Au(z)
|+ · |Au(z)|, where |Aj(z)

Au(z)
|+ =

max{1, |Aj(z)

Au(z)
|}. Then it can be deduced from Definition 2 and Jensen formula that

νµ(r, A) ≤
∑

j 6=u, 0≤j≤ν

1

2π

ˆ 2π

0

log fju

(
reiθ

)
dθ

=
∑

j 6=u, 0≤j≤ν

1

2π

ˆ 2π

0

log+

∣∣∣∣
Aj(re

iθ)

Au(reiθ)

∣∣∣∣ dθ +
ν − 1

2π

ˆ 2π

0

log
∣∣Au

(
reiθ

)∣∣ dθ

=
∑

j 6=u, 0≤j≤ν

m

(
r,

Aj

Au

)
+ (ν − 1)

(
N

(
r,

1

Au

)
+ log |cu|

)
,

where cu is the first non-zero coefficient of the Laurent expansion of Au(z) at the
origin. Since Aν(z), · · · , A1(z), A0(z) are entire functions with no common zeros, we
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have

N

(
r,

1

Au

)
≤

∑

j 6=u, 0≤j≤ν

N

(
r,

Aj

Au

)
.

Hence

µ(r, A) ≤ ν − 1

ν

∑

j 6=u, 0≤j≤ν

T

(
r,

Aj

Au

)
+

ν − 1

ν
log |cu|.

In particular, let Au(z) be the unique transcendental function and Aj(z) ≡ cj

(∈ C) (0 ≤ j 6= u ≤ ν). Without loss of generality, we may assume that At(z) ≡ ct

is a non-zero constant. Then for At(z), applying the above similar method, we can
conclude

νµ(r, A) ≤
∑

j 6=t, 0≤j≤ν

1

2π

ˆ 2π

0

log+

∣∣∣∣
Aj(re

iθ)

ct

∣∣∣∣ dθ + (ν − 1) log |ct|

= m

(
r,

Au

ct

)
+

∑

j 6=t,u; 0≤j≤ν

log+

∣∣∣∣
cj

ct

∣∣∣∣ + (ν − 1) log |ct| ≤ T (r, Au) + O(1).

Thus

µ(r, A) ≤ 1

ν
T (r, Au) + O(1). ¤

3. Proof of Theorem 1 and its applications

Since Al(z) 6≡ 0, we obtain from Lemma 2 and Lemma 3 that

1

ν
T

(
r,

Ai

Al

)
+O(1) ≤ µ(r, A) ≤ ν − 1

ν

∑
i

T

(
r,

Ai

Al

)
+O(1), i ∈ {0, 1, · · · , ν} \ {l}.

Set

ρ := ρ

(
Ai0

Al

)
= max

i6=l,0≤i≤ν

{
ρ

(
Ai

Al

)}
, i0 ∈ {0, 1, · · · , ν} \ {l}.

When ρ < ∞, for arbitrary ε > 0, there exists R > 0 such that

T

(
r,

Ai0

Al

) (
1

ν
+

O(1)

T (r,
Ai0

Al
)

)
≤ µ(r, A) ≤ (ν − 1)2

ν
rρ+ε + O(1)

holds for r > R. This implies that

ρ(A) = ρ.

In addition, noting that the Valiron characteristic µ(r, A) only depends on the co-
efficients {Aj(z)}ν

j=0 and combining with Lemma 1, we have ρ(w) = ρ(A) for all
w(z) ∈ Ω. Hence

(6) ρ(w) = max

{
ρ

(
Ai

Al

)
; i ∈ {0, 1, · · · , ν} \ {l}

}
.

When ρ = ∞, for any w(z) ∈ Ω, we have ρ(w) = ∞ by Lemma 2. Hence (6) still
holds. The theorem is completed.

According to Theorem 1, we know that the order of an algebroid function can be
obtained by virtue of its coefficients, and the order of every element in Ω is equal.



484 Songmin Wang

Therefore, the order of two algebroid functions is equal provided that their non-
vanishing coefficients are the same even if they are different-valued functions. For
example, let

C(z) =
∞∑

n=2

(
1

n log n

)2n

zn, D(z) =
∞∑

n=0

1

(2n)!
zn.

Then C(z) is an entire function with the order ρ(C) = 1/2 (see [2,P10]), and D(z)
is an entire function with the order ρ(D) = 1/2 (see [15]). Set

ψ(z, w) ≡ C(z)w4 + cw3 + D(z) = 0, φ(z, w) ≡ D(z)w2 + cw + C(z) = 0,

where c ∈ C is a non-zero constant. Choose c as Al(z) in Theorem 1, then it is easy
to see that the 4-valued algebroid function defined by ψ(z, w) = 0 and the 2-valued
algebroid function defined by φ(z, w) = 0 have the same order 1/2 (here Ω can be
considered as the set of algebroid functions with the coefficients {0, 0, c, C(z), D(z)}),
while the result is not easily obtained by Theorem A or Theorem B.

Next we give other two applications of Theorem 1.

1. First, we can study the growth of an algebroid function compounding an
entire function.

Let w(z) be a ν-valued algebroid function defined by (1), and g(z) be a non-
constant entire function. Then ω(z) := w(g(z)) is a ν-valued algebroid function
defined by the following equation (see [18])

Aν(g(z))ων + · · ·+ A1(g(z))ω + A0(g(z)) = 0.

Hence by Theorem 1, the order of w(g(z)) is

(7) ρ(w(g)) = ρ(ω) = max

{
ρ

(
Ai(g)

Al(g)

)
; i ∈ {0, 1, · · · , ν} \ {l}, ∀Al(g) 6≡ 0

}
.

Gross [1] discussed the growth of the composite function of a meromorphic func-
tion and an entire function, and obtained the following result.

Theorem C. Let f(z) be a meromorphic function with the order ρ(f) > 0. Then
ρ(f(g)) = ∞ for arbitrary transcendental entire function g(z).

For an algebroid function compounding an entire function, Zheng and Yang [18]
proved Theorem D by getting an inequation on their characteristic functions.

Theorem D. Suppose that w(z) is an algebroid function of ρ(w) > 0, and g(z)
is an arbitrary transcendental entire function. Then ρ(w(g)) = ∞.

In fact, we can also obtain the result of Theorem D easily by Theorem 1 and
Theorem C: Since ρ(w) > 0, there exists i, l ∈ {0, 1, · · · , ν} such that

ρ

(
Ai

Al

)
= ρ(w) > 0.

Then by Theorem C,

ρ

(
Ai(g)

Al(g)

)
= ∞.

Combining with (7), we get the result.

2. Second, we can study the growth of the derivative of an algebroid function.
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Let w(z) be a ν-valued algebroid function defined by (1). Then its derivative w′(z)
is also a ν-valued algebroid function. Without loss of generality, we may assume that
w′(z) is defined by the following equation

(8) Cν(z)w′ν + · · ·+ C1(z)w′ + C0(z) = 0,

where Cν(z) ( 6≡ 0), · · · , C1(z), C0(z) are entire functions without any common zero.
Jacobson [3, 5] indicated that if (1) was written as

wν + Bν−1(z)wν−1 + · · ·+ B1(z)w + B0(z) = 0,

where Bi(z) = Ai(z)/Aν(z) (0 ≤ i ≤ ν−1), then (8) could be obtained by calculating
the resultant ((ν − 1) + ν-order determinant) of the polynomials

wν + Bν−1w
ν−1 + · · ·+ B1w + B0

and
(νw′ + B′

ν−1)w
ν−1 + · · ·+ (2B2w

′ + B′
1)w + B1w

′ + B′
0

and being properly multiplied by a factor at both ends. Then we can get ρ(w′) by
Theorem 1.

For example, if w(z) is a 2-valued algebroid function, then by the resultant equal-
ing zero: ∣∣∣∣∣∣

1 B1 B0

2w′ + B′
1 B1w

′ + B′
0

2w′ + B′
1 B1w

′ + B′
0

∣∣∣∣∣∣
= 0,

we get

(9) (4B0 −B2
1)w

′2 + B′
1(4B0 −B2

1)w
′ + B′2

0 −B1B
′
0B

′
1 + B0B

′2
1 = 0.

If 4B0 −B2
1 ≡ 0, then w(z) is a reducible algebroid function defined by

w2 + B1w +
B2

1

4
=

(
w +

B1

2

)2

= 0.

Its two branches are w1(z) = w2(z) = −B1(z)/2 = −A1(z)/(2A2(z)) (∀z ∈ C),
then w(z) is equivalent to the meromorphic function −A1(z)/(2A2(z)). Hence, we
generally discuss the case of 4B0 −B2

1 6≡ 0. Combining (8) with (9), we deduce
C1

C2

= B′
1,

C0

C2

=
B′2

0 −B1B
′
0B

′
1 + B0B

′2
1

4B0 −B2
1

.

Then ρ(w′) can be obtained by Theorem 1. If w(z) is a more-than-2-valued algebroid
function, then we can calculate the resultant by Matlab. Therefore, we can also
obtain ρ(w′).

4. Proof of Theorem 2

Let B(z) := Al(z). Then it follows from Theorem 1 that ρ(w) = ρ(B) (∀w(z) ∈
Ω).

1. If θ0 is an arbitrary Borel direction of the entire function B(z), then for
arbitrary δ (0 < δ < π/2), in the angular region 4(θ0, δ),

lim sup
r→∞

log n(r,4(θ0, δ), B = a)

log r
= ρ

holds, where a ∈ C with at most one exceptional value. We distinguish three cases
below.
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Case 1. B(z) is the leading coefficient of w(z). Without loss of generality, we
assume that w(z) is defined by

ψ(z, w) ≡ B(z)wν + cν−1w
ν−1 + . . . + c1w + c0 = 0,

where ci ∈ C, 0 ≤ i ≤ ν − 1.
For any a ∈ C ∪∞, we have from [2,P77] that

n(r, w = a) = n(r, ψ(z, a) = 0), a ∈ C;(10)
n(r, w) = n(r, B = 0), a = ∞.(11)

(i) If a ∈ C \ {0}, then

(12) ψ(z, a) = 0 ⇐⇒ B(z) = −cν−1a
ν−1 + · · ·+ c1a + c0

aν
:= ã.

Therefore, if ã is not an exceptional value of B(z) in the Borel direction θ0, then by
(10) and (12), we have

(13) lim sup
r→∞

log n(r,4(θ0, δ), w = a)

log r
= lim sup

r→∞

log n(r,4(θ0, δ), B = ã)

log r
= ρ.

If ã is an exceptional value of B(z) in the direction θ0, then there are at most ν
exceptional values of w(z) in θ0 (a is just one of them). These exceptional values are
the roots of the equation

ãwν + cν−1w
ν−1 + · · ·+ c1w + c0 = 0.

(ii) If a = 0, then ψ(z, 0) = c0.
When c0 = 0, we have ψ(z, 0) ≡ 0. Then by (10), for any z ∈ C, it is deduced

that w = 0 (in fact, some branch(es) of ν-valued algebroid function w(z) is(are)
identically vanishing). Obviously, 0 is not an exceptional value of w(z).

When c0 6= 0, then w 66= 0 for any z ∈ C. Hence 0 is an exceptional value of w(z).

(iii) If a = ∞, combining with (11), then an equality similar to (13) holds when 0
is not an exceptional value of B(z) in the Borel direction θ0, else∞ is an exceptional
value of w(z) in θ0 when 0 is a Borel exceptional value of B(z).

Summing up the above discussions: if B(z) does not have exceptional values in
the direction θ0, then w(z) has at most one exceptional value a = 0. If B(z) has one
finite exceptional value in θ0, then w(z) has at most max{ν+1, 2} = ν+1 exceptional
values.

Therefore, we obtain that (2) holds for arbitrary a ∈ C ∪∞ with at most ν + 1
(≤ 2ν) exceptional values. Then θ0 is a Borel direction of w(z).

Case 2. B(z) is the coefficient of wj. Without loss of generality, we assume that
w(z) is defined by

ψ(z, w) ≡ ctw
t + · · ·+ B(z)wj + · · ·+ c0 = 0,

where 1 ≤ j < t ≤ ν, ci ∈ C, 0 ≤ i(6= j) ≤ t.

(i) For any a ∈ C\{0}, in the similar way, we have

ψ(z, a) = 0 ⇐⇒ B(z) = −cta
t + · · ·+ cj+1a

j+1 + cj−1a
j−1 · · ·+ c0

aj
:= ã.
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(13) holds when ã is not an exceptional value of B(z) in θ0. Otherwise, corresponding
to the exceptional value ã of B(z), w(z) has at most t exceptional values (a is one of
them) in θ0. They are the roots of the equation

ctw
t + · · ·+ ãwj + · · ·+ c0 = 0.

(ii) a = 0. We can discuss the case in the similar way to (ii) of Case 1.

(iii) a = ∞. Since the leading coefficient of an algebroid function is not identically
vanishing, we have ct 6= 0. Then w(z) 66= ∞. Hence ∞ is an exceptional value of
w(z).

Noting t > 1, thus t + 2 ≤ 2t. Combining (i)–(iii) in Case 2, similar to Case 1,
we show that (2) holds for any a ∈ C ∪∞ except at most t + 2 values. Then θ0 is a
Borel direction of w(z).

Case 3. B(z) is the constant coefficient. Without loss of generality, we assume
that w(z) is defined by

ψ(z, w) ≡ ctw
t + ct−1w

t−1 + · · ·+ c1w + B(z) = 0,

where 1 ≤ t ≤ ν, ci ∈ C, 1 ≤ i ≤ t.

(i) For any a ∈ C\{0}, in the similar way, we have

ψ(z, a) = 0 ⇐⇒ B(z) = −(cta
t + · · ·+ c1a) := ã.

When ã is not an exceptional value of B(z) in the direction θ0, (13) holds. When ã
is an exceptional value of B(z) in θ0, w(z) has at most t exceptional values (a is one
of them). They are the roots of the equation

ctw
t + ct−1w

t−1 + · · ·+ c1w + ã = 0.

(ii) If a = 0, then ψ(z, 0) = B(z). Therefore, (13) holds for w = 0 when 0 is not
an exceptional value of B(z) in θ0, else 0 is also an exceptional value of w(z) in the
direction θ0.

(iii) If a = ∞, similar to (iii) of Case 2, we obtain that∞ is an exceptional value
of w(z).

Therefore, for arbitrary a ∈ C ∪ ∞ with at most max{t + 1, 2} = t + 1 (≤ 2t)
exceptional values, (2) holds. Then θ0 is a Borel direction of w(z).

2. Suppose that θ0 is any T direction of B(z). Then for arbitrary δ (0 < δ < π/2),
in the angular region 4(θ0, δ),

lim sup
r→∞

N(r,4(θ0, δ), B = a)

T (r, B)
> 0

holds, where a ∈ C with at most one exceptional value. Similar to the proof of the
Borel direction, from the above three cases, we can show that θ0 is also a T direction
of t-valued (1 ≤ t ≤ ν) algebroid function w(z) (∈ Ω). In the process, just noting

N(r,4(θ0, δ), w = a) =
1

t
N(r,4(θ0, δ), ψ(z, a) = 0) =

1

t
N(r,4(θ0, δ), B = ã),
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a ∈ C\{0}, and combining Lemma 1 with Lemma 3, we deduce

lim sup
r→∞

N(r,4(θ0, δ), w = a)

T (r, w)
≥ lim sup

r→∞

N(r,4(θ0, δ), B = ã)

tµ(r, A) + O(1)

≥ lim sup
r→∞

(
N(r,4(θ0, δ), B = ã)

T (r, B)
· 1

1 + O(1)
T (r,B)

)

= lim sup
r→∞

N(r,4(θ0, δ), B = ã)

T (r,B)
.

In addition, combining Lemma 1, Lemma 2 with the first fundamental theorem, we
obtain

lim sup
r→∞

N(r,4(θ0, δ), w = a)

T (r, w)
≤ lim sup

r→∞

N(r,4(θ0, δ), B = ã)

tµ(r, A) + O(1)

≤ lim sup
r→∞

(
N(r,4(θ0, δ), B = ã)

T (r, B)
· 1

1 + O(1)
T (r,B)

)

= lim sup
r→∞

N(r,4(θ0, δ), B = ã)

T (r,B)
.

Then
lim sup

r→∞

N(r,4(θ0, δ), w = a)

T (r, w)
= lim sup

r→∞

N(r,4(θ0, δ), B = ã)

T (r, B)
.

Therefore, when ã is not an exceptional value of B(z) in θ0, a is not an exceptional
value of w(z) in θ0 either. Otherwise, corresponding to the exceptional value ã of
B(z), w(z) has at most t exceptional values (a is just one of them) in θ0.

Moreover, if a = 0 or a = ∞, we can discuss these cases similar to 1.
Therefore, for any t-valued (1 ≤ t ≤ ν) algebroid function w(z) ∈ Ω, (3) holds

for arbitrary a ∈ C ∪ ∞ except at most s (≤ 2t) values, where s = t + 1 if t ≥ 1,
s = t + 2 if t > 1. Then θ0 is a T direction of w(z). Theorem 2 is completed.

In addition, since any transcendental entire function exists Julia direction (see
[17]), we can show similarly that Julia direction of Al(z) is also that of w(z) (∀w(z) ∈
Ω). Next we put forward two questions.

Question 1. For Ω in Theorem 2 and arbitrary w(z) ∈ Ω, are the above singular
directions of w(z) also those of Al(z)? If it is true, then all the singular directions of
the algebroid functions in Ω are the same.

Question 2. For a general set Ω of algebroid functions, let w(z) ∈ Ω be defined
by (1). If A0(z) 6≡ 0, then w−1(z) which is the reciprocal element of w(z) is defined
by (see [8])

A0(z)wν + A1(z)wν−1 + . . . + Aν(z) = 0.

It is obvious that w(z) and w−1(z) have the same singular directions, such as the
same Borel direction, T direction and Julia direction. Therefore, it is natural to ask
whether it is true for all the algebroid functions in Ω.
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