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Abstract. We prove that if X is a complete geodesic metric space with uniformly generated
first homology group and f : X → R is metrically proper on the connected components and bornol-
ogous, then X is quasi-isometric to a tree. Using this and adapting the definition of hyperbolic
approximation we obtain an intrinsic sufficent condition for a metric space to be PQ-symmetric to
an ultrametric space.

1. Introduction

There are several results in the literature characterizing when a metric space, or
a graph, is quasi-isometric to a tree. In section 4 we compile some of them from the
perspective of the asymptotic dimension of the space, see [5] and [8], or an intrinsic
property on the geodesics, see [12]. One reason to be interested in this is that any
quasi-action on a geodesic metric space X is quasi-conjugate to an action on some
connected graph quasi-isometric to X. The converse is also true. In particular, any
quasi-action on a simplicial tree is quasi-conjugate to an isometric action on a quasi-
tree and any isometric action on a quasi-tree is quasi-conjugate to a quasi-action on
a simplicial tree. In the case of bounded valence bushy trees it is proved in [16] that
any cobounded quasi-action is quasi-conjugated to an action on another bounded
valence bushy tree.

The first aim in this work is to provide a new sufficent condition for a space to
be quasi-isometric to a tree. To do this, we were inspired by the work of Manning
in [12] where he studies the geometry of pseudocharacters, this is, real valued func-
tions on groups which are “almost” homeomorphisms. In his construction, he uses a
pseudocharacter with some conditions on it to obtain a tree from the Cayley graph
of a finitely presented group.

We consider a real valued function f on a graph with uniformly generated first
homology group, H1(X), and do a similar thing. Let us recall that H1(X) is uniformly
generated if there is an L > 0 so that H1(X) is generated by loops of length at most
L. We assume f to be bornologous and introduce the definition of metrically proper
on the connected components, see section 3 for definitions. Then we extend the result
for complete geodesic spaces.

Theorem 1.1. Let X be a complete geodesic space with H1(X) uniformly gener-
ated. Then, X is quasi-isometric to a tree if and only if there is a function f : X → R
such that f is bornologous and metrically proper on the connected components.
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As an application of this result we obtain a criterion for a metric space to be
power quasi-symmetric to an ultrametric space. See Theorem 1.3.

An ultrametric space is a metric space (X, d) such that

d(x, y) ≤ max{d(x, z), d(z, y)}

for all x, y, z ∈ X.
A map f : X → Y between metric spaces is called quasi-symmetric if it is not

constant and if there is a homeomorphism η : [0,∞) → [0,∞) such that from |xa| ≤
t|xb| it follows that |f(x)f(a)| ≤ η(t)|f(x)f(b)| for any a, b, x ∈ X and all t ≥ 0. The
function η is called the control function of f .

A quasi-symmetric map is said to be power quasi-symmetric or PQ-symmetric,
if its control function has the following form

η(t) = q max{tp, t 1
p}

for some p, q ≥ 1.
A ε-chain is a finite sequence of points x0, . . . , xN that are separated by distances

of ε or less: |xi − xi+1| < ε. Two points are ε-connected if there is a ε-chain joining
them. Any two points in a ε-connected set can be linked by a ε-chain. A ε-component
is a maximal ε-connected subset.

Definition 1.2. A metric space X is D-finitely ε-connected if for any two points
x, x′ ∈ X there is a ε-chain x = x0, x1, . . . , xN = x′ with N ≤ D.

Theorem 1.3. Let Z be a metric space. If there are constants D > 0 and
0 < r < 1

6
such that every rk-component is D-finitely rk-connected for any k ∈ Z,

then Z is PQ-symmetric to an ultrametric space.

In [4], Buyalo and Schroeder introduce a special kind of hyperbolic cone called
hyperbolic approximation, which is defined, in general, for non-necessarily bounded
metric spaces. See section 5 for definitions. This hyperbolic approximation H has
a canonical level function which is a real valued map and, since H is a Gromov
hyperbolic space it has uniformly generated H1(X). Thus, Theorem 1.1 naturally
yields a sufficent contition on the hyperbolic approximation to be quasi-isometric to
a tree.

In [14] we prove that two metric spaces are PQ-symmetric if and only if their
hyperbolic approximations are quasi-isometric. Also, it is immediate to see that
the hyperbolic approximation of an ultrametric space is a tree. Therefore, we can
use the condition above to conclude that a certain metric space is PQ-symmetric to
an ultrametric space. In section 6 we introduce an alternative construction to the
hyperbolic approximation. This allows us to solve some technical problems to obtain
Theorem 1.3.

Finally, we prove the relation between this sufficent condition and the property
of having Assuad–Nagata dimension 0 concluding that Theorem 1.3 is also a conse-
quence of the following:

Theorem 1.4. [3, Theorem 3.3] If a metric space (X, d) has Assouad–Nagata
dimension dimAN(X) ≤ 0, then there is an ultrametric ρ on X such that the identity
map id : (X, d) → (X, ρ) is bi-Lipschitz.
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2. Preliminaries

A geodesic metric space X is a path-connected metric space in which any two
points x, y are connected by an isometric image of an interval in the real line, called
a geodesic and denoted by [x, y]. A geodesic metric space X is called Gromov hyper-
bolic if there exists some δ ≥ 0 such that for any geodesic triangle [xy] ∪ [yz] ∪ [zx]
in X each side is contained in a δ-neighborhood of the other two. Several equivalent
definitions can be found in [2]. By a tree, we refer to a 1-dimensional simply con-
nected simplicial complex. This is an example of Gromov 0-hyperbolic space. All
metric spaces in this paper are assumed to be unbounded.

A map between metric spaces, f : (X, dX) → (Y, dY ), is said to be quasi-isometric
if there are constants λ ≥ 1 and C > 0 such that ∀x, x′ ∈ X, 1

λ
dX(x, x′) − C ≤

dY (f(x), f(x′)) ≤ λdX(x, x′) + C. If there is a constant D > 0 such that for all
y ∈ Y , d(y, f(X)) ≤ D, then f is a quasi-isometry and X,Y are quasi-isometric.
Note that the composition of quasi-isometries is also a quasi-isometry.

In the case λ = 1, the map f is called roughly isometric and a rough isometry
respectively.

3. Real valued functions on metric spaces

Definition 3.1. Given a map f : X → Y between metric spaces, a non-decreasing
function %f : J → [0,∞) with J = [0, T ] or J = [0,∞) is called expansion function if
for all A ∈ X with diam(A) ∈ J , diam(f(A)) ≤ %f (diam(A)).

A map f : X1 → X2 between two metric spaces is bornologous if for every
R > 0 there is S > 0 such that for any two points x, x′ ∈ X1 with d(x, x′) < R,
d(f(x), f(x′)) < S. For convenience, we are going to use also the following equiva-
lent definition.

Definition 3.2. A map f : X → Y between metric spaces is called bornologous
if there is an expansion function %f : [0,∞) → [0,∞).

Definition 3.3. A map f between two metric spaces X, X ′ is metrically proper
if for any bounded set A in X ′, f−1(A) is bounded in X.

A map is called coarse if it is metrically proper and bornologous. Two metric
spaces X,Y are coarse equivalent if there are coarse maps f : X → Y and g : Y → X
such that f ◦ g and g ◦ f are close to the identity. Although this notion is more
general than that of quasi-isometry it is well known, and an easy exercise, that if
X, Y are geodesic spaces, then X, Y are coarse equivalent if and only if they are
quasi-isometric. See [17]. In this work, considering the references, talking about
quasi-isometry seems more natural. However, for the proof of the following theorem
the coarse approach will be useful.

Definition 3.4. Given a metric space X, we say that f : X → R is metrically
proper on the connected components if for all N > 0 there is some M > 0 such
that for any interval [x − N, x + N ], the diameter of every connected component of
f−1[x−N, x + N ] is bounded above by M .

Remark 3.5. It is worth to recall that if the space is locally connected (in
particular, if the space is geodesic) a subset is connected if and only if it is path
connected.
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Definition 3.6. A simple track in a simplicial 2-complex X is a 1-dimensional
complex τ embedded in X so that for each 1-simplex e, τ ∪ e is either empty or a
single point and for each 2-simplex ∆ of X, τ ∩ ∆ is either empty or an arc which
connects two points in the interior of two distinct edges of ∆.

Theorem 3.7. Let X be a graph with H1(X) uniformly generated and |X| be the
geometric realization where every edge has length 1. If there is a function f : |X| → R
such that f is bornologous and metrically proper on the connected components, then
|X| is quasi-isometric to a tree. In particular, |X| is Gromov hyperbolic.

Proof. Let us rescale f to ensure that %f (L) < 1
4
where L ∈ Z+ is an upper

bound for the length of the loops generating H1(X). Now, let us build a simply
connected 2-complex Y quasi-isometric to X following the idea in [8]. Let A be a
maximal collection of vertices in X with d(a, a′) ≥ L for all a 6= a′. Let R = 3L, and
let Y be the space

X
⋃
a∈A

cone(B̄(a,R))

In words, Y is X with each closed R-ball centered at a ∈ A coned to a point.
Give Y the induced path metric where each cone line has length R. The inclusion of
X is then isometric, and has coarsely dense image, and so is a quasi-isometry. Also,
the resulting space Y is simply connected (see [8]). Let us denote by va the cone
vertex for the ball B(a,R).

Let us define a map

(1) f̃ : Y → R

as a coarse extension of f . For every vertex x ∈ X ⊂ Y , let f̃(x) ∈ (f(x)− 1
4
, f(x) +

1
4
)\Z. For every va, let f̃(va) = f̃(a). Let f̃ be the affine extension on Y .

Let us show, just by triangle inequality, that f̃ |X is 1-close to f . For any vertex
xi, |f(xi) − f̃(xi)| < 1

4
. Let x be a point in the realization of an edge [x1, x2] and

let us assume that d(x, x1) ≤ 1
2
. Since %f (L) < 1

4
with L ≥ 1, |f(x) − f(xi)| < 1

4

for i = 1, 2. Hence, |f̃(x) − f̃(x1)| ≤ 1
2
|f̃(x2) − f̃(x1)| < 1

2
3
4
and we conclude that

|f(x) − f̃(x)| < 1. The function f̃ is bornologous. In particular, the image of every
simplex has diameter bounded above by R · 3

4
.

Let V be the vertex set of Y . Since f̃−1(k) ∩ V = ∅ for all k ∈ Z then for any
2-simplex ∆ ∈ Y , and every t ∈ R, f̃−1(t) ∩∆ is an arc which connects two points
in the interior of two distinct edges of ∆.

Thus, τ = f̃−1(Z) is a union of connected simple tracks in Y . Each such a
connected simple track separates Y into two connected components and has a product
neighborhood η(τ) = τ × (−1

2
, 1

2
) in the complement of the 0-skeleton V of Y . A

quotient space T of Y is obtained by smashing each component of η(τ) to an interval
and each component of the complement of η(τ) to a point.

Let π : Y → T be the quotient map. Clearly T is a simplicial graph. Since the
preimage of each point under π is path connected, every cycle in T may be lifted to
Y . Then, since Y is simply connected, T must be simply connected. In particular,
T is a tree.

Claim: The quotient map is a quasi-isometry. Since both spaces are geodesic, as
explained above, it suffices to check that it is a coarse equivalence. Let K > 0 and
consider x, y ∈ Y with d(x, y) < K.
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Since the 2-complex is quasi-isometric to its 1-skeleton, there are constants λ, C >
0 and a sequence of vertices x1, . . . , xk such that x, y are in simplices adjacent to x1, xk

respectively, {xi, xi+1} is joined by an edge and k ≤ λK + C.
Clearly, either π(xi) and π(xi+1) are the same vertex in T or else, there is a

simple track in τ which crosses the edge {xi, xi+1} which implies that there is an
edge between π(xi) and π(xi+1). Therefore, it is trivial to check that d(π(x), π(y)) ≤
k + 2 ≤ λK + C + 2 proving that π is bornologous.

To check that π is metrically proper it suffices to see that for every 1-simplex e ∈
T , π−1(e) has uniformly bounded diameter which is immediate since f is metrically
proper on the connected components.

As a coarse inverse of π, let us define a map i : T → Y such that for any w ∈ W ,
the vertex set of T , i(w) is any point in the corresponding vertex set of Y and for
any x ∈ T\W , i(x) is any point in the corresponding component of τ . It is trivial to
check that i is a coarse inverse for π. ¤

The aim of the following is to extend this result from graphs to complete geodesic
spaces.

A subset A in a metric space X is called R-separated, R > 0, if d(a, a′) ≥ R for
any distinct a, a′ ∈ A. Note that if A is maximal with this property, then the union
∪a∈ABR(a) covers X.

Fix a constant R > 0 and let A be a maximal R-separated set. Let us define
a graph Γ(X, R, A) as follows. For every a ∈ A, consider the ball B(a, 2R) ⊂ X.
Let V be the the set of balls B(a, 2R), a ∈ A. Therefore, if for some a, a′ ∈ A,
B(a, 2R) = B(a′, 2R), then they represent the same point v in V . Let us denote the
corresponding ball simply by B(v). Let V be the vertex set of Γ(X, R, A). Vertices
v, v′ are connected by an edge if and only the closed balls B̄(v), B̄(v′) intersect,
B̄(v) ∩ B̄(v′) 6= ∅.

Consider the path metric on the geometric realization |Γ(X,R,A)| for which every
edge has length 1. |vv′| denotes the distance between points v, v′ ∈ V in |Γ(X,R,A)|,
while d(a, a′) denotes the distance in X.

Let us define a map j : |Γ(X,R,A)| → X such that for any vertex v ∈ V ,
j(v) = a for some a ∈ A with B(a, 2R) = B(v) and for any edge with realization
e = [v, v′] ∈ |Γ(X, R,A)|, let j : e → X be a geodesic path [j(v), j(v′)].

Proposition 3.8. j : |Γ(X,R,A)| → X is a quasi-isometry.

Proof. First, let us consider the restriction to the vertices in Γ(X, R, A). Suppose
v, v′ ∈ V with |vv′| = k. Then, there are vertices v0 = v, v1, . . . , vk−1, vk = v′ such
that {vi−1, vi} is an edge in Γ(X,R,A), i.e., B̄(vi−1) ∩ B̄(vi) 6= ∅ and, therefore,

(2) d(j(v), j(v′)) ≤ 4R|vv′|.
Let γ be a geodesic path [j(v), j(v′)] of length l. Let k′ = [ l

R
]+1 and xi the point

γ( i·l
k′ ) for i = 0, k′. Since A is an R-separated set, there is some ai ∈ B(xi, R) and

a vertex vi such that j(vi) = ai for every i = 1, k′ − 1. Considering v0 = v, vk′ = v
it is immediate to check that B̄(vi−1) ∩ B̄(vi) 6= ∅ for i = 1, k′. This implies that
|vv′| ≤ k′ ≤ l

R
+ 1 and thus

(3) R|vv′| −R ≤ d(j(v), j(v′)).

If x, x′ ∈ Γ(X,R,A)\V , the upper bound for d(j(x), j(x′)) is trivially 4R|xx′|.
For the lower bound consider a geodesic path in [x, x′] in Γ(X,R,A) and let v, v′ the
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vertices in that path adjacent to x and x′ respectively. Then, d(j(x), j(v)) ≤ 4R and
d(j(x′), j(v′)) ≤ 4R by construction. From triangle inequality and equation (3) we
finally obtain that

(4) R|x, x′| − 9R− 2 ≤ d(j(x), j(x′)) ≤ 4R|x, x′|.
It is trivial from the construction that any point of X is at most at distance 2R

from j(Γ(X,R, A)). Thus, j is a (4R, 9R + 2)-quasi-isometry. ¤

Lemma 3.9. [8, Lemma 2.3] Let X be a complete geodesic metric space. The
following are equivalent:

• X has uniformly generated H1(X).
• X is quasi-isometric to a complete geodesic metric space, Y , with H1(Y ) = 0.

(These are also equivalent to the condition Huf
1 (X) = 0 which is the form which

appears in [1].)

Proposition 3.10. If X is a complete geodesic space with uniformly generated
H1(X), then |Γ(X,R, A)| is quasi-isometric to X and H1(Γ(X, R, A)) is uniformly
generated.

Proof. By Proposition 3.8, |Γ(X,R, A)| is quasi-isometric to X.
By Lemma 3.9, X is quasi-isometric to a complete geodesic metric space, Y , with

H1(Y ) = 0. Therefore, again by 3.9, H1(Γ(X, R, A)) is uniformly generated. ¤
Given a function f : X → R, let us define f̂ : |Γ(X,R, A)| → R such that for any

vertex v ∈ V , f̂(v) = f(j(v)). Then extend f̂ affinely on the edges.

Proposition 3.11. Let X be a complete geodesic space. If f : X → R is bornol-
ogous and metrically proper on the connected components then for any R > 0 and
any maximal R-separated set A ⊂ X, f̂ : |Γ(X, R,A)| → R holds the same proper-
ties.

Proof. It is readily seen that %f̂ (1) ≤ %f (2R). Since |Γ(X, R,A)| is a geodesic
space, this proves that f̂ is bornologous.

Consider now any connected component C of f̂−1(x−N, x + N)). For any edge
{v1, v2} contained in C if j(vi) = ai ∈ A for i = 1, 2, then d(a1, a2) ≤ 4R. Since
X is geodesic and bornologous, a1, a2 are in the same connected component D of
f−1(x − N − %f (4R), x + N + %f (4R)). Then, all the vertices in C are contained in
D. The diameter of D is uniformly bounded (independently of x) by assumption on
f . Therefore, since j : |Γ(X,R,A)| → X is a quasi-isometry, f̂ is metrically proper
on the connected components. ¤

Next theorem follows immediately from Theorem 3.7 together with Proposi-
tions 3.10 and 3.11.

Theorem 3.12. Let X be a complete geodesic space with H1(X) uniformly
generated. If there is a function f : X → R such that f is bornologous and metri-
cally proper on the connected components, then X is quasi-isometric to a tree. In
particular, X is Gromov hyperbolic.

If a metric space is Gromov hyperbolic, then H1(X) is uniformly generated. See,
for example, the proof of Corollary 1.5 in [8].
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Corollary 3.13. Let X be a complete Gromov hyperbolic space. If f : X → R
is a bornologous function and f is metrically proper on the connected components,
then X is quasi-isometric to a tree.

The converse to Theorem 3.12 is also true and this condition is, in fact, a char-
acterization as stated in 1.1.

Given three points x, y, z in a tree T let us denote by c(x, y, z) the unique point
[x, y] ∩ [x, z] ∩ [y, z]. The following lemma is trivial.

Lemma 3.14. Let T be a tree and d its geodesic metric. Then, ∀x, y, z ∈ T
d(y, z) = d(y, c(x, y, z)) + d(c(x, y, z), z).

Proposition 3.15. Let X be a complete geodesic space. If X is quasi-isometric
to a tree, then there is a function f : X → R such that f is bornologous and metrically
proper on the connected components.

Proof. Suppose T is a tree and g : X → T is a (λ, C)-quasi-isometry. Let us fix
any point v ∈ T and define the function dv : T → R so that dv(x) = d(x, v) for all
x ∈ T . Let us check that dv is bornologous and metrically proper on the connected
components. For any subset A ∈ T , by triangle inequality, diam(dv(A)) ≤ diam(A)
and, therefore, dv is bornologous. Now, let IK be any subinterval of R of length
K. Since T is a tree, two points x, y ∈ T are in the same connected component
of d−1

v (IK) if and only if dv([x, y]) ⊂ IK or, equivalently, dv(c(v, x, y)) ∈ IK . Then,
d(c(v, x, y), x), d(c(v, x, y), y) ≤ K and, by Lemma 3.14, d(x, y) ≤ 2K and dv is
metrically proper on the connected components.

Let us check that the compositon f := dv ◦ g : X → R is also bornologous and
metrically proper on the connected components. Notice that f is the composition of
two bornologous maps (a quasi-isometry is immediately bornologous) and, therefore,
it is bornologous. Now, let IK = [a, a + K] with a ≥ 0 be any subinterval of R of
length K and A be a connected component of f−1(IK). Let x, y ∈ A. Since A is
path connected, there is a path γ : [0, 1] → A with γ(0) = x and γ(1) = y. Since
g is a (λ,C)-quasi-isometry, there is a path γ′ : [0, 1] → T from g(x) to g(y) which
is contained in the generalized ball about g(γ([0, 1])) with radius C. Therefore, and
since g(A) ⊂ d−1

v (IK), it is immediate to check that dv(g(γ′([0, 1]))) ⊂ [a−C, a+K].
By the properties of the tree, any path γ′ from g(x) to g(y) contains the geodesic
[g(x), g(y)] ⊂ T . It follows that there is a connected subset B ∈ T , B := ∪x,y∈g(A){z |
z ∈ [x, y]}, such that g(A) ⊂ B and dv(B) ⊂ [a − C, a + K]. By Lemma 3.14 it is
immediate to check that diam(B) ≤ 2K + 2C. Since g is a (λ,C)-quasi-isometry,
1
λ

diam(A)−C ≤ diam(g(A)) ≤ diam(B) and, hence, diam(A) ≤ λ(diam(B) + C) ≤
λ(2K + 3C). Therefore, f is metrically proper on the connected components. ¤

4. Characterizations for a metric space to be quasi-isometric to a tree

Theorem 4.1. [12, Theorem 4.6] Let X be a geodesic metric space. The follow-
ing are equivalent:

(1) X is quasi-isometric to some simplicial tree Γ.
(2) (Bottleneck Property) There is some ∆ > 0 so that for all x, y ∈ Y there is

a midpoint m = m(x, y) with d(x,m) = d(y,m) = 1
2
d(x, y) and the property

that any path from x to y must pass within less than ∆ of the point m.
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If X is a set and X = ∪iOi a covering, the multiplicity of the covering is at most
n if any point x ∈ A is contained in at most n elements of {Oi}. For D > 0, the D-
multiplicity of the covering is at most n if for any x ∈ X, the closed D-ball intersects
at most n elements of {Oi}. The asymptotic dimension of the metric space X is at
most n if for any D ≥ 0 there exist a covering X = ∪iOi such that the diameter of
Oi is uniformly bounded (i.e., there is some C > 0 such that diam(Oi) ≤ C for every
i) and the D-multiplicity of the covering is at most n+1. The asymptotic dimension
of X is n, asdim(X) = n, if the asymptotic dimension is at most n, but it is not at
most n− 1.

The following is due to Cencelj et al. in [5]. In that work they present a com-
binatorial approach to coarse geometry unsing direct sequences. The spirit is pretty
much the same of the inverse system approach to shape theory (see [7] and [13]).

Let X be a metric space and R ∈ R+. Then the R-Rips complex RipsR(X) is the
simplicial complex whose vertices are points of X; vertices x1, . . . , xn span a simplex
iff d(xi, xj) ≤ R for each i, j.

For each pair 0 ≤ r ≤ R < ∞ there is a natural simplicial embedding

ιr,R : Ripsr(X) → RipsR(X),

so that ιr,ρ = ιR,ρ ◦ ιr,R provided that r ≤ R ≤ ρ.

Definition 4.2. [6, Definition 2.10] A metric space X is coarsely k-connected if
for each r there exist R > r so that the mapping |Ripsr(X)| → |RipsR(X)| induces
a trivial map of πi for 0 ≤ i ≤ k.

A metric space X is coarsely homology n-connected if for each r there exist
R > r so that the mapping |Ripsr(X)| → |RipsR(X)| induces a trivial map of
reduced homology groups H̃i for 0 ≤ i ≤ k.

Theorem 4.3. [5, Theorem 7.1] If X is a coarsely geodesic metric space, then
the following conditions are equivalent:

(1) X is coarsely equivalent to a simplicial tree,
(2) asdim(X) ≤ 1 and X is coarsely homology 1-connected,
(3) asdim(X) ≤ 1 and X is coarsely 1-connected.

Which implies the following,

Theorem 4.4. [8, Theorem 1.1] Let X be a geodesic metric space with H1(X)
uniformly generated. If X has asymptotic dimension one then X is quasi-isometric
to an unbounded tree.

Now, by Theorem 3.12 and Proposition 3.15,

Corollary 4.5. Let X be a complete geodesic space with uniformly generated
H1(X). Then the following conditions are equivalent:

(1) X is quasi-isometric to a tree,
(2) X has bottleneck property,
(3) asdim(X) ≤ 1 and X is coarsely homology 1-connected,
(4) asdim(X) ≤ 1 and X is coarsely 1-connected,
(5) asdim(X) ≤ 1,
(6) there exists f : X → R such that f is bornologous and metrically proper on

the connected components.



Real valued functions and metric spaces quasi-isometric to trees 533

5. Hyperbolic approximation

Let us recall here the construction of the hyperbolic approximation introduced
in [4].

A hyperbolic approximation of a metric space Z is a graph X = H(Z) which is
defined as follows. Fix a positive r ≤ 1

6
which is called the parameter of X. For every

k ∈ Z, let Ak ∈ Z be a maximal rk-separated set. For every v ∈ Ak, consider the ball
B(v) ⊂ Z of radius r(v) := 2rk centered at v. Let Vk be the set of balls B(v), v ∈ Ak

and V the union, for k ∈ Z, of Vk. Therefore, if for any v, v′ ∈ Ak, B(v) = B(v′),
they represent the same point in V , but if B(vk) = B(vk′) with k 6= k′, then they
yield different points in V . Let V be the vertex set of a graph X. Vertices v, v′ are
connected by an edge if and only if they either belong to the same level, Vk, and the
closed balls B̄(v), B̄(v′) intersect, B̄(v)∩ B̄(v′) 6= ∅, or they lie on neighboring levels
Vk, Vk+1 and the ball of the upper level, Vk+1, is contained in the ball of the lower
level, Vk.

An edge vv′ ⊂ X is called horizontal, if its vertices belong to the same level,
v, v′ ∈ Vk for some k ∈ Z. Other edges are called radial. Consider the path metric
on X for which every edge has length 1. |vv′| denotes the distance between points
v, v′ ∈ V in X, while d(v, v′) denotes the distance between them in Z. There is a
natural level function l : V → Z defined by l(v) = k for v ∈ Vk. Consider also the
canonical extension l : X → R.

A hyperbolic approximation of any metric space is a Gromov hyperbolic space.
As we mentioned at the end of section 3, this implies that the first homology group
is uniformly generated.

Theorem 5.1. [4, Theorem 6.3.1] Given a complete metric space (Z, d), its
hyperbolic approximation X is a Gromov hyperbolic space, and there is a canonical
identification ∂∞X = Z ∪ {∞} such that d is a visual metric on ∂∞X\{w} with
respect to some and hence any Busemann function b ∈ B(ω) and to the parameter
a = 1

r
, where ω ∈ ∂∞X corresponds to the infinitely remote point ∞.

Remark 5.2. If Z is an ultrametric space then if two balls intersect, one is
contained in the other. Therefore, there are no horizontal edges and H(X) is a tree.

It is well known the correspondence between trees and ultrametric spaces. By
choosing a root on an R-tree the boundary at infinity naturally becomes a com-
plete ultrametric space. In fact, several categorical equivalences are proved in the
literature, see [10] and [15]. Further equivalences may be found in [11].

Theorem 5.3. [4, Theorem 5.2.17 (2)] Let f : X → Y be a quasi-isometric
map of hyperbolic geodesic spaces. Then, f naturally induces a well-defined map
∂∞f : ∂∞X → ∂∞Y of their boundary at infinity which is PQ-symmetric with respect
to any visual metrics with base points ω ∈ ∂∞X, ∂∞f(ω) ∈ ∂∞X respectively.

In particular, by 5.1, this means that a quasi-isometry between the hyperbolic ap-
proximations of two metric spaces induces a PQ-symmetric homeomorphism between
the metric spaces. As a converse of this, let us recall the following.

Theorem 5.4. [14, Theorem 4.14] For any PQ-symmetric homeomorphism f :
Z → Z ′ of complete metric spaces, there is a quasi-isometry of their hyperbolic
approximations F : X → X ′ which induces f , ∂∞F (z) = f(z) for all z ∈ Z.
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Then, by Remark 5.2,

Corollary 5.5. If f : Z → Z ′ is a PQ-symmetric homeomorphism of complete
metric spaces and Z ′ is an ultrametric space then H(Z) is quasi-isometric to a tree.

Tukia and Väisälä [18] proved that a quasi-symmetric homeomorphism between
uniformly perfect metric spaces is PQ-symmetric (see also [9, Theorem 11.3, page 89]).
This, together with 4.5, 5.3, 5.4 and 5.5 yields the following.

Theorem 5.6. If Z is a complete metric space and X = H(Z) is its hyperbolic
approximation, the following are equivalent:

(1) X is quasi-isometric to a tree,
(2) X has bottleneck property,
(3) asdim(X) ≤ 1,
(4) Z is PQ-symmetric homeomorphic to a complete ultrametric space.

Moreover, if Z is uniformly perfect, all of these are equivalent to

(5) Z is quasi-symmetric homeomorphic to a complete ultrametric space.

The level function on a hyperbolic approximation is a natural example of a real
valued function on a graph. Also, it is trivially bornologous.

Corollary 5.7. Let Z be a metric space, X = H(Z) a hyperbolic approximation
and l : X → R its level function. If l is metrically proper on the connected compo-
nents, then Z is PQ-symmetric to an ultrametric space. Moreover, X holds all the
conditions in 5.6.

However, using the hyperbolic approximation as defined, it depends essentially
on the election of the sets Ak whether the level function is metrically proper on the
connected components or not.

6. PQ-symmetric homeomorphisms to ultrametric spaces

We can avoid the dependence on the election of the sets Ak using an alternative
definition of hyperbolic approximation. To do this, instead of using maximal rk-
separated sets and the intersections of the covering to produce a graph, we can use
directly Rips graphs.

Given a metric space (Z, dZ) and t > 0, the Rips graph Rips Gt(Z) is a graph
structure on Z where x, y ∈ Z are joined by an edge [x, y] if dZ(x, y) ≤ t.

Thus, let 0 < r ≤ 1
6
and Xk :=RipsGrk(Z). Let pk : Z → Xk induced by the

identity and let us denote pk(x) = xk. Let X be the graph whose vertex set W is
the union of the vertices in Xk for every k. The edges in Xk for any k ∈ Z are called
horizontal edges in X. For xk ∈ Xk and xk+1 ∈ Xk+1 there is an edge [xk, xk+1]
if dX(xk, xk+1) ≤ rk. Let us denote by X = RH(Z) this alternative hyperbolic
approximation.

There is a natural level function l : W → Z defined by l(xk) = k. Consider also
the canonical extension l : X → R.

To prove that RH(Z) is a Gromov hyperbolic space quasi isometric to H(Z) we
shall need a few lemmas. We include the proofs for completeness although some of
the proofs are very similar to those in [4].
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Lemma 6.1. For every x, x′ ∈ W there exists y ∈ W with l(w) ≤ l(v), l(v′) such
that x, x′ can be connected to y by radial geodesics. In particular, the space X is
geodesic.

Proof. Let l(x) = k and l(x′) = k′. Choose m < min{k, k′} small enough
such that dX(x, x′) ≤ rm. Since dX(x, x′) ≤ rm, there is a radial edge [x′m+1, xm].
Therefore, γ = xk, xk−1, . . . , xm and γ′ = x′k, x′k−1, . . . , x′m+1, xm are radial geodesics
to a common point y = xm. This implies that X is geodesic because distances
between vertices take integer values. ¤

Next lemma is immediate from the definition of the edges in RH(Z).

Lemma 6.2. Given an edge [x, x′] with k = l(x) ≥ l(x′) = k′ there is an edge
[w, x′] for w = pk−1 ◦ p−1

k (x).

Lemma 6.3. Any two vertices x, x′ ∈ W can be joined by a geodesic γ =
v0, . . . , vn+1 with v0 = x, vn+1 = x′ such that l(vi) < max{l(vi−1), l(vi+1)} for all
1 ≤ i ≤ n.

Proof. Let n = |xx′| − 1. Consider a geodesic γ = v0, . . . , vn+1 from v0 = x to
vn+1 = x′ such that σ(γ) =

∑n
i=1 l(vi) is minimal. Then let us see that γ has the

desired property.
Let 1 ≤ i ≤ n, and let k = l(vi). Consider the sequence (l(vi−1), l(vi), l(vi+1)).

There are nine combinatorial possibilities for this sequence. To prove the result
it remains to show, that the sequences (k − 1, k, k − 1), (k, k, k), (k − 1, k, k) and
(k, k, k − 1) cannot occur and this follows immediately from Lemma 6.2 and the
hypothesis that σ is minimal. ¤

From this we easily obtain the following

Lemma 6.4. Any vertices x, x′ ∈ W can be connected in X by a geodesic which
contains at most one horizontal edge. If there is such an edge, then it lies on the
lowest level of the geodesic.

Let W ′ ⊂ W . A point y ∈ W is called a cone point for W ′ if l(y) ≤ infx∈W ′ l(x)
and every x ∈ W ′ is connected to y by a radial geodesic. A cone point of maximal
level is called a branch point of W ′. By Lemma 6.1, for every two points x, x′ ∈ W ′

there is a cone point. Thus every finite W ′ possesses a cone point and hence a branch
point.

Corollary 6.5. Let x, x′ ∈ W and let y be a branch point for {x, x′}. Then
(x|x′)y ∈ {0, 1

2
}, in particular |xx′| ≥ |xy|+ |yx′| − 1.

Proposition 6.6. For any metric spaceRH(Z) andH(Z) are roughly isometric.
In particular, they are quasi-isometric.

Proof. Let F : RH(Z) → H(Z) be such that F (xk) is some v ∈ Vk such that
p−1

k (xk) ∈ B(v) and for any edge e = [x, x′], F (e) is a geodesic path [F (x), F (x′)].
Let x, x′ be two vertices in RH(Z) joined by a radial geodesic γ = x0, . . . , xn

with x0 = x and xn = x′. Suppose k = l(x), k′ = l(x′) and k′ = k − n. Then, for
every i = 1, n, dX(xi−1, xi) ≤ ri and, therefore, there is a radial edge [F (xi−1), F (xi)].
Thus, |F (x)F (x′)| = |xx′|.

Suppose now two vertices x, x′ ∈ RH(Z) not joined by a radial geodesic. Let y
be a branch point for {x, x′}. Then F (y) is a cone point for {F (x), F (x′)}. Let us see
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that |F (y)w| ≤ 2 for some branch point w for {F (x), F (x′)}. Let k = l(y) = l(F (y))
and k ≤ k′ = l(w). Since w is a brach point for {F (x), F (x′)}, then B(F (x)) and
B(F (x′)) are contained in B(w) which has diameter 2rk′ . In particular, dX(x, x′) ≤
4rk′ < rk′−1 and there exists a cone point for {x, x′} in RH(Z) at level k′− 1. Hence
k ≥ k′ − 1 and l(w) − l(F (y)) ≤ 1. Since B(F (y)) ∪ B(w) 6= ∅ it follows that
|F (y), w| ≤ 2 in H(X).

By Corollary 6.5, |xy|+ |yx′| − 1 ≤ |xx′| ≤ |xy|+ |yx′| and by the corresponding
lemma for H(Z), |F (x)w|+ |wF (x′)|− 1 ≤ |F (x)F (x′)| ≤ |F (x)w|+ |wF (x′)|. Thus,
by triangle inequality,

|F (x)F (y)|+ |F (y)F (x′)| − 5 ≤ |F (x)F (x′)| ≤ |F (x)F (y)|+ |F (y)F (x′)|+ 4.

Also, as we saw above, |xy| = |F (x)F (y)| and |yx′| = |F (y)F (x′)|. Therefore,
|xx′| − 5 ≤ |xy|+ |yx′| − 5 ≤ |F (x)F (x′)| ≤ |xy|+ |yx′|+ 4 ≤ |xx′|+ 5.

Every vertex v in H(Z) is at distance at most 1 from the image F (x) for every
x ∈ B(v) and therefore, F is a rough isometry (in particular, a quasi-isometry). ¤

Corollary 6.7. Two complete metric spaces Z,Z ′ are PQ-symmetric if and only
if RH(Z) and RH(Z ′) are quasi-isometric.

Corollary 6.8. RH(Z) is δ-hyperbolic. In particular, it has uniformly generated
first homology group.

Proposition 6.9. Let l : X → R be the level function on HR(X). Then,
l−1([k, k + r]) is connected if and only if l−1(k) is connected.

Proof. Any vertex in l−1([k, k + r]) is connected by radial edges to a vertex in
l−1(k). If l−1(k) is connected, then l−1([k, k + r]) is connected.

Suppose two vertices x, x′ ∈ l−1(k) connected by a path in l−1([k, k + r]). Then,
there is a sequence of vertices x = x0, x1, . . . , xn = x′ in l−1([k, k + r]) such that
{xi−1, xi} is an edge in l−1([k, k + r]) for i = 1, n. For every xi with l(xi) = j there
is a vertex yi = pk(p

−1
j (xi)) ∈ l−1(k). Since dX(xi, xi+1) ≤ rk, then either yi = yi+1

or {yi, yi+1} is an edge in l−1(k). Therefore, l−1(k) is connected. ¤

Corollary 6.10. The level function is metrically proper on the connected com-
ponents if and only if there is a constant D > 0 such that every connected component
of l−1(k) has diameter at most D for any k ∈ Z.

Note that the level function is trivially bornologous.

Corollary 6.11. Let Z be a metric space, X = RH(Z) and l : X → R its level
function. If there is a constant D > 0 such that every connected component of l−1(k)
has diameter at most D for any k ∈ Z, then Z is PQ-symmetric to an ultrametric
space. Moreover, X holds all the conditions in 5.6.

Remark 6.12. Let Z be a metric space, X = RH(Z) and l : X → R its level
function. The identity induces a bijection between the vertices of any connected
component of l−1(k) and the corresponding rk-connected component on Z.

Corollary 6.13. Let Z be a metric space. If there are constants D > 0 and
0 < r < 1

6
such that every rk-component is D-finitely rk-connected for any k ∈ Z,

then Z is PQ-symmetric to an ultrametric space.
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This result is a weaker version of Theorem 1.4 from [3]. The aim of the following
is to check this relation.

A subset A is S-bounded if for any points x, x′ ∈ A we have d(x, x′) ≤ S.

Definition 6.14. A metric space X has Assouad–Nagata dimension zero (nota-
tion dimAN(X) ≤ 0) if there exists a constant m ≥ 1, such that for any S > 0 all
S-components of X are mS-bounded.

In an ultrametric space, S-components are S-bounded. Thus, they are easy
examples of metric spaces of Assouad-Nagata dimension zero.

It is easy to see that bi-Lipschitz maps preserve Assouad–Nagata dimension.
Therefore it is also true that any metric space which is bi-Lipschitz equivalent to an
ultrametric space has Assouad–Nagata dimension zero.

It is trivial to check that if for all r > 0, every r-component is D-finitely r-
connected, then dimAN(Z) ≤ 0. It suffices to take m = D.

Proposition 6.15. Let Z be a metric space. If there are constants D > 0 and
0 < r < 1

6
such that every rk-component is D-finitely rk-connected for any k ∈ Z,

then dimAN(Z) ≤ 0.

Proof. For any S > 0 there is k ∈ Z such that rk+1 < S ≤ rk. Since every
rk-component is D-finitely rk-connected, all rk-components of Z are Drk-bounded.
Since the S-components are contained in the rk-component, then all S-components
of Z are Drk-bounded. But Drk = Drk+1

r
< DS

r
. Taking m = D

r
the proof is

complete. ¤
Notice that the converse to 6.15 is not true and both conditions are not equivalent.

Example 6.16. Let us define a set X := {xm
n | n,m ∈ N and n ≤ m} and a

distance d on X such that d(xk
i , x

k
j ) := rk + |i−j|−2

k
rk and d(xs

i , x
t
j) = 2 max{rs, rt}

for every s 6= t.
Thus, considering for every k the sequence xk

1, . . . , x
k
k it is easy to check that

d(xk
i , x

k
i+1) < rk for any i < k and d(xk

i , x
k
j ) ≥ rk for every i, j with |i − j| ≥ 2.

Therefore, xk
1, . . . , x

k
k defines a rk chain. Also, since d(xs

i , x
t
j) = 2 max{rs, rt}, there

is no chain from xk
1 to xk

k with less that k elements. Then, there is no D such that
every rk-component of X is D-finitely rk-connected for every k ∈ Z.

Nevertheless d(xk
i , x

k
j ) = rk + |i−j|−2

k
rk < 2rk. For any S with rk+1 < S ≤ rk the

S-component is contained in the rk-component and and it can be easily checked that
the rk-component is 2rk-bounded. Therefore, every S-component is 2

r
S-bounded and

dimAN(X) ≤ 0.

Proposition 6.15 together with Theorem 1.4 already implies that X is bi-Lipschitz
equivalent to an ultrametric space which is stronger than being PQ-symmetric to it.
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