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Abstract. Given a sense-preserving injective harmonic mapping F in the unit disk D and a ∈
C we consider a simple deformation C 3 a 7→ Fa := H + aG of F , where H and G are holomorphic
mappings in D determined by F = H + G and G(0) = 0. We introduce a natural generalization
of convexity called α-convexity. Then we study the bi-Lipschitz behaviour of mappings Fa under
the assumption that F is a quasiconformal harmonic mapping of D onto an α-convex domain
F (D). As an application we show that if F is a quasiconformal harmonic self-mapping of D, then
H is a bi-Lipschitz mapping. Consequently, a sense-preserving harmonic self-mapping F of D is
quasiconformal iff H is Lipschitz with the Jacobian of F separated from zero by a positive constant
in D.

Introduction

Set D(R) := {z ∈ C : |z| < R} for every R > 0. Throughout the paper we
always assume that F is a sense-preserving injective harmonic mapping of the unit
disk D := D(1) onto a domain Ω in C. Then F is represented uniquely by

(0.1) F (z) = H(z) + G(z), z ∈ D,

where H and G are holomorphic mappings in D and G(0) = 0. Moreover, from the
classical Lewy’s theorem it follows that the Jacobian J[F ] does not vanish on D; cf.
[7]. Since F is sense-preserving,

(0.2) |H ′(z)|2 − |G′(z)|2 = |∂F (z)|2 − |∂̄F (z)|2 = J[F ](z) > 0, z ∈ D,

where ∂ := 1
2
(∂x − i∂y) and ∂̄ := 1

2
(∂x + i∂y) are the so-called formal derivatives

operators. Therefore the complex dilatation

(0.3) µF (z) :=
∂̄F (z)

∂F (z)
=

G′(z)

H ′(z)
, z ∈ D,
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is well defined and

(0.4) ‖µF‖R,∞ := ess sup
z∈D(R)

|µF (z)| = sup
z∈D(R)

|µF (z)| ≤ 1, 0 < R ≤ 1.

Since G′/H ′ is a holomorphic mapping, we conclude from the maximum principle
that

(0.5) ‖µF‖R,∞ < 1, 0 < R < 1.

Recently Kalaj studied the following transformation

(0.6) C 3 a 7→ Fa := H + aG;

cf. [5]. He proved that:

Theorem A. [5, Thm. 2.1] Suppose F (D) is a convex domain in C and a ∈ C.
If |a| ≤ 1, then Fa is an injective close-to-convex harmonic mapping. Furthermore,
if |a| < 1, then the mapping Fa is (1 + |a|)/(1− |a|)-quasiconformal.

Since H = F0, Kalaj’s result shows that the transformation (0.6) provides a
simple harmonic deformation of the conformal close-to-convex mapping H which
leads to F via close-to-convex harmonic mappings Fa. Therefore the mapping

(0.7) D×H(D) 3 (t, z) 7→ F (t, z) := Ft ◦H−1(z) = z + tG ◦H−1(z)

is a holomorphic motion of the set H(D), because:
(i) F (0, z) = z for z ∈ H(D);
(ii) D 3 t 7→ F (t, z) is a holomorphic function for each z ∈ H(D);
(iii) H(D) 3 z 7→ F (t, z) is an injective mapping for each t ∈ D.

This points out a possibility of usage of the theory of holomorphic motions for study-
ing harmonic mappings. On the other hand side, Clunie and Sheil-Small considered
in [3], similarly to (0.6), a holomorphic deformation C 3 a 7→ H + aG.

The above facts have motivated us to study the bi-Lipschitz property of the
transformation (0.6). We start with the following observation.

Proposition 0.1. For every L ≥ 0, if

(0.8) |F (w)− F (z)| ≤ L|w − z|, w, z ∈ D,

then for every a ∈ C,

(0.9) |Fa(w)− Fa(z)| ≤ (1 + |a|‖µF‖1,∞)L|w − z|, w, z ∈ D.

Proof. Since F is differentiable at an arbitrarily fixed point ζ0 ∈ D, we have

(0.10) F (ζ)− F (ζ0) = ∂F (ζ0)(ζ − ζ0) + ∂̄F (ζ0)(ζ − ζ0) + o(ζ − ζ0), ζ ∈ D.

Then for each θ ∈ R, we conclude from (0.8) that
∣∣∂F (ζ0)e

iθ + ∂̄F (ζ0)e
−iθ

∣∣ =
1

r

∣∣F (reiθ + ζ0)− F (ζ0)
∣∣ +

1

r

∣∣o(reiθ)
∣∣

≤ L +
1

r

∣∣o(reiθ)
∣∣ → L as r → 0.

(0.11)

On the other hand side ∂F (ζ0) = |∂F (ζ0)|eiα and ∂̄F (ζ0) = |∂̄F (ζ0)|eiβ for some
α, β ∈ R. Thus for θ := (β − α)/2 we obtain

(0.12) |∂F (ζ0)|+ |∂̄F (ζ0)| ≤ L, ζ0 ∈ D.
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Given z, w ∈ D, z 6= w, we define [0; 1] 3 s 7→ γ(s) := z + s(w− z). Since γ([0; 1]) is
a line segment laying in D we conclude from (0.4) and (0.12) that for any a ∈ C,

|Fa(w)− Fa(z)|
|w − z| =

1

|w − z|
∣∣∣
ˆ 1

0

dFa(γ(s))

ds
ds

∣∣∣ ≤
ˆ 1

0

(|∂Fa(γ(s))|+ |∂̄Fa(γ(s)|) ds

≤
ˆ 1

0

|∂Fa(γ(s))|(1 + |a|‖µF‖1,∞) ds = (1 + |a|‖µF‖1,∞)L,

which yields (0.9). ¤
According to Proposition 0.1 the transformation (0.6) preserves the Lipschitz

property of the mapping F . In this paper we say that a mapping is co-Lipschitz
provided it is injective and its inverse mapping is Lipschitz. In what follows we study
under what conditions the mapping Fa is co-Lipschitz provided so is the mapping
F . This is a more sophisticated task. In Section 3 we show Theorem 3.4 which
asserts that Fa is co-Lipschitz for every a in a definite disk provided Ω is an α-convex
domain with α ∈ [0; 1) (cf. Section 1) and F is co-Lipschitz and quasiconformal with
‖µF‖1,∞ < cos απ

2
.

It is worth noting here the paper [2] by Chuaqui and Hernández. They studied the
relationship between the injectivity of the mappings F and H under the assumption
that Ω is a linearly connected domain. Corollary 2.2 can be treated as a counterpart
of [2, Thm. 2]. Theorem 3.4 looks also quite related to [2, Thm. 3]. We would like
to express our sincere thanks to the referee who pointed out the paper [2] and gave
us the suggestion to improve the original Corollary 2.2 into the present one.

In the paper [12] Pavlović showed that in the case where F (D) = D, F is
quasiconformal iff F is bi-Lipschitz. As an application of Theorem 4.1 we show
that H is a bi-Lipschitz mapping provided F is quasiconformal. In consequence, we
obtain another necessary and sufficient condition for quasiconformality of F . Namely,
if F (D) = D, then F is quasiconformal iff H is Lipschitz with the Jacobian J[F ] of
F separated from zero by a positive constant in D; cf. Corollary 4.4.

1. Bounded turning property

We start with the following deviation measure of a regular arc from the line
segments with the same endpoints.

Definition 1.1. Given α ≥ 0 we call a continuously differentiable function
γ : [0; 1] → C an α-bounded turning arc (α-bta for short) provided there exist a
continuous function θ : [0; 1] → R and θ0 ∈ R satisfying the following properties

γ′(s) = exp(iθ(s))|γ′(s)| 6= 0, 0 ≤ s ≤ 1,(1.1)

|θ(s)− θ0| ≤ απ

2
, 0 ≤ s ≤ 1,(1.2)

γ(1)− γ(0) = |γ(1)− γ(0)| exp(iθ0).(1.3)

Note that every 0-bta γ is a parameterization of a line segment in C, i.e. γ([0; 1])
is a line segment in C. Using the bounded turning arcs we introduce the following
generalization of a convex set in the complex plane.

Definition 1.2. Given α ≥ 0 a set Ω ⊂ C is said to be α-convex if for all
z1, z2 ∈ Ω, z1 6= z2, there exists an α-bta γ such that γ(0) = z1, γ(1) = z2 and
γ([0; 1]) ⊂ Ω.
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Note that a 0-convex set Ω ⊂ C is a convex set. Therefore the parameter α
measures the deviation of a set Ω from the convexity.

Lemma 1.3. For every α ∈ [0; 1) each α-bta γ is a rectifiable arc and its length
|γ|1 satisfies the following inequalities

(1.4) |γ|1 cos
απ

2
≤ |γ(1)− γ(0)| ≤ |γ|1.

Proof. Fix α ∈ [0; 1) and an α-bta γ with endpoints z1 := γ(0) and z2 := γ(1). By
Definition 1.1 there exist a continuous function θ : [0; 1] → R and θ0 ∈ R satisfying
the properties (1.1), (1.2) and (1.3). Then from (1.3) it follows that

|z2 − z1| = |γ(1)− γ(0)| = (γ(1)− γ(0))e−iθ0 .

Hence and by (1.1) and (1.2) we have

|z2 − z1| = Re
(
(γ(1)− γ(0))e−iθ0

)
= Re

ˆ 1

0

γ′(s)e−iθ0 ds

=

ˆ 1

0

|γ′(s)|Re ei(θ(s)−θ0) ds =

ˆ 1

0

|γ′(s)| cos(θ(s)− θ0) ds

≥
ˆ 1

0

|γ′(s)| cos
απ

2
ds = cos

απ

2

ˆ 1

0

|γ′(s)| ds = |γ|1 cos
απ

2
,

which proves the first inequality in (1.4). On the other hand side

|z2 − z1| =
∣∣∣
ˆ 1

0

γ′(s) ds
∣∣∣ ≤

ˆ 1

0

|γ′(s)| ds = |γ|1,

which shows the second inequality in (1.4). ¤

2. Auxiliary properties of harmonic mappings

In this section we study the mappings H and G associated with the mapping F
by the equality (0.1).

Lemma 2.1. Given α ∈ [0; 1) suppose that Ω := F (D) is an α-convex domain.
Then for every pair of z1, z2 ∈ D, z1 6= z2, there exists R ∈ (0; 1) such that

(2.1) − 1

cos απ
2

· k

1− k
≤ Re

G(z2)−G(z1)

F (z2)− F (z1)
≤ 1− cos απ

2

cos απ
2

· k

1− k2
+

k

1 + k

as well as

(2.2)
1

1 + k
− 1− cos απ

2

cos απ
2

· k

1− k2
≤ Re

H(z2)−H(z1)

F (z2)− F (z1)
≤ 1 +

1

cos απ
2

· k

1− k

for every k satisfying ‖µF‖R,∞ ≤ k < 1. Moreover, the following inequalities hold
∣∣∣Im H(z2)−H(z1)

F (z2)− F (z1)

∣∣∣ =
∣∣∣Im G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣ ≤ k + k2 sin απ
2

(1− k2) cos απ
2

,(2.3)

∣∣∣G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣ ≤ k

(1− k) cos απ
2

,(2.4)

∣∣∣H(z2)−H(z1)

F (z2)− F (z1)

∣∣∣ ≤ 1

(1− k) cos απ
2

.(2.5)
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Proof. Take arbitrary points z1, z2 ∈ D such that z1 6= z2. Since Ω is an α-
convex domain, there exists an α-bta γ such that γ(0) = F (z1), γ(1) = F (z2) and
γ([0; 1]) ⊂ Ω. By Definition 1.1 there exist a continuous function θ : [0; 1] → R and
θ0 ∈ R satisfying the properties (1.1), (1.2) and (1.3). Then σ := F−1 ◦ γ is an arc
in D joining z1 with z2. Since σ([0; 1]) is a compact subset of D, σ([0; 1]) ⊂ D(R)
for certain R ∈ (0; 1). Hence and by (0.5),

(2.6) |µF (σ(s))| ≤ ‖µF‖R,∞ < 1, 0 ≤ s ≤ 1.

Applying Lemma 1.3 we also have

(2.7) |γ|1 cos
απ

2
≤ |F (z2)− F (z1)| ≤ |γ|1.

Since for every z ∈ D,

1 = ∂(F−1 ◦ F )(z) = ∂F−1(F (z))H ′(z) + ∂̄F−1(F (z))G′(z)

0 = ∂̄(F−1 ◦ F )(z) = ∂F−1(F (z))G′(z) + ∂̄F−1(F (z))H ′(z),

we easily see that

∂F−1(F (z)) =
∂̄F

J[F ](z)
=

H ′(z)

|H ′(z)|2 − |G′(z)|2

∂̄F−1(F (z)) = − ∂̄F

J[F ](z)
= − G′(z)

|H ′(z)|2 − |G′(z)|2 .

(2.8)

Using now (1.1) and (2.8) we obtain

G(z2)−G(z1) =

ˆ

σ

G′(z) dz =

ˆ 1

0

G′(σ(s))
d

ds
σ(s) ds

=

ˆ 1

0

G′(σ(s))[∂F−1(γ(s))γ′(s) + ∂̄F−1(γ(s))γ′(s)] ds

=

ˆ 1

0

G′(σ(s))[∂F−1(F (σ(s)))γ′(s) + ∂̄F−1(F (σ(s)))γ′(s)] ds

=

ˆ 1

0

G′(σ(s))

[
H ′(σ(s))

J[F ](σ(s))
eiθ(s) − G′(σ(s))

J[F ](σ(s))
e−iθ(s)

]
|γ′(s)| ds

=

ˆ 1

0

G′(σ(s))H ′(σ(s))eiθ(s) − |G′(σ(s))|2e−iθ(s)

|H ′(σ(s))|2 − |G′(σ(s))|2 · |γ′(s)| ds

=

ˆ 1

0

µF (σ(s)) G′(σ(s))

G′(σ(s))
eiθ(s) − |µF (σ(s))|2e−iθ(s)

1− |µF (σ(s))|2 · |γ′(s)| ds.

Hence

e−iθ0(G(z2)−G(z1))

=

ˆ 1

0

µF (σ(s)) G′(σ(s))
G′(σ(s))

e−i(θ0+θ(s)) − |µF (σ(s))|2ei(θ(s)−θ0)

1− |µF (σ(s))|2 · |γ′(s)| ds.
(2.9)

By (1.2), we obtain

(2.10) Re ei(θ0−θ(s)) ≥ cos
απ

2
> 0, 0 ≤ s ≤ 1.
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Combining this with (2.9), (2.6) and (2.7) we get

Re[e−iθ0(G(z2)−G(z1))]

≤
ˆ 1

0

|µF (σ(s)) G′(σ(s))
G′(σ(s))

e−i(θ0+θ(s))| − |µF (σ(s))|2 cos απ
2

1− |µF (σ(s))|2 · |γ′(s)| ds

=

ˆ 1

0

(1− cos απ
2

)|µF (σ(s))|
1− |µF (σ(s))|2 · |γ′(s)| ds

+

ˆ 1

0

(|µF (σ(s))| − |µF (σ(s))|2) cos απ
2

1− |µF (σ(s))|2 · |γ′(s)| ds

≤ |γ|1
(

(1− cos
απ

2
) · ‖µF‖R,∞

1− ‖µF‖2
R,∞

+ cos
απ

2
· ‖µF‖R,∞
1 + ‖µF‖R,∞

)

≤ |F (z2)− F (z1)|
(

1− cos απ
2

cos απ
2

· ‖µF‖R,∞
1− ‖µF‖2

R,∞
+

‖µF‖R,∞
1 + ‖µF‖R,∞

)
,

which together with (1.3) yields the second inequality in (2.1). On the other hand
side, we conclude from (2.9), (2.6) and (2.7) that

Re[e−iθ0(G(z2)−G(z1))] ≥
ˆ 1

0

−|µF (σ(s))| − |µF (σ(s))|2
1− |µF (σ(s))|2 · |γ′(s)| ds

= −
ˆ 1

0

|µF (σ(s))|
1− |µF (σ(s))| · |γ

′(s)| ds ≥ −|γ|1 ‖µF‖R,∞
1− ‖µF‖R,∞

≥ −|F (z2)− F (z1)|
cos απ

2

· ‖µF‖R,∞
1− ‖µF‖R,∞

,

which together with (1.3) yields the first inequality in (2.1).
From (0.1) it follows that F (z2)− F (z1) = H(z2)−H(z1) + G(z2)−G(z1), and

hence

Re
H(z2)−H(z1)

F (z2)− F (z1)
= 1− Re

G(z2)−G(z1)

F (z2)− F (z1)
;

Im
H(z2)−H(z1)

F (z2)− F (z1)
= − Im

G(z2)−G(z1)

F (z2)− F (z1)

This together with (2.1) yields the inequalities (2.2) and the equality in (2.3). From
(2.9) we conclude that

Im[e−iθ0(G(z2)−G(z1))]

=

ˆ 1

0

Im[µF (σ(s)) G′(σ(s))
G′(σ(s))

e−i(θ0+θ(s))]− |µF (σ(s))|2 Im ei(θ(s)−θ0)

1− |µF (σ(s))|2 · |γ′(s)| ds.

By (1.2) we have

| Im ei(θ0−θ(s))| ≤ sin
απ

2
, 0 ≤ s ≤ 1.
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Thus applying (2.6) and (2.7) we get

| Im[e−iθ0(G(z2)−G(z1))]|

≤
ˆ 1

0

|µF (σ(s))|+ |µF (σ(s))|2| Im ei(θ(s)−θ0)|
1− |µF (σ(s))|2 · |γ′(s)| ds

≤ |γ|1
k + k2 sin απ

2

1− k2
≤ |F (z2)− F (z1)|

k + k2 sin απ
2

(1− k2) cos απ
2

,

which together with (1.3) yields the inequality in (2.3). Applying (2.9) once again
we see that

|e−iθ0(G(z2)−G(z1))| ≤
ˆ 1

0

|µF (σ(s))|+ |µF (σ(s))|2
1− |µF (σ(s))|2 · |γ′(s)| ds

≤ |γ|1 k

1− k
≤ |F (z2)− F (z1)| k

(1− k) cos απ
2

,

which leads to (2.4). Using (1.1) and the formulas (2.8) we have

H(z2)−H(z1) =

ˆ

σ

H ′(z) dz =

ˆ 1

0

H ′(σ(s))
d

ds
σ(s) ds

=

ˆ 1

0

H ′(σ(s))[∂F−1(γ(s))γ′(s) + ∂̄F−1(γ(s))γ′(s)] ds

=

ˆ 1

0

H ′(σ(s))[∂F−1(F (σ(s)))γ′(s) + ∂̄F−1(F (σ(s)))γ′(s)] ds

=

ˆ 1

0

H ′(σ(s))

[
H ′(σ(s))

J[F ](σ(s))
eiθ(s) − G′(σ(s))

J[F ](σ(s))
e−iθ(s)

]
|γ′(s)| ds

=

ˆ 1

0

|H ′(σ(s))|2eiθ(s) −H ′(σ(s))G′(σ(s))e−iθ(s)

|H ′((σ(s)))|2 − |G′((σ(s)))|2 · |γ′(s)| ds

=

ˆ 1

0

eiθ(s) − µF (σ(s)) G′(σ(s))
G′(σ(s))

e−iθ(s)

1− |µF (σ(s))|2 · |γ′(s)| ds.

Hence and by (2.6) and (2.7) we see that

|H(z2)−H(z1)| ≤
ˆ 1

0

1 + |µF (σ(s))|
1− |µF (σ(s))|2 · |γ

′(s)| ds =

ˆ 1

0

|γ′(s)|
1− |µF (σ(s))| ds

≤ |γ|1
1− ‖µF‖R,∞

≤ |F (z2)− F (z1)|
cos απ

2

· 1

1− ‖µF‖R,∞
,

which leads to (2.5), and the proof is complete. ¤

Corollary 2.2. Given α ∈ [0; 1) suppose that Ω := F (D) is an α-convex domain.
If ‖µF‖1,∞ ≤ cos απ

2
, then H is an injective mapping. In particular, H is an injective

mapping provided Ω is a convex domain.

Proof. Take arbitrary points z1, z2 ∈ D such that z1 6= z2. Suppose first that
‖µF‖R,∞ = cos απ

2
for certain R ∈ (0; 1). Since G′/H ′ is a holomorphic mapping, we

conclude from the maximum principle that G′/H ′ is a constant one, and so there
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exists c ∈ C such that G′(z) = cH ′(z) as z ∈ D. Hence

0 < |F (z2)− F (z1)| = |H(z2)−H(z1) + (G(z2)−G(z1))|
= |H(z2)−H(z1) + c(H(z2)−H(z1))| ≤ (1 + |c|)|H(z2)−H(z1)|.

This implies H(z2) 6= H(z1), and therefore H is an injective mapping.
It remains to consider the opposite case, where ‖µF‖R,∞ < cos απ

2
for all R ∈

(0; 1). Since Ω is an α-convex domain and 0 ≤ α < 1, we conclude from Lemma 2.1
that the first inequality in (2.2) holds with k := ‖µF‖R,∞ for certain R ∈ (0; 1), and
so

Re
H(z2)−H(z1)

F (z2)− F (z1)
≥ 1

1 + ‖µF‖R,∞
− 1− cos απ

2

cos απ
2

· ‖µF‖R,∞
1− ‖µF‖2

R,∞

=
cos απ

2
− ‖µF‖R,∞

(1− ‖µF‖2
R,∞) cos απ

2

> 0.

Hence H(z2) 6= H(z1), and therefore H is an injective mapping.
By Definition 1.2 each convex domain is a 0-convex domain. Moreover, from

(0.5) it follows that ‖µF‖R,∞ < 1 = cos(0) for 0 < R < 1. Thus, by the first part of
the corollary, the mapping H is injective provided Ω is a convex domain. ¤

Remark 2.3. From Lemma 2.1 we can easily derive the following result by J.
Clunie and T. Sheil-Small [3, Corollary 5.8]: If Ω := F (D) is a convex domain, then

(2.11) |G(z2)−G(z1)| < |H(z2)−H(z1)|, z1, z2 ∈ D, z1 6= z2.

For the proof, fix z1, z2 ∈ D such that z1 6= z2. Setting

a := Re
G(z2)−G(z1)

F (z2)− F (z1)
, b := Re

H(z2)−H(z1)

F (z2)− F (z1)
and c := Im

H(z2)−H(z1)

F (z2)− F (z1)

we deduce from (0.1) that a + b = 1,

(2.12) Im
G(z2)−G(z1)

F (z2)− F (z1)
= −c and

∣∣∣∣
G(z2)−G(z1)

F (z2)− F (z1)

∣∣∣∣
2

= (1− b)2 + c2.

Since Ω is a 0-convex domain, we conclude from Lemma 2.1 that the first inequality
in (2.2) holds with k := ‖µF‖R,∞ for certain R ∈ (0; 1), and so b ≥ (1 + ‖µF‖R,∞)−1.
By (0.5), ‖µF‖R,∞ < 1 = cos(0). Thus b > 1/2, and so (1 − b)2 + c2 < b2 + c2.
Combining this with (2.12) and

(2.13)
∣∣∣∣
H(z2)−H(z1)

F (z2)− F (z1)

∣∣∣∣
2

= b2 + c2,

we obtain (2.11).

The next lemma extends the result of Clunie and Sheil-Small.

Lemma 2.4. Given α ∈ [0; 1) suppose that Ω := F (D) is an α-convex domain
and that ‖µF‖1,∞ ≤ k < cos απ

2
. Then for all z1, z2 ∈ D, z1 6= z2,

(2.14)
∣∣∣∣
G(z2)−G(z1)

H(z2)−H(z1)

∣∣∣∣ ≤ S1(k, α) := max

{
1, k

1− k cos απ
2

cos απ
2
− k

}
.
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Moreover, suppose additionally that α = 0 or k ≤ tan (1−α)π
4

< 1 in case α ∈ (0; 1).
Then

(2.15)
∣∣∣∣
G(z2)−G(z1)

H(z2)−H(z1)

∣∣∣∣ ≤ S2(k, α) := k ·
√

(1− k cos απ
2

)2 + (1 + k sin απ
2

)2

(cos απ
2
− k)2 + k2(1 + k sin απ

2
)2

.

Proof. Given α ∈ [0; 1) suppose that Ω := F (D) is an α-convex domain. Fix
z1, z2 ∈ D such that z1 6= z2. Under notations from Remark 2.3 we conclude from
(2.12) and (2.13) that

(2.16)
∣∣∣∣
G(z2)−G(z1)

H(z2)−H(z1)

∣∣∣∣
2

=
(1− b)2 + c2

b2 + c2
=

1− 2b

b2 + c2
+ 1.

From the assumption ‖µF‖1,∞ ≤ k < cos απ
2

and Lemma 2.1 it follows that

(2.17) 0 <
1− (λ + 1)k

1− k2
=: b1 ≤ b ≤ b2 :=

1 + λk

1− k
,

where λ := (1− cos απ
2

)/ cos απ
2
. Hence

(2.18)
1− 2b

b2 + c2
≤ max

{
1− 2b1

b2
1 + c2

,
1− 2b2

b2
2 + c2

}
.

It is easy to check that

(2.19)
1− 2b1

b2
1 + c2

≥ 1− 2b2

b2
2 + c2

⇐⇒ b1b2 − b1 + b2

2
≤ c2.

Since

b1b2 − b1 + b2

2
= −λk2(3− k + 2λ)

2(1− k2)(1− k)
≤ 0 ≤ c2,

we conclude from (2.18), (2.19) and (2.16) that

(2.20)
∣∣∣∣
G(z2)−G(z1)

H(z2)−H(z1)

∣∣∣∣
2

≤ 1 +
1− 2b1

b2
1 + c2

.

If b1 ≤ 1/2, then

1 ≤ 1− 2b1

b2
1 + c2

+ 1 ≤ 1− 2b1

b2
1

+ 1 =
(1− b1)

2

b2
1

=

(
1

b1

− 1

)2

.

This together with (2.20) yields the estimation (2.14), because the right hand side in
(2.20) is less than 1 provided b1 > 1/2.

Assume now additionally that α = 0 or k ≤ tan (1−α)π
4

< 1 in case α ∈ (0; 1).
Then

b1 − 1

2
=

k2 − 2(λ + 1)k + 1

2(1− k2)
=

(
k − tan (1−α)π

4

)(
k − 1+sin απ

2

cos απ
2

)

2(1− k2)
≥ 0.

Applying now the inequality in (2.3) and the first equality in (2.12) we obtain

|c| ≤ k + k2 sin απ
2

(1− k2) cos απ
2

,

and consequently,

1 +
1− 2b1

b2
1 + c2

≤ S2(k, α)2
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Combining this with the inequality (2.20) we obtain the estimation (2.15). ¤

Remark 2.5. It is easily seen that the functions S1 and S2 defined in Lemma 2.4
have the following properties:

(i) S1(k, 0) = 1 and S2(k, 0) = k ·
√

(1−k)2+1
(1−k)2+k2 for k ∈ [0; 1).

(ii) If 0 < α < 1, then

S1(k, α) :=





1 as 0 ≤ k ≤ tan (1−α)π
4

;

k
1− k cos απ

2

cos απ
2
− k

as tan (1−α)π
4

< k < cos απ
2

.

(iii) If 0 < α < 1, then the function S1(·, α) is continuous in [0; cos απ
2

), strictly
increasing in (tan (1−α)π

4
; cos απ

2
) and S1(k, α) → +∞ as k → cos απ

2
.

(iv) The function S2(·, 0) is strictly increasing in [0; 1), S2(k, 0) > k for k ∈ (0; 1)
and S2(k, 0) → 1 as k → 1.

(v) If 0 < α < 1, then k < S2(k, α) < 1 for k ∈ (0; tan (1−α)π
4

) and S2(k, α) → 1

as k → tan (1−α)π
4

.

3. The Lipschitz and co-Lipschitz properties of harmonic mappings

In this section we present various results dealing with Lipschitz and co-Lipschitz
properties of harmonic mappings Fa := H + aG, provided the mapping F maps the
unit disk D onto an α-convex domain. Note that F0 = H. The only exception where
we have no need to require that F (D) is an α-convex domain for any α ≥ 0, is the
following lemma.

Lemma 3.1. If F maps the unit disk D onto a simply connected domain and
there exists a constant L > 0 such that

(3.1)
1

L
|H(z2)−H(z1)| ≤ |F (z2)− F (z1)|, z1, z2 ∈ D,

then L ≥ 1 and F is a quasiconformal mapping with ‖µF‖1,∞ ≤ 1− 1
L
.

Proof. Fix z ∈ D, r > 0 and θ ∈ R. Setting w := z + reiθ we conclude from (3.1)
that

1

L

∣∣∣H(w)−H(z)

w − z

∣∣∣ ≤
∣∣∣H(w)−H(z)

w − z
+

w − z

w − z

G(w)−G(z)

w − z

∣∣∣,
and letting r tend to 0 we obtain

1

L
|H ′(z)| ≤ |H ′(z) + e−2iθG′(z)|.

Hence choosing suitably θ we have
1

L
|H ′(z)| ≤ |H ′(z)| − |G′(z)|,

and thus
|G′(z)| ≤

(
1− 1

L

)
|H ′(z)|.

Combining this with (0.2) we deduce that L ≥ 1, and |µF (z)| ≤ 1− 1
L
. Since z is an

arbitrary point in D, we see that ‖µF‖1,∞ ≤ 1 − 1
L
, and thus F is a quasiconformal

mapping, which proves the lemma. ¤
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Theorem 3.2. Given α ∈ [0; 1) suppose that Ω := F (D) is an α-convex domain
and ‖µF‖1,∞ < 1. Then for every k satisfying ‖µF‖1,∞ ≤ k < 1 and for all z1, z2 ∈ D,

(3.2)
cos απ

2
− k

(1− k2) cos απ
2

|F (z2)− F (z1)| ≤ |H(z2)−H(z1)| ≤ |F (z2)− F (z1)|
(1− k) cos απ

2

,

or equivalently, for such k and all w1, w2 ∈ Ω,

(3.3)
cos απ

2
− k

(1− k2) cos απ
2

|w2 − w1| ≤ |H ◦ F−1(w2)−H ◦ F−1(w1)| ≤ |w2 − w1|
(1− k) cos απ

2

.

In consequence, if ‖µF‖1,∞ < cos απ
2
, then the function H ◦ F−1 is bi-Lipschitz.

Proof. Given α ∈ [0; 1) suppose that Ω is an α-convex domain and ‖µF‖1,∞ ≤
k < 1. Fix z1, z2 ∈ D such that z1 6= z2. From the first inequality in (2.2) it follows
that

(3.4)
cos απ

2
− k

(1− k2) cos απ
2

≤ Re
H(z2)−H(z1)

F (z2)− F (z1)
≤

∣∣∣∣
H(z2)−H(z1)

F (z2)− F (z1)

∣∣∣∣ ,

which yields the first inequality in (3.2). The second inequality in (3.2) follows
immediately from (2.5). The one-to-one correspondence D 3 z 7→ w = F (z) ∈ Ω
shows that both the double inequalities (3.2) and (3.3) are equivalent. Finally, if
‖µF‖1,∞ < cos απ

2
, then the left term in (3.4) with k := ‖µF‖1,∞ is positive. Hence

and by (3.3) we conclude that H ◦ F−1 is a bi-Lipschitz mapping, and the proof is
complete. ¤

By Lemma 3.1 and Theorem 3.2 we easily obtain the following property.

Corollary 3.3. Suppose that Ω := F (D) is an α-convex domain for some α ∈
[0; 1). Then F is a quasiconformal mapping iff there exists a constant L ≥ 1 satisfying
(3.1) in Lemma 3.1.

Using the functions S1 and S2 given in (2.14) and (2.15), respectively, we define
a function S : {(1, 0)} ∪ {(k, α) ∈ [0; 1) × [0; 1) : k < cos απ

2
} → R by the following

formulas: S(1, 0) := 1,

S(k, 0) := S2(k, 0) = k ·
√

(1− k)2 + 1

(1− k)2 + k2
as 0 ≤ k < 1,(3.5)

and for α ∈ (0; 1),

S(k, α) :=

{
S1(k, α) as tan (1−α)π

4
< k < cos απ

2
;

S2(k, α) as 0 ≤ k ≤ tan (1−α)π
4

.
(3.6)

Theorem 3.4. Given α ∈ [0; 1) and k > 0 suppose that Ω := F (D) is an
α-convex domain and ‖µF‖1,∞ ≤ k < cos απ

2
. Then for every a ∈ D(1/S(k, α)),

(3.7)
(1− |a|S(k, α))(cos απ

2
− k)

(1− k2) cos απ
2

|F (z1)− F (z2)| ≤ |Fa(z1)− Fa(z2)|, z1, z2 ∈ D.

In particular, Fa is a quasiconformal mapping and

(3.8) ‖µFa‖1,∞ ≤ k|a| < k

S(k, α)
< 1.
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If furthermore there exists a constant L > 0 such that

(3.9)
1

L
|z1 − z2| ≤ |F (z1)− F (z2)|, z1, z2 ∈ D,

then for every a ∈ D(1/S(k, α)) the mapping Fa is co-Lipschitz and

(3.10)
(1− |a|S(k, α))(cos απ

2
− k)

L(1− k2) cos απ
2

|z1 − z2| ≤ |Fa(z1)− Fa(z2)|, z1, z2 ∈ D.

Proof. Given α ∈ [0; 1) suppose that Ω is an α-convex domain. Fix z1, z2 ∈ D
such that z1 6= z2 and a ∈ D(1/S(k, α)). From Lemma 2.4 and (3.6) it follows that

(3.11)
∣∣∣∣
a(G(z2)−G(z1))

H(z2)−H(z1)

∣∣∣∣ ≤ |a|S(k, α) < 1.

Hence

|Fa(z1)− Fa(z2)| = |H(z1)−H(z2)|
∣∣∣∣1 +

a(G(z2)−G(z1))

H(z2)−H(z1)

∣∣∣∣

≥ |H(z1)−H(z2)|
(

1−
∣∣∣∣
a(G(z2)−G(z1))

H(z2)−H(z1)

∣∣∣∣
)

≥ |H(z1)−H(z2)|(1− |a|S(k, α)).

(3.12)

Applying now Theorem 3.2 we obtain (3.7), and thus the mapping Fa is injective.
By (0.2), we see that ∂Fa(z) = H ′(z) 6= 0 as z ∈ D. Then for every z ∈ D,

(3.13)
∣∣∣∣
∂̄Fa(z)

∂Fa(z)

∣∣∣∣ =

∣∣∣∣∣
aG′(z)

H ′(z)

∣∣∣∣∣ = |a|
∣∣∣∣
∂̄F (z)

∂F (z)

∣∣∣∣ ≤ |a|‖µF‖1,∞ ≤ k|a| < k

S(k, α)
.

Since S1(k, α) ≥ 1 and S2(k, α) > k, we have S(k, α) > k. Therefore (3.13) yields
(3.8). Thus Fa is a quasiconformal mapping.

If we assume additionally that (3.9) holds, then (3.7) together with (3.9) leads to
(3.10), which means that Fa is a co-Lipschitz mapping, and the proof is completed.

¤

Corollary 3.5. Given α ∈ [0; 1) and positive numbers k, L1, L2 suppose that Ω
is a bounded α-convex domain, (L1L2−1)(L1L2+1)−1 ≤ k < cos απ

2
and the function

F is bi-Lipschitz with constants L1, L2, i.e.

(3.14)
1

L1

|z2 − z1| ≤ |F (z2)− F (z1)| ≤ L2|z2 − z1|, z1, z2 ∈ D.

Then for every a ∈ D(1/S(k, α)) the mapping Fa is also bi-Lipschitz and the following
inequality

(1− |a|S(k, α))(cos απ
2
− k)

L1(1− k2) cos απ
2

|z1 − z2| ≤ |Fa(z1)− Fa(z2)|

≤ (1 + |a|k)L2|z1 − z2|, z1, z2 ∈ D,

(3.15)

holds. In particular, Fa is a quasiconformal mapping and the estimation (3.8) holds.

Proof. Since F is differentiable at an arbitrarily fixed point ζ0 ∈ D, the property
(0.10) holds. Then for each θ ∈ R, we conclude from the first inequality in (3.14)
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that
∣∣∂F (ζ0)e

iθ + ∂̄F (ζ0)e
−iθ

∣∣ =
1

r

∣∣F (reiθ + ζ0)− F (ζ0)
∣∣ +

1

r

∣∣o(reiθ)
∣∣

≥ 1

L1

+
1

r

∣∣o(reiθ)
∣∣ → 1

L1

as r → 0.

On the other hand side ∂F (ζ0) = |∂F (ζ0)|eiα and ∂̄F (ζ0) = |∂̄F (ζ0)|eiβ for some
α, β ∈ R. Thus for θ := (π + β − α)/2 we obtain

(3.16) |∂F (ζ0)| − |∂̄F (ζ0)| ≥ 1

L1

, ζ0 ∈ D.

From the second inequality in (3.14) it follows that the inequality (0.12) holds with
L replaced by L2. Combining this with (3.16) we obtain

(3.17)
|∂F (z)|+ |∂̄F (z)|
|∂F (z)| − |∂̄F (z)| ≤ L1L2, z ∈ D.

Since F is a sense-preserving diffeomorphic mapping, we deduce from (3.17) that F is
a L1L2-quasiconformal mapping, and consequently ‖µF‖1,∞ ≤ k. Then Theorem 3.4
and Proposition 0.1 imply the condition (3.15) for every a ∈ D(1/S(k, α)), which
means that Fa is a bi-Lipschitz mapping. Moreover, Theorem 3.4 implies that Fa

is a quasiconformal mapping and the estimation (3.8) holds, which completes the
proof. ¤

Remark 3.6. All the results presented so far hold in particular in the case, where
Ω is a convex domain, i.e. Ω is a 0-convex domain. Then there is no restriction on
the maximal dilatation of F , and so these results are valid for every quasiconformal
harmonic mapping F . Furthermore, for α = 0 the function S takes the simpler form
(3.5). Hence the inequalities (3.10) and (3.8) can be simplified as follows

(3.18)
1− |a|k ·

√
(1−k)2+1
(1−k)2+k2

L(1 + k)
|z1 − z2| ≤ |Fa(z1)− Fa(z2)|, z1, z2 ∈ D,

and

(3.19) ‖µFa‖1,∞ ≤ k|a| <
√

(1− k)2 + k2

(1− k)2 + 1
< 1,

provided

(3.20) k > 0 and |a| < 1

k
·
√

(1− k)2 + k2

(1− k)2 + 1
.

This extends Kalaj’s Theorem A in the case where F is a quasiconformal mapping.

In the case where F (D) is a convex domain we obtain the following Lipschitz
and co-Lipchitz properties of the mapping Fa ◦H−1.

Theorem 3.7. Suppose that Ω := F (D) is a convex domain and that a ∈ C
satisfies |a| ≤ 1 (resp. |a| < 1/S(‖µF‖1,∞, 0)) provided ‖µF‖1,∞ = 1 (resp. ‖µF‖1,∞ <
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1). Then Fa := H +aG is an injective mapping, Fa ◦H−1 is a Lipschitz mapping and

|H(z1)−H(z2)| ≥ 1

1 + |a|S(‖µF‖1,∞, 0)
|Fa(z1)− Fa(z2)|

≥ 1

2
|Fa(z1)− Fa(z2)|, z1, z2 ∈ D.

(3.21)

Moreover, if a ∈ C satisfies |a| < 1/S(‖µF‖1,∞, 0), then Fa ◦ H−1 is a bi-Lipschitz
mapping and

(3.22) |H(z1)−H(z2)| ≤ 1

1− |a|S(‖µF‖1,∞, 0)
|Fa(z1)− Fa(z2)|, z1, z2 ∈ D.

Proof. Suppose first that ‖µF‖1,∞ = 1 and |a| ≤ 1. Then from (2.11) it follows
that for all z1, z2 ∈ D, z1 6= z2,

|Fa(z1)− Fa(z2)| = |H(z1)−H(z2) + a(G(z1)−G(z2))|
≥ |H(z1)−H(z2)| − |a||G(z1)−G(z2)|
≥ |H(z1)−H(z2)| − |G(z1)−G(z2)| > 0,

(3.23)

and similarly,

|Fa(z1)− Fa(z2)| ≤ |H(z1)−H(z2)|+ |a||G(z1)−G(z2)|
≤ (1 + |a|)|H(z1)−H(z2)| ≤ 2|H(z1)−H(z2)|.

Thus the mapping Fa is injective and (3.21) holds. Furthermore, if |a| < 1 =
1/S(1, 0), then the first inequality in (3.23) and (2.11) yield

|Fa(z1)− Fa(z2)| ≥ (1− |a|)|H(z1)−H(z2)|, z1, z2 ∈ D,

which implies (3.22).
Suppose now that ‖µF‖1,∞ < 1 and |a| < 1/S(‖µF‖1,∞, 0). Then by Theorem 3.4

the mapping Fa is quasiconformal and (3.12) with k := ‖µF‖1,∞ implies (3.22).
Modifying suitably (3.12) we conclude from Lemma 2.4 and (3.5) that

|Fa(z1)− Fa(z2)| ≤ |H(z1)−H(z2)|
(
1 +

∣∣∣a(G(z1)−G(z2))

H(z1)−H(z2)

∣∣∣
)

≤ (1 + |a|S(‖µF‖1,∞, 0))|H(z1)−H(z2)|
≤ 2|H(z1)−H(z2)|, z1, z2 ∈ D,

which shows (3.21). ¤
Finally in the case where F (D) is a convex domain we can give several sufficient

and necessary conditions for F to be quasiconformal.

Theorem 3.8. Suppose that Ω := F (D) is a convex domain. Then the following
five conditions are equivalent to each other:

(i) F is a quasiconformal mapping;
(ii) there exists a constant L1 such that 1 ≤ L1 < 2 and

(3.24) |F (z2)− F (z1)| ≤ L1|H(z2)−H(z1)|, z1, z2 ∈ D;

(iii) there exists a constant l1 such that 0 ≤ l1 < 1 and

(3.25) |G(z2)−G(z1)| ≤ l1|H(z2)−H(z1)|, z1, z2 ∈ D;
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(iv) there exists a constant L2 ≥ 1 such that

(3.26) |H(z2)−H(z1)| ≤ L2|F (z2)− F (z1)|, z1, z2 ∈ D;

(v) H ◦ F−1 and F ◦H−1 are bi-Lipschtz mappings.
Moreover, the following implications hold: (3.24) =⇒ ‖µF‖1,∞ ≤ L1−1, (3.25) =⇒
‖µF‖1,∞ ≤ l1 and (3.26) =⇒ ‖µF‖1,∞ ≤ 1− 1

L2
.

Proof. Since

|F (z2)− F (z1)| ≤ |H(z2)−H(z1)|+ |G(z2)−G(z1)|, z1, z2 ∈ D,

we see that (iii) implies (ii). In the same way as in the proof of Lemma 3.1 we deduce
that (3.24) implies that for every z ∈ D,

|H ′(z)|+ |G′(z)| ≤ L1|H ′(z)|,
and so |G′(z)|/|H ′(z)| ≤ L1 − 1. Hence (ii) implies (i) and ‖µF‖1,∞ ≤ L1 − 1. By
Lemma 2.4, (i) implies (iii) and it is easily seen that (3.25) yields ‖µF‖1,∞ ≤ l1. From
Lemma 3.1 we conclude that (iv) implies (i) and ‖µF‖1,∞ ≤ 1− 1

L2
. Theorem 3.2 shows

that (i) implies (v). Finally, (v) clearly implies (iv), and the proof is complete. ¤

4. Complementary results

The results presented so far involve the α-convexity of the range domain F (D)
with the maximal dilatation K of a quasiconformal harmonic mapping F in D. Obvi-
ously, each convex domain is a 0-convex domain. Therefore the concept of α-convexity
remarkably extends the convexity property, and so our results are applicable for a
wide family of quasiconformal harmonic mappings. However, the detailed discussion
exceeds the scope of this paper. Therefore here we confine ourselves only to the case
where F is a quasi-conformal harmonic self-mapping of D. Then the bi-Lipschitz
behaviour of F follows from the result of Pavlović; cf. [12, Thm. 1.2]. Moreover, if
F (0) = 0 and F is a K-quasiconformal mapping, then the more precise result [11,
Thm. 3.3] asserts that for all z, w ∈ D:

(4.1)
L3K

K

K4K+1MK
K

|z − w| ≤ |F (z)− F (w)| ≤ K(MKK)K |z − w|,

where for every t ≥ 1,

Mt :=
4

π

ˆ 1/
√

2

0

(
Φt(r)

r

)1+1/t
dr√

1− r2
(4.2)

and

Lt :=
4

π

ˆ 1/
√

2

0

(
Φ1/t(r)

r

)1+1/t
dr√

1− r2
.(4.3)

Here Φt denotes the Hersch-Pfluger distortion function defined for each t > 0 by the
equalities

(4.4) Φt(r) := µ−1(µ(r)/t), 0 < r < 1; Φt(0) := 0 , Φt(1) := 1,

where µ stands for the module of the Grötzsch extremal domain D \ [0; r]; cf. [4]
and [6, pp. 53 and 63]. For many useful properties of the Hersch–Pfluger distortion
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function the reader is referred to [1]. Efficient methods for the approximation of this
function are discussed in [9], [8], [13] and [14].

If we consider the maximal dilatation K := (1 + ‖µF‖1,∞)/(1 − ‖µF‖1,∞) of F
instead of k := ‖µF‖1,∞, it is more convenient to use the function S∗ defined on the
set {(K,α) ∈ [1; +∞)× [0; 1) : K−1

K+1
< cos απ

2
} by

(4.5) S∗(K,α) := S
(

K−1
K+1

, α
)

as compared to S. By (3.5) we have

(4.6) S∗(K, 0) =
K − 1

K + 1
·
√

(K + 1)2 + 4

(K − 1)2 + 4
, K ≥ 1.

Theorem 4.1. Given K > 1 suppose that F is a K-quasiconformal harmonic
self-mapping of D normalized by F (0) = 0. Then for every a ∈ D(1/S∗(K, 0)), Fa is
a bi-Lipschitz mapping satisfying

(1− |a|S∗(K, 0))(K + 1)

2K

L3K
K

K4K+1MK
K

|z1 − z2| ≤ |Fa(z1)− Fa(z2)|

≤
(
1 + |a|K − 1

K + 1

)
K(MKK)K |z1 − z2|, z1, z2 ∈ D.

(4.7)

In particular, Fa is a K∗-quasiconformal mapping with

(4.8) K∗ ≤ K + 1 + (K − 1)|a|
K + 1− (K − 1)|a| <

(K + 1)S∗(K, 0) + (K − 1)

(K + 1)S∗(K, 0)− (K − 1)
.

Proof. Obviously, D is a convex domain, and hence a 0-convex domain. By the
assumption, ‖µF‖1,∞ ≤ k := (K − 1)/(K + 1) < 1 = cos(0) and k > 0. From (4.5)
we have S∗(K, 0) = S(k, 0). Then the first inequality in (4.7) follows directly from
Theorem 3.4 and the first inequality in (4.1). The second inequality in (4.7) is a
direct conclusion from Proposition 0.1 and the second inequality in (4.1). The first
inequality in (4.8) follows immediately from that in (3.8) of Theorem 3.4. We derive
the second inequality in (4.8) from the assumption |a| < 1/S∗(K, 0). ¤

Remark 4.2. By [11, Lemma 1.3], the following estimations hold:

K25(1−K2)/(2K)

K2 + K − 1
≤ LK ≤ 1 ≤ MK ≤ K225(1−1/K2)/2, K ≥ 1.

Applying them we weaken the inequalities (4.7) to the following more explicit forms

(1− |a|S∗(K, 0))(K + 1)

2K

25(1−K2)(3+1/K)/2

K3K+1(K2 + K − 1)3K
|z1 − z2| ≤ |Fa(z1)− Fa(z2)|

≤
(
1 + |a|K − 1

K + 1

)
K3K+125(K−1/K)/2|z1 − z2|, z1, z2 ∈ D.

(4.9)

Corollary 4.3. If K ≥ 1 and F is a K-quasiconformal harmonic self-mapping
of D, then H is a bi-Lipschitz mapping. If additionally F is normalized by F (0) = 0,
then

K + 1

2K

L3K
K

K4K+1MK
K

|z1 − z2| ≤ |H(z1)−H(z2)|

≤ K(MKK)K |z1 − z2|, z1, z2 ∈ D.

(4.10)
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Proof. Suppose first that F is a K-quasiconformal mapping normalized by F (0) =
0. Since H = F0, we conclude from Theorem 4.1 that H is a bi-Lipschitz mapping and
the inequalities (4.10) hold. In the case where F (0) 6= 0 we can see that F ◦ η(0) = 0
for certain conformal self-mapping η of D. Then F ◦η is a bi-Lipschitz mapping, and
so is F . ¤

As an application of Corollary 4.3 we derive the following necessary and sufficient
condition for quasiconformality of a harmonic self-mapping of D.

Corollary 4.4. For every harmonic and injective self-mapping F of D, F is
quasiconformal iff H is a Lipschitz mapping and
(4.11) inf

z∈D
J[F ](z) > 0.

Proof. Suppose that F is a quasiconformal mapping. Then Corollary 4.3 shows
that H is a Lipschitz mapping. On the other hand side, by [10, Thm. 3.2], the
condition (4.11) holds.

Conversely, suppose now that H is a Lipschitz mapping and the condition (4.11)
holds. Then there exist some positive constans C1 and C2 satisfying

0 < C1 ≤ J[F ](z) = |H ′(z)|2 − |G′(z)|2 and |H ′(z)| ≤ C2 < +∞, z ∈ D.

Hence for every z ∈ D,
∣∣∣ ∂̄F (z)

∂F (z)

∣∣∣
2

=
|G′(z)|2
|H ′(z)|2 ≤

|H ′(z)|2 − C1

|H ′(z)|2 = 1− C1

|H ′(z)|2 ≤ 1− C1

C2
2

< 1,

and consequently F is a quasiconformal mapping, which completes the proof. ¤
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