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BASINS OF ATTRACTION IN LOEWNER EQUATIONS
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Abstract. Let ¢ > 2. We prove that any Loewner PDE on the unit ball B¢ whose driving
term h(z,t) vanishes at the origin and satisfies the bunching condition ¢m(Dh(0,t)) > k(Dh(0,t))
for some ¢ € R, admits a solution given by univalent mappings (f;: B? — C%);>¢. This is done
by discretizing time and considering the abstract basin of attraction. If ¢ < 2, then the range
Ui>0f1(BY?) of any such solution is biholomorphic to CY.

1. Introduction

Let B? C C? denote the unit ball. The Loewner PDE

(1.1) %ﬁz) = Dfi(2)h(z,t) ae. t>0, z€ B!

was introduced by Loewner [21] and developed by Kufarev [20] and Pommerenke [26]
in the case of the unit disc D = B!. The study of this equation culminated with
the proof of the Bieberbach conjecture by de Branges [9] and the introduction of the
stochastic Loewner evolution by Schramm [27].

The several variables case has been widely studied for its application in geometric
function theory by Graham, Hamada, G. Kohr, M. Kohr, Pfaltzgraff and others (see
e.g. [16, 25]).

Throughout this paper we will assume that ¢ > 2. In [5], generalizing the results
obtained in the unit disc D in [8], we explore the connections between this topic and
the theory recently developed by Bracci, Contreras and Diaz-Madrigal [6, 7] (see also
[4]) of Herglotz non-autonomous vector fields on complete hyperbolic manifolds. An
Herglotz vector field of order oo on B? is a non-autonomous holomorphic vector field
—h(z,t): B x R™ — C? such that

e —h(z,t) is measurable in t > 0 and for a.e. £ > 0, the holomorphic vector field

—h(z,t) is an infinitesimal generator, that is the “frozen” Cauchy problem

{%<s> = —h(2(s), ),
2(0) = 2z,

has a solution z: [0,4+00) — BY for all z; € BY,
e for any compact set K C B? and any 7" > 0 there exists cxp > 0 satisfying

|h(2,t)|§CK7T, ZEKv OStST
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The solution flow of the Loewner ODE

(1.2) Dps1(2) = —h(psi(2),t), z€BI, ae. t€[s,00),
. s s(2) =2 z€B? s>0,

is an evolution family of order oo, that is a family of holomorphic mappings (@5, : B?
— B%)<<; satisfying
® V1= Pu10psy forall 0 <s<wu<tand p,,(z) =z for all s >0,
e for any compact set K C B? and for any 7' > 0 there exists a Cxp > 0
satisfying

(1.3) lost(2) — Ysu(2)| < Crr(t—u), ze K, 0<s<u<t<T.

In [5] we prove that a family (f;: B¢ — C7);5¢ of univalent mappings is locally
Lipschitz (in the variable t) and solves the Loewner PDE (1.1) if and only if it solves
the functional equation

(14) fs:ftogps,ta 0<s<t.

If such a solution (f,: B¢ — C9) exists, then the subset |J,-, f;(B?) C C? is open
and connected and is called the range of (f;). Any other solution (g,: B¢ — C9) is
of the form (Ao f;), where A: |J,~, f:(B%) — C is holomorphic. Thus the ranges of
two univalent solutions of (1.1) are biholomorphic.

We are interested in Herglotz vector fields on B? whose flow (¢s,) is attracting

at the origin. A first example is provided by Herglotz vector fields whose linear part
does not depend on ¢ > 0. This has been studied in [10, 14].

Theorem 1.1. Let —h(z,t) be a Herglotz vector field of order oo on B? such
that h(z,t) = Az + O(|z|?) with

(1.5) 2min{Re (Az, z): |z| = 1} > max{ReA: XA € sp(A)},

where (-,-) is the hermitian product on C?. Then the Loewner PDE (1.1) admits
a locally Lipschitz univalent solution (f,: B¢ — C?). The range | J,~, f:(B9) of any
such solution is biholomorphic to C9. N

This result was generalized in [3] (see also [2]), with an approach based on a
discretization of time.

Theorem 1.2. Let —h(z,t) be a Herglotz vector field of order oo on B? such
that h(z,t) = Az + O(|z|*), where the eigenvalues of A have strictly positive real
part. Then the Loewner PDE (1.1) admits a locally Lipschitz univalent solution
(fi: BY — C9). The range | J,~, f:(B?) of any such solution is biholomorphic to C1.

The same result was obtained independently with different methods by Voda [28],
assuming min{Re (Az, z): |z| = 1} > 0. See also [18] for related results.
The next natural step is admitting time-dependent linear parts. Set

m(A) =min{Re (Az,2): |z| =1}, k(A) =max{Re (Az,z): |z] = 1}.
The following result is proved in [15, 13]:
Theorem 1.3. Let —h(z,t) be a Herglotz vector field on B? of order oo such that

h(z,t) = A(t)z + O(|z|?), and assume that the family of linear mappings (A(t))¢>o
satisfies:

i) m(A(t)) >0 for all t > 0 and [;"m(A(t))dt = oo,
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ii) t — ||A(t)| is uniformly bounded on R™,
iii) there exists 6 > 0 such that

om(A(t)) > k(A(t)) + 5, t>0,

iv)
/StA(T)dTo/:A(T)dT:/:A(T)dm/:A(T)dT, t>s>r>0.

Then the Loewner PDE (1.1) admits a locally Lipschitz univalent solution (f;: B —
C9). The range |, fi(B?) of any such solution is biholomorphic to C*.

In this paper we generalize Theorem 1.3, using the approach of [2|[3]. The fol-
lowing is our result.

Theorem 1.4. Let —h(z,t) be a Herglotz vector field on B? of order oo such that
h(z,t) = A(t)z + O(|z|?), and assume that the family of linear mappings (A(t))¢o
satisfies:

a) m(A(t)) > 0 for all t > 0 and [~ m(A(t)) dt = oo,

b) t — ||A(t)] is locally bounded on R,

c) there exists { € RT such that

(m(A(t)) > k(A(t)), > 0.

Then the Loewner PDE (1.1) admits a locally Lipschitz univalent solution (f;: B? —
CY). If ¢ < 2 then the range | J,~, f:(BY) of any such solution is biholomorphic to
Ca.

Notice that the assumptions ii) and iii) of Theorem 1.3 imply that there exists
¢ < 2 such that

m(A(t)) > k(A(t)), t=>0.

We want to stress the strong analogy between Loewner theory and the theory
of discrete non-autonomous complex dynamical systems which has developed around
Bedford’s conjecture (see [1, 11, 19, 23, 30]). This is reflected in the proof of The-
orem 1.4, which is based on a discretization of time, and relies on the study of the
abstract basin of attraction performed by Fornaess and Stensgnes in [11]:

Theorem 1.5. Let (¢ n+1)nen be a family of univalent self-mappings of rBY.
Assume that there exist 0 < v < pu < 1 such that

(1.6) v|z| <lpnnt1(2)] < plz|l, zerBY neNN.

Then, if Q) is the abstract basin of attraction of (¢, ,+1), then there exists an univalent
mapping V: Q) — C19.

The abstract basin of attraction comes naturally with a family of univalent map-
pings (w,: rB? — ). Composing this family with the biholomorphism ¥ given by
Theorem 1.5 we obtain a family of univalent mappings from rB to C? which we
extend to a family (f;: B? — C?) satisfying the functional equation (1.4).

The range |J,~ f:(B9) is by construction biholomorphic to 2 and thus by [11,
Theorem 3.1] it is a Stein, Runge domain in C? whose Kobayashi pseudometric
vanishes identically and which is diffeomorphic to C?. It is an open question whether
U0 f:(B?) is biholomorphic to C? when ¢ > 2. A positive answer would follow from
a proof of Bedford’s conjecture (see e.g. [22]):
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Conjecture 1.6. Let (P, ,+1)nen be a family of automorphisms of C?. Assume
that there exist 0 < v < < 1 and r > 0 such that

(1.7) v|z| < |Ppnti1(2)] < plz|, zerB? neN.
Then the basin of attraction

{Z € C?: lim (I)n—l,n 0---0 (13071 = O}

is biholomorphic to C1.

I want to thank Jasmin Raissy and Han Peters for our valuable discussions. I
also want to thank the referee for precious comments.

2. Main result

Let A denote the family of holomorphic mappings h: B? — C? such that h(0) =
0 and Re (h(z),z) > 0, for all z # 0.

Theorem 2.1. Let h(z,t): BIxR* — C? be a mapping such that z — h(z,t) €
N for allt € R and t — h(z,t) is measurable on R" for all z € BY. Assume that
h(z,t) = A(t)z + O(|z|*) and that the family of linear mappings (A(t))¢o satisfies:

a) m(A(t)) > 0 for all t > 0 and [~ m(A(t)) dt = oo,

b) t — ||A(t)] is locally bounded on R,

c) there exists ¢ € RT such that

tm(A(t)) = k(A(t)), t=>0.
Then the Loewner PDE

%EZ) = Df(2)h(z,t), z€B? ae t>0

admits a locally Lipschitz solution given by univalent mappings (f;: B? — C9). If
| < 2, then the range | J,, fi(B9) of any such solution is biholomorphic to C9. Any
other solution given by holomorphic mappings (g,: B? — C?) is of the form (Ao f,),
where A: |, fi:(B?) — CY is holomorphic.

Proof. Notice that for all A € L(C?),
m(A) < k(A) < Al

and thus k(t) and m(t) are also locally bounded on R*. By [14, Lemma 1.2] one has
forae. t>0

4r
SIA@L 2] <r <,

(1—7)
hence —h(z,t) is a Herglotz vector field of order oo on B?. Let (¢;;) be the associated
evolution family of order oo, that is the solution of the Loewner ODE

(2.1) {%Qﬂ(z) = —h(psi(2),t), z€BI, ae. te s 00),

[z, 1)] <

SOS,S(Z) =z, =zE€ Bq,S > 0.

Recall that ¢s,: B? — BY is an univalent mapping for all 0 < s < ¢ and that
t — ps+(2) is locally Lipschitz continuous on [s, 00) uniformly on compact sets with
respect to z € BY.
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Fix s > 0 and z € B? \ {0}. Then for a.e. 7> s,
2 o 2)f = 2Re <§T¢S,T<z), rals) ) = ~2Re (s (2,7 r ().

Set C(r) = £ and ¢(r) = 1= for all » > 0. Gurganus proved [17] that for a.e. t > 0,
Re (A( )w,w>0(\w\) < Re (h(w, 1), w) < Re (A(t)w, w)C(|w]), w e B~ {0}.
Since |ps-(2)] < |#| one has
2

2 |0 (z
—zk@uT»cxprgéﬂfiﬂ—L-g-—mn@uT»cqay ae. >0,

I%T(Z)P
! |908T( )|2
—2C(|z]) | k(A(r))dr < |<,0 BIE dr < =2¢(|z]) | m(A 0<s<t,
(2.2) o—C20) JiRAM)dr |905|t(| z)| —c(\z|)./jm(A(T))dT7 0<s<t
z

Set for all 0 < s < t,

Voy = e CUNIRAED I an gy gmellz L m(Am) ar

One has, thanks to assumption c),

t
k(A d
(2‘3> logﬂ ey = 10ngt _ CQOZ’) thg ( (7')) T < 02(’Z|)£, 0<s<t
" log is, [, m(A(r))d

Let n € N and let u,, € R* be defined by

/0 " (A(F)) dr = n.

Let now h € N be the least integer strictly greater than ¢, and let » > 0 be such
that C2(r) < h/f. Set p = e~ (notice that u = fiy,u,,, for all n > 0) and
v =min{vy, u,,,: n > 0}. By (2.2) and (2.3) one has that

V2] < |upun i (2) < plz], 2€rBin>0.
and
(2.4) uh < v,

The abstract basin of attraction or tail space € of the family (pu, u,,,: ™B? —
rBY) is defined in [11] (see also [1]) as its topological inductive limit endowed with a
natural complex structure. €2 is the quotient of the set

{zE H rBY:n € N, Zpmi1 = Qupumsr (2m)s Ogngm},

m>n

obtained identifying z and 2’ if 2, = z/, for m large enough, and the holomorphic
structure is induced by a family of open inclusions (w,,: TB? — ) defined as

which are thus by definition biholomorphisms with their image and satisfy

(2.5) Wi (2) = Wi © Qup . (2), 0<n<m, ze€rB.
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By [11, Theorem 2.2| there exists an univalent mapping ¥: Q@ — C?. We claim
that, for all s > 0, the sequence (¥ owy, © s 4,, Jm>0 converges uniformly on compact
sets in Hol(BY, C?). Indeed by equation (2.2) and assumption a) one has that for all
s >0,

lim s, (2) =0,

uniformly on compact sets. Thus, if 0 < v < 1, there exist m(v) € N such that for
all j > m(v), one has ¢, (vB?) C rB?. Let j, h be integers such that m(v) < j < h,
then by (2.5),

W owp 0 @su,(2) =Vo wjops,(z), zecuvB

Thus the sequence (¥ o wy, 0 ¢s,,,) is eventually constant in Hol(vBY, C?).
Let f;: B¢ — CY the univalent mapping defined as

(2.6) fi2) = T W0 w0 g, ().
One easily verifies that

(2.7) fs(2) = fiopsi(2), 0<s<t zeB,
and that

U nB9) =v(©).
>0
Notice that the abstract basin of attraction of the family (¢, 4,.,) is thus biholo-
morphic to the Loewner range of the family (¢ ;) defined in [5]. This can be checked
directly since both objects are defined as direct limits.
By [5, Theorem 4.10] one has that (f;: B¢ — C?) is a Loewner chain of order oo,
that is
o f(B?) C f,(BY) forall 0 < s <t
e for any compact set K C B? and for any 7' > 0 there exists a kxp > 0

satisfying
(2.8) 1fi(2) = fs(2)| < kgr(t—s), z€e K, 0<s<t<T.
By [5, Theorem 5.2| one obtains finally
aféff) = Dfy(2)h(z,t), z€BI, ae. t>0.

Thus any univalent mapping ¥: 2 — C? gives rise to a univalent solution
(fi: B — C9) of the Loewner PDE. Following |1, Remark A.4] we recall a way
to construct such a univalent mapping ¥: Q2 — C9. Given any polynomial map
p: C? — C1 of degree at most k& with Dp(0) invertible there exists [12][29] an holo-
morphic automorphism ® of C? such that

®(2) = p(2) + O(|z[*).
We choose a sequence of automorphisms (@, ,,+1: C? — C?) which is uniformly

bounded on a neighborhood of the origin and which satisfies

®n7n+l(z) = gpunyun-&-l (Z) + O(’Z’h>7 n Z 07
where h € N is as in (2.4). We denote the basin of attraction of the sequence (®,, ,,+1)
by
Ql(q)n,n—l-l) = {Z € C?: lim q)n—l,n O---0 q)()’l = 0}

n—oo
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It follows from [1, Theorem A.1] that there exists a biholomorphism
U: Q— A(P,, 41) C CL

If ¢ < 2, then h = 2 and, by [30, Theorem 4|, one has that the basin of attraction
A(®P,, ,11) is biholomorphic to C1.

By [5, Theorem 4.10] any solution (g;: B¢ — C9) of the Loewner PDE has to
satisfy gs = g¢ 0 s+ for all 0 < s <t and thus [5, Theorem 4.7] yields that the family
(g¢) is of the form (Ao f;), where A: (J,5 f:(B?) — C is holomorphic. O
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