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BASINS OF ATTRACTION IN LOEWNER EQUATIONS
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Abstract. Let q ≥ 2. We prove that any Loewner PDE on the unit ball Bq whose driving
term h(z, t) vanishes at the origin and satisfies the bunching condition `m(Dh(0, t)) ≥ k(Dh(0, t))
for some ` ∈ R+, admits a solution given by univalent mappings (ft : Bq → Cq)t≥0. This is done
by discretizing time and considering the abstract basin of attraction. If ` < 2, then the range
∪t≥0ft(Bq) of any such solution is biholomorphic to Cq.

1. Introduction

Let Bq ⊂ Cq denote the unit ball. The Loewner PDE

(1.1)
∂ft(z)

∂t
= Dft(z)h(z, t) a.e. t ≥ 0, z ∈ Bq

was introduced by Loewner [21] and developed by Kufarev [20] and Pommerenke [26]
in the case of the unit disc D

.
= B1. The study of this equation culminated with

the proof of the Bieberbach conjecture by de Branges [9] and the introduction of the
stochastic Loewner evolution by Schramm [27].

The several variables case has been widely studied for its application in geometric
function theory by Graham, Hamada, G. Kohr, M. Kohr, Pfaltzgraff and others (see
e.g. [16, 25]).

Throughout this paper we will assume that q ≥ 2. In [5], generalizing the results
obtained in the unit disc D in [8], we explore the connections between this topic and
the theory recently developed by Bracci, Contreras and Díaz-Madrigal [6, 7] (see also
[4]) of Herglotz non-autonomous vector fields on complete hyperbolic manifolds. An
Herglotz vector field of order ∞ on Bq is a non-autonomous holomorphic vector field
−h(z, t) : Bq ×R+ → Cq such that

• −h(z, t) is measurable in t ≥ 0 and for a.e. t̃ ≥ 0, the holomorphic vector field
−h(z, t̃) is an infinitesimal generator, that is the “frozen” Cauchy problem

{•
z(s) = −h(z(s), t̃),

z(0) = z0,

has a solution z : [0, +∞) → Bq for all z0 ∈ Bq,
• for any compact set K ⊂ Bq and any T > 0 there exists cK,T > 0 satisfying

|h(z, t)| ≤ cK,T , z ∈ K, 0 ≤ t ≤ T.

doi:10.5186/aasfm.2012.3742
2010 Mathematics Subject Classification: Primary 32H50; Secondary 32H02, 37F99.
Key words: Loewner chains in several variables, Loewner equations, evolution families, abstract

basins of attraction.
†Titolare di una Borsa della Fondazione Roma – Terzo Settore bandita dall’Istituto Nazionale

di Alta Matematica.



564 Leandro Arosio

The solution flow of the Loewner ODE

(1.2)

{
∂
∂t

ϕs,t(z) = −h(ϕs,t(z), t), z ∈ Bq, a.e. t ∈ [s,∞),

ϕs,s(z) = z, z ∈ Bq, s ≥ 0,

is an evolution family of order ∞, that is a family of holomorphic mappings (ϕs,t : Bq

→ Bq)0≤s≤t satisfying
• ϕs,t = ϕu,t ◦ ϕs,u for all 0 ≤ s ≤ u ≤ t and ϕs,s(z) = z for all s ≥ 0,
• for any compact set K ⊂ Bq and for any T > 0 there exists a CK,T > 0
satisfying

(1.3) |ϕs,t(z)− ϕs,u(z)| ≤ CK,T (t− u), z ∈ K, 0 ≤ s ≤ u ≤ t < T.

In [5] we prove that a family (ft : Bq → Cq)t≥0 of univalent mappings is locally
Lipschitz (in the variable t) and solves the Loewner PDE (1.1) if and only if it solves
the functional equation

(1.4) fs = ft ◦ ϕs,t, 0 ≤ s ≤ t.

If such a solution (ft : Bq → Cq) exists, then the subset
⋃

t≥0 ft(B
q) ⊂ Cq is open

and connected and is called the range of (ft). Any other solution (gt : Bq → Cq) is
of the form (Λ ◦ ft), where Λ:

⋃
t≥0 ft(B

q) → Cq is holomorphic. Thus the ranges of
two univalent solutions of (1.1) are biholomorphic.

We are interested in Herglotz vector fields on Bq whose flow (ϕs,t) is attracting
at the origin. A first example is provided by Herglotz vector fields whose linear part
does not depend on t ≥ 0. This has been studied in [10, 14].

Theorem 1.1. Let −h(z, t) be a Herglotz vector field of order ∞ on Bq such
that h(z, t) = Az + O(|z|2) with

(1.5) 2 min{Re 〈Az, z〉 : |z| = 1} > max{Re λ : λ ∈ sp(A)},
where 〈·, ·〉 is the hermitian product on Cq. Then the Loewner PDE (1.1) admits
a locally Lipschitz univalent solution (ft : Bq → Cq). The range

⋃
t≥0 ft(B

q) of any
such solution is biholomorphic to Cq.

This result was generalized in [3] (see also [2]), with an approach based on a
discretization of time.

Theorem 1.2. Let −h(z, t) be a Herglotz vector field of order ∞ on Bq such
that h(z, t) = Az + O(|z|2), where the eigenvalues of A have strictly positive real
part. Then the Loewner PDE (1.1) admits a locally Lipschitz univalent solution
(ft : Bq → Cq). The range

⋃
t≥0 ft(B

q) of any such solution is biholomorphic to Cq.

The same result was obtained independently with different methods by Voda [28],
assuming min{Re 〈Az, z〉 : |z| = 1} > 0. See also [18] for related results.

The next natural step is admitting time-dependent linear parts. Set

m(A)
.
= min{Re 〈Az, z〉 : |z| = 1}, k(A) = max{Re 〈Az, z〉 : |z| = 1}.

The following result is proved in [15, 13]:

Theorem 1.3. Let −h(z, t) be a Herglotz vector field on Bq of order∞ such that
h(z, t) = A(t)z + O(|z|2), and assume that the family of linear mappings (A(t))t≥0

satisfies:
i) m(A(t)) > 0 for all t ≥ 0 and

´∞
0

m(A(t)) dt = ∞,
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ii) t 7→ ‖A(t)‖ is uniformly bounded on R+,
iii) there exists δ > 0 such that

2m(A(t)) ≥ k(A(t)) + δ, t ≥ 0,

iv)
ˆ t

s

A(τ) dτ ◦
ˆ s

r

A(τ) dτ =

ˆ s

r

A(τ) dτ ◦
ˆ t

s

A(τ) dτ, t ≥ s ≥ r ≥ 0.

Then the Loewner PDE (1.1) admits a locally Lipschitz univalent solution (ft : Bq →
Cq). The range

⋃
t≥0 ft(B

q) of any such solution is biholomorphic to Cq.

In this paper we generalize Theorem 1.3, using the approach of [2][3]. The fol-
lowing is our result.

Theorem 1.4. Let −h(z, t) be a Herglotz vector field on Bq of order∞ such that
h(z, t) = A(t)z + O(|z|2), and assume that the family of linear mappings (A(t))t≥0

satisfies:
a) m(A(t)) > 0 for all t ≥ 0 and

´∞
0

m(A(t)) dt = ∞,
b) t 7→ ‖A(t)‖ is locally bounded on R+,
c) there exists ` ∈ R+ such that

`m(A(t)) ≥ k(A(t)), t ≥ 0.

Then the Loewner PDE (1.1) admits a locally Lipschitz univalent solution (ft : Bq →
Cq). If ` < 2 then the range

⋃
t≥0 ft(B

q) of any such solution is biholomorphic to
Cq.

Notice that the assumptions ii) and iii) of Theorem 1.3 imply that there exists
` < 2 such that

`m(A(t)) ≥ k(A(t)), t ≥ 0.

We want to stress the strong analogy between Loewner theory and the theory
of discrete non-autonomous complex dynamical systems which has developed around
Bedford’s conjecture (see [1, 11, 19, 23, 30]). This is reflected in the proof of The-
orem 1.4, which is based on a discretization of time, and relies on the study of the
abstract basin of attraction performed by Fornaess and Stensønes in [11]:

Theorem 1.5. Let (ϕn,n+1)n∈N be a family of univalent self-mappings of rBq.
Assume that there exist 0 < ν ≤ µ < 1 such that

(1.6) ν|z| ≤ |ϕn,n+1(z)| ≤ µ|z|, z ∈ rBq, n ∈ N.

Then, if Ω is the abstract basin of attraction of (ϕn,n+1), then there exists an univalent
mapping Ψ: Ω → Cq.

The abstract basin of attraction comes naturally with a family of univalent map-
pings (ωn : rBq → Ω). Composing this family with the biholomorphism Ψ given by
Theorem 1.5 we obtain a family of univalent mappings from rB to Cq which we
extend to a family (ft : Bq → Cq) satisfying the functional equation (1.4).

The range
⋃

t≥0 ft(B
q) is by construction biholomorphic to Ω and thus by [11,

Theorem 3.1] it is a Stein, Runge domain in Cq whose Kobayashi pseudometric
vanishes identically and which is diffeomorphic to Cq. It is an open question whether⋃

t≥0 ft(B
q) is biholomorphic to Cq when ` ≥ 2. A positive answer would follow from

a proof of Bedford’s conjecture (see e.g. [22]):
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Conjecture 1.6. Let (Φn,n+1)n∈N be a family of automorphisms of Cq. Assume
that there exist 0 < ν ≤ µ < 1 and r > 0 such that

(1.7) ν|z| ≤ |Φn,n+1(z)| ≤ µ|z|, z ∈ rBq, n ∈ N.

Then the basin of attraction

{z ∈ Cq : lim
n→∞

Φn−1,n ◦ · · · ◦ Φ0,1 = 0}
is biholomorphic to Cq.

I want to thank Jasmin Raissy and Han Peters for our valuable discussions. I
also want to thank the referee for precious comments.

2. Main result

Let N denote the family of holomorphic mappings h : Bq → Cq such that h(0) =
0 and Re 〈h(z), z〉 > 0, for all z 6= 0.

Theorem 2.1. Let h(z, t) : Bq×R+ → Cq be a mapping such that z 7→ h(z, t) ∈
N for all t ∈ R+ and t 7→ h(z, t) is measurable on R+ for all z ∈ Bq. Assume that
h(z, t) = A(t)z + O(|z|2) and that the family of linear mappings (A(t))t≥0 satisfies:

a) m(A(t)) > 0 for all t ≥ 0 and
´∞
0

m(A(t)) dt = ∞,
b) t 7→ ‖A(t)‖ is locally bounded on R+,
c) there exists ` ∈ R+ such that

`m(A(t)) ≥ k(A(t)), t ≥ 0.

Then the Loewner PDE
∂ft(z)

∂t
= Dft(z)h(z, t), z ∈ Bq, a.e. t ≥ 0

admits a locally Lipschitz solution given by univalent mappings (ft : Bq → Cq). If
l < 2, then the range

⋃
t≥0 ft(B

q) of any such solution is biholomorphic to Cq. Any
other solution given by holomorphic mappings (gt : Bq → Cq) is of the form (Λ ◦ ft),
where Λ:

⋃
t≥0 ft(B

q) → Cq is holomorphic.

Proof. Notice that for all A ∈ L(Cq),

m(A) ≤ k(A) ≤ ‖A‖,
and thus k(t) and m(t) are also locally bounded on R+. By [14, Lemma 1.2] one has
for a.e. t ≥ 0

|h(z, t)| ≤ 4r

(1− r)2
‖A(t)‖, |z| ≤ r < 1,

hence −h(z, t) is a Herglotz vector field of order∞ on Bq. Let (ϕs,t) be the associated
evolution family of order ∞, that is the solution of the Loewner ODE

(2.1)

{
∂
∂t

ϕs,t(z) = −h(ϕs,t(z), t), z ∈ Bq, a.e. t ∈ [s,∞),

ϕs,s(z) = z, z ∈ Bq, s ≥ 0.

Recall that ϕs,t : Bq → Bq is an univalent mapping for all 0 ≤ s ≤ t and that
t 7→ ϕs,t(z) is locally Lipschitz continuous on [s,∞) uniformly on compact sets with
respect to z ∈ Bq.
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Fix s ≥ 0 and z ∈ Bq r {0}. Then for a.e. τ ≥ s,

∂

∂τ
|ϕs,τ (z)|2 = 2Re

〈
∂

∂τ
ϕs,τ (z), ϕs,τ (z)

〉
= −2Re 〈h(ϕs,τ (z), τ), ϕs,τ (z)〉.

Set C(r)
.
= 1+r

1−r
and c(r)

.
= 1−r

1+r
for all r ≥ 0. Gurganus proved [17] that for a.e. t ≥ 0,

Re 〈A(t)w, w〉c(|w|) ≤ Re 〈h(w, t), w〉 ≤ Re 〈A(t)w, w〉C(|w|), w ∈ Bq r {0}.
Since |ϕs,τ (z)| ≤ |z| one has

−2k(A(τ))C(|z|) ≤
∂
∂τ
|ϕs,τ (z)|2
|ϕs,τ (z)|2 ≤ −2m(A(τ))c(|z|), a.e. τ ≥ 0,

−2C(|z|)
ˆ t

s

k(A(τ)) dτ ≤
ˆ t

s

∂
∂τ
|ϕs,τ (z)|2
|ϕs,τ (z)|2 dτ ≤ −2c(|z|)

ˆ t

s

m(A(τ)) dτ, 0 ≤ s ≤ t,

(2.2) e−C(|z|) ´ t
s k(A(τ)) dτ ≤ |ϕs,t(z)|

|z| ≤ e−c(|z|) ´ t
s m(A(τ)) dτ , 0 ≤ s ≤ t.

Set for all 0 ≤ s ≤ t,

νs,t
.
= e−C(|z|) ´ t

s k(A(τ)) dτ , and µs,t
.
= e−c(|z|) ´ t

s m(A(τ)) dτ .

One has, thanks to assumption c),

(2.3) logµs,t
νs,t =

log νs,t

log µs,t

= C2(|z|)
´ t

s
k(A(τ)) dτ´ t

s
m(A(τ)) dτ

≤ C2(|z|)`, 0 ≤ s ≤ t.

Let n ∈ N and let un ∈ R+ be defined byˆ un

0

m(A(τ)) dτ = n.

Let now h ∈ N be the least integer strictly greater than `, and let r > 0 be such
that C2(r) < h/`. Set µ

.
= e−c(r) (notice that µ = µun,un+1 for all n ≥ 0) and

ν
.
= min{νun,un+1 : n ≥ 0}. By (2.2) and (2.3) one has that

ν|z| ≤ |ϕun,un+1(z)| ≤ µ|z|, z ∈ rBq, n ≥ 0.

and

(2.4) µh < ν.

The abstract basin of attraction or tail space Ω of the family (ϕun,un+1 : rBq →
rBq) is defined in [11] (see also [1]) as its topological inductive limit endowed with a
natural complex structure. Ω is the quotient of the set{

z ∈
∏
m≥n

rBq : n ∈ N, zm+1 = ϕum,um+1(zm), 0 ≤ n ≤ m

}
,

obtained identifying z and z′ if zm = z′m for m large enough, and the holomorphic
structure is induced by a family of open inclusions (ωn : rBq → Ω) defined as

ωn(z)
.
= (ϕun,um(z))m≥n, n ∈ N,

which are thus by definition biholomorphisms with their image and satisfy

(2.5) ωn(z) = ωm ◦ ϕun,um(z), 0 ≤ n ≤ m, z ∈ rBq.
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By [11, Theorem 2.2] there exists an univalent mapping Ψ: Ω → Cq. We claim
that, for all s ≥ 0, the sequence (Ψ ◦ωm ◦ϕs,um)m≥0 converges uniformly on compact
sets in Hol(Bq,Cq). Indeed by equation (2.2) and assumption a) one has that for all
s ≥ 0,

lim
m→∞

ϕs,um(z) = 0,

uniformly on compact sets. Thus, if 0 < v < 1, there exist m(v) ∈ N such that for
all j ≥ m(v), one has ϕs,uj

(vBq) ⊂ rBq. Let j, h be integers such that m(v) ≤ j ≤ h,
then by (2.5),

Ψ ◦ ωh ◦ ϕs,uh
(z) = Ψ ◦ ωj ◦ ϕs,uj

(z), z ∈ vBq.

Thus the sequence (Ψ ◦ ωm ◦ ϕs,um) is eventually constant in Hol(vBq,Cq).
Let ft : Bq → Cq the univalent mapping defined as

(2.6) ft(z)
.
= lim

m→+∞
Ψ ◦ ωm ◦ ϕt,um(z).

One easily verifies that

(2.7) fs(z) = ft ◦ ϕs,t(z), 0 ≤ s ≤ t, z ∈ Bq,

and that ⋃
t≥0

ft(B
q) = Ψ(Ω).

Notice that the abstract basin of attraction of the family (ϕun,un+1) is thus biholo-
morphic to the Loewner range of the family (ϕs,t) defined in [5]. This can be checked
directly since both objects are defined as direct limits.

By [5, Theorem 4.10] one has that (ft : Bq → Cq) is a Loewner chain of order∞,
that is

• fs(B
q) ⊂ ft(B

q) for all 0 ≤ s ≤ t,
• for any compact set K ⊂ Bq and for any T > 0 there exists a kK,T > 0
satisfying

(2.8) |ft(z)− fs(z)| ≤ kK,T (t− s), z ∈ K, 0 ≤ s ≤ t < T.

By [5, Theorem 5.2] one obtains finally
∂ft(z)

∂t
= Dft(z)h(z, t), z ∈ Bq, a.e. t ≥ 0.

Thus any univalent mapping Ψ: Ω → Cq gives rise to a univalent solution
(ft : Bq → Cq) of the Loewner PDE. Following [1, Remark A.4] we recall a way
to construct such a univalent mapping Ψ: Ω → Cq. Given any polynomial map
p : Cq → Cq of degree at most k with Dp(0) invertible there exists [12][29] an holo-
morphic automorphism Φ of Cq such that

Φ(z) = p(z) + O(|z|k+1).

We choose a sequence of automorphisms (Φn,n+1 : Cq → Cq) which is uniformly
bounded on a neighborhood of the origin and which satisfies

Φn,n+1(z) = ϕun,un+1(z) + O(|z|h), n ≥ 0,

where h ∈ N is as in (2.4). We denote the basin of attraction of the sequence (Φn,n+1)
by

A(Φn,n+1)
.
= {z ∈ Cq : lim

n→∞
Φn−1,n ◦ · · · ◦ Φ0,1 = 0}.
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It follows from [1, Theorem A.1] that there exists a biholomorphism

Ψ: Ω → A(Φn,n+1) ⊂ Cq.

If ` < 2, then h = 2 and, by [30, Theorem 4], one has that the basin of attraction
A(Φn,n+1) is biholomorphic to Cq.

By [5, Theorem 4.10] any solution (gt : Bq → Cq) of the Loewner PDE has to
satisfy gs = gt ◦ϕs,t for all 0 ≤ s ≤ t and thus [5, Theorem 4.7] yields that the family
(gt) is of the form (Λ ◦ ft), where Λ:

⋃
t≥0 ft(B

q) → Cq is holomorphic. ¤
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