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Abstract. We prove Harnack’s inequality for general solutions of elliptic equations

−divA(x, u,∇u) = B(x, u,∇u),

where A and B satisfy natural structural conditions with respect to a variable growth exponent
p(x). The proof is based on a modification of the Caccioppoli inequality, which enables us to use
existing versions of the Moser iteration.

1. Introduction

The purpose of this note is to give a proof for Harnack’s inequality
(1.1) ess sup

B(x,R)

u ≤ C(ess inf
B(x,R)

u + R)

for solutions of elliptic equation
(1.2) − divA(x, u,∇u) = B(x, u,∇u),

where A and B satisfy natural simple structural conditions with respect to a variable
growth exponent p(x); see Theorem 3.5 below. The novelty in our argumentation
lies in the choice of test functions. We are able to prove under modified assumptions
on the test functions exactly the same Caccioppoli estimate as in the case of p(x)-
Laplacian

− div
(
p(x)|∇u(x)|p(x)−2∇u(x)

)
= 0.

The point is that the Moser iteration technique used in [8] remains valid under our
consideration.

The study of Harnack’s inequality and Moser iteration for solutions of equations
of the type (1.2) (for the constant exponent) goes back to the famous paper [15] of
Serrin, in which he extended the ideas of Moser in [12] and [13]. In the case of the
variable exponent p-Laplacian, Harnack’s inequality was first proved in the paper [1]
by Alkhutov. In his paper the constant corresponding to C in (1.1) depends also on
the L∞(B(x, 4R))-norm of the function. Later, Harjulehto, Kinnunen and Lukkari
[8] were able to improve the argumentation so that their constant C depends on the
Lq(B(x, 4R))-norm of u, 0 < q < ∞, instead of the L∞(B(x, 4R))-norm. Here the
exponent q can be made arbitrarily small by choosing R small enough in (1.1).

In the case of general equations of the type (1.2) Harnack’s inequality has been
studied only in certain special cases, see [16]. Recently, the weak Harnack estimate for
supremum was proved in [7] under our assumptions. However, the infimum estimate,
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which is more delicate both in Moser’s and De Giorgi’s methods, seems to be missing
in the literature. The contribution of this note is to verify the infimum Harnack
estimate for our solutions by using the trick of modified test functions.

The local boundedness and the local Hölder continuity of solutions were studied
in [4]. This is crucial for us since the combination of our approach and results of [4]
give Harnack’s inequality for the class of solutions studied in [11], see Remark 3.6 (b).
Our result is optimal in the sense that even all known proofs for Harnack’s inequality
of the p(x)-Laplace equation end up with the additional term R in (1.1), see e.g. [8],
[9] and Chapter 13 of [3]. Notice also that the additional R-term appears for the
non-homogenous equations even in the case of constant exponent p, see [15] and [6],
Chapter 7.5. Hence our argument is reasonable even for the constant exponent case.

2. Caccioppoli inequality

Throughout, let Ω ⊂ Rn be a bounded open set and let p : Ω →]1,∞[ be a
logarithmically Hölder continuous function, i.e. p satisfies

|p(x)− p(y)| ≤ C

− log(|x− y|)
with some constant C > 0 for all x, y ∈ Ω such that |x−y| ≤ 1/2. Logarithmic Hölder
continuity is the standard assumption for the regularity methods of p(x)-Laplacian
type equations; see [2] and [14]. In fact, this continuity assumption is not necessary to
prove the Caccioppoli inequality, but we do need it to complete the Moser iteration.

Additionally, we denote p+
E = supE p and p−E = infE p for any measurable set

E ⊂ Ω, and assume that
1 < p−Ω ≤ p+

Ω < ∞.

For a complete account of the variable exponent Sobolev spaces, see [3]. Many of the
basic properties were originally proved in [5] and [10].

Let A : R×R×Rn → Rn and B : R×R×Rn → R be Caratheodory functions.
This means that the functions x → A(x, u, ξ) and x → B(x, u, ξ) are measurable for
all (u, ξ) ∈ R×Rn, and the functions (u, ξ) → A(x, u, ξ) and (u, ξ) → B(x, u, ξ) are
continuous for almost all x ∈ Ω. We assume that there are positive constants ai, bi,
ci for i = 1, 2 so that

|A(x, u, ξ)| ≤ a1|ξ|p(x)−1 + a2,

|B(x, u, ξ)| ≤ b1|ξ|p(x)−1 + b2,(2.1)

A(x, u, ξ) · ξ ≥ c1|ξ|p(x) − c2,

and call a Sobolev function u ∈ W
1,p(·)
loc (Ω) a solution of

− divA(x, u,∇u) = B(x, u,∇u)(2.2)
in Ω if ˆ

Ω

A(x, u,∇u) · ∇ϕdx =

ˆ

Ω

B(x, u,∇u)ϕdx

for all test functions ϕ ∈ W 1,p(·)(Ω) with a compact support in Ω. Similarly, we call
u ∈ W

1,p(·)
loc (Ω) a supersolution of (2.2) in Ω ifˆ

Ω

A(x, u,∇u) · ∇ϕdx ≥
ˆ

Ω

B(x, u,∇u)ϕdx(2.3)
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for all non-negative ϕ ∈ W 1,p(·)(Ω) with a compact support in Ω, and a subsolution
of (2.2) in Ω if the reverse inequality for (2.3) applies.

The following Caccioppoli estimate is the key result of this paper; it corresponds
to Lemma 3.2 of [8].

2.4. Lemma. Let u > 0 be a supersolution of (2.2) in Ω, γ0 < 0, and let η be a
compactly supported Lipschitz-function η in Ω with the properties 0 ≤ η ≤ M and
η ≤ M |∇η| for some constant M ≥ 1. Then for every γ < γ0 and measurable E ⊂ Ω,
we have

ˆ

E

|∇u|p−Eηp+
spt ηuγ−1 dx ≤ C

ˆ

Ω

ηp+
spt ηuγ−1 + |u|γ+p(x)−1|∇η|p(x) dx.

Here C depends on γ0, p, M , and all six structure constants in (2.1).

Proof. For brevity, we write p+ and p− for p+
spt η and p−spt η, respectively. Let us

take ϕ = ηp+
uγ as the test function. We plug

∇ϕ = γηp+

uγ−1∇u + p+uγηp+−1∇η

into the inequality

0 ≤
ˆ

Ω

A(x, u,∇u) · ∇ϕdx−
ˆ

Ω

B(x, u,∇u)ϕdx

and use the structure assumptions (2.1). Since γ < 0, we obtain
ˆ

Ω

(c1|∇u|p(x) − c2)|γ|ηp+

uγ−1 dx ≤
ˆ

Ω

|γ|ηp+

uγ−1A(x, u,∇u) · ∇u dx

≤
ˆ

Ω

p+uγηp+−1A(x, u,∇u) · ∇η dx +

ˆ

Ω

|B(x, u,∇u)ϕ| dx.

Moving the c2-term to the right-hand side and using the structure conditions again,
we see that

ˆ

Ω

c1|γ||∇u|p(x)ηp+

uγ−1 dx

≤
ˆ

Ω

c2|γ|ηp+

uγ−1 dx +

ˆ

Ω

p+(a1|∇u|p(x)−1 + a2)u
γηp+−1|∇η| dx

+

ˆ

Ω

(
b1|∇u|p(x)−1 + b2

)
ηp+

uγ dx

≤ C|γ|
ˆ

Ω

ηp+

uγ−1 dx + C

ˆ

Ω

(|∇u|p(x)−1 + 1)uγηp+−1|∇η| dx

+ C

ˆ

Ω

(|∇u|p(x)−1 + 1
)
ηp+

uγ dx

for a constant C, which depends only on p+, ai, bi and ci for i = 1, 2. Next we use
Young’s inequality for the last two integrals on the right-hand side. To estimate the
latter integral, we denote z = η + |∇η|, and write the trivial estimate

ˆ

Ω

(|∇u|p(x)−1 + 1
)
ηp+

uγ dx ≤ C

ˆ

Ω

zuγηp+−1 + z|∇u|p(x)−1uγηp+−1 dx.
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The first integrand on the right-hand side is estimated as

zuγηp+−1 = (zu(γ+p(x)−1)/p(x)η
p+− p+

p′(x)
−1

)(u(γ−1)/p′(x)ηp+/p′(x))

≤ Czp(x)uγ+p(x)−1ηp+−p(x) +
1

2
ηp+

uγ−1

by Young’s inequality. Similarly, we obtain

z|∇u|p(x)−1uγηp+−1 ≤ Czp(x)uγ+p(x)−1ηp+−p(x) +
1

2
|∇u|p(x)ηp+

uγ−1.

The integral
´
Ω

(|∇u|p(x)−1 + 1
)
uγηp+−1|∇η| dx is estimated in a similar fashion.

Consequently, by combining similar terms, we end up with the inequality

|γ|
ˆ

Ω

|∇u|p(x)ηp+

uγ−1 dx

≤ C|γ|
ˆ

Ω

ηp+

uγ−1 dx + C

ˆ

Ω

(η + |∇η|)p(x)|u|γ+p(x)−1ηp+−p(x) dx.

By the assumptions η + |∇η| ≤ (M + 1)|∇η| and |γ| ≥ |γ0| > 0 we arrive at the
estimateˆ

Ω

|∇u|p(x)ηp+

uγ−1 dx ≤ C

ˆ

Ω

ηp+

uγ−1 dx +
C

|γ0|
ˆ

Ω

|u|γ+p(x)−1|∇η|p(x) dx.(2.5)

By [8, Lemma 3.1], we have
ˆ

Ω

|∇u|p−ηp+

uγ−1 dx−
ˆ

Ω

ηp+

uγ−1 dx ≤
ˆ

Ω

|∇u|p(x)ηp+

uγ−1 dx,(2.6)

and the result follows by combining (2.5) with (2.6). ¤

3. Weak Harnack inequalities

Our Caccioppoli estimate can be adapted to the Moser iteration the same way
as in [8]. We state here the required steps and point out the modifications in the
proofs.

Throughout this section, let 0 < R ≤ 1 be so small that B4R = B(x0, 4R) is
contained in Ω. For brevity, we write

Φ(f, q, Br) =

(
−
ˆ

Br

f q dx

)1/q

for a positive function f , an exponent q ∈ R, and an open ball Br = B(x0, r).

3.1. Lemma. Let u be a non-negative supersolution of (2.2) in B4R, and let
R ≤ ρ < r ≤ 3R, s > p+

B4R
− p−B4R

. Then

Φ(u + R, qβ,Br) ≤ C1/|β|(1 + |β|)p+
B4R

/|β|
(

r

r − ρ

)p+
B4R

/|β|
Φ

(
u + R,

βn

n− 1
, Bρ

)

holds for every β < 0, 1 < q < n/(n−1). Here C depends on n, p, the Lq′s(B4R)-norm
of u, and all six structure constants of (2.1).
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Proof. We construct the test function η as a sum η = ϕ+ψ, where ϕ is a Lipschitz
function such that ϕ = 1 in Bρ, ϕ vanishes outside Br, |∇ϕ| = 1

r−ρ
in Br \ Bρ, and

ψ is defined by

ψ(x) =

{
d(x, ∂Bρ) for x ∈ Bρ,

0 for x /∈ Bρ.

Then η vanishes outside Br and we have η ≤ 4 in Ω since R ≤ 1. Moreover,
r

R(r−ρ)
≥ 1

2
, and therefore

|∇η| ≤ 2r

R(r − ρ)
.

Since 1 ≤ η ≤ 4 in Bρ, we easily see that η + |∇η| ≤ 9|∇η|.
The rest of the proof is identical to the proof of Lemma 3.5 in [8]. We use our test

function η together with Lemma 2.4. The fact that we have the condition 1 ≤ η ≤ 4
instead of η = 1 in Bρ is irrelevant. ¤

3.2. Lemma. Let u be a non-negative supersolution of (2.2) in B4R, and let
s > p+

B4R
− p−B4R

. Then there exist constants q0 > 0 and C depending on n, p and the
Ls(B4R)-norm of u such that

Φ(u + R, q0, B3R) ≤ CΦ(u + R,−q0, B3R).

Proof. Let B2r ⊂ B4R. We choose η as in the proof of Lemma 3.1, replacing ρ
and r with r and 2r, respectively. Then we have η ≥ 1 in Br and |∇η| ≤ C/r in B2r,
since r ≤ 2. Taking E = Br and γ = 1− p−Br

in Lemma 2.4, we have

−
ˆ

Br

|∇ log v|p−Br dx ≤ C

(
−
ˆ

B2r

v−p−Br +−
ˆ

B2r

vp(x)−p−Br r−p(x) dx

)
.

The rest of the proof is identical to that of Lemma 3.6 in [8]. ¤
The following weak Harnack inequality is the main result of this note. The proof

follows from lemmas 3.1 and 3.2 as in [8].

3.3. Theorem. Let u be a non-negative supersolution of (2.2) in B4R, 1 < q <
n/(n− 1), and s > p+

B4R
− p−B4R

. Then
(
−
ˆ

B2R

uq0 dx

)1/q0

≤ C

(
ess inf
x∈BR

u(x) + R

)
,

where C depends on n, p, q and the Lq′s(B4R)-norm of u, and all six structure
constants of (2.1).

For the Harnack supremum estimate we adapt Theorem 1.2 of [7].

3.4. Lemma. Let u be a non-negative subsolution of (2.2) in B4R and let s >
p+

B4R
− p−B4R

. Then

ess sup
x∈BR

u(x) ≤ C

(
−
ˆ

B2R

ut dx

)1/t

+ R

for every t > 0, where C depends on n, p, b1, b2, t, and the Lns(B4R)-norm of u.
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3.5. Theorem. (Harnack’s inequality) Let u be a non-negative solution of (2.2)
in Ω, and let B4R ⊂ Ω, 1 < q < n/(n − 1), and s > p+

B4R
− p−B4R

with 0 < R ≤ 1.
Then

ess sup
x∈BR

u(x) ≤ C

(
ess inf
x∈BR

u(x) + R

)
,

where C depends on n, p, q and the Lns(B4R)-norm of u, and all six structure
constants of (2.1).

3.6. Remark. (a) Since our exponent p is logarithmically Hölder continuous,
we may choose R so small that ns ≤ p−Ω. Hence, in the local sense, the dependence
of C on u is similar to the variable exponent p-Laplacian case studied in [7].

(b) In [11], Lukkari considers the boundary continuity of solutions under the
structure conditions

|A(x, u, ξ)| ≤ a1|ξ|p(x)−1 + a2|u|p(x)−1 + a3,

|B(x, u, ξ)| ≤ b1|ξ|p(x)−1 + b2|u|p(x)−1 + b3,

A(x, u, ξ) · ξ ≥ c1|ξ|p(x) − c2|u|p(x) − c3,

where ai, bi, ci for i = 1, 2, 3 are positive constants and p is logarithmically Hölder
continuous. These structure conditions are included in the more general approach
of [4] and hence by [4], Theorem 4.1, the solutions are locally bounded whenever p
is log-Hölder continuous. Consequently our structure conditions (2.1) are fulfilled in
any open set Ω′ b Ω for the solutions of [11] with constants a2, b2 and c2 depending
on ‖u‖L∞(Ω′). Hence the claim of Theorem 3.5 holds in Ω′ for solutions of [11] with
a constant C depending on ‖u‖L∞(Ω′) instead of the Lq′s(B4R)-norm of u.
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