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Abstract. We study projections and injections between projective tensor products spaces
or spaces of polynomials and we show that the example of a polynomial constructed in [4], that
is neither p-dominated nor compact, can be identified with the projection map of the symmetric
tensor product onto the space. Also we give a characterization of the weak and quasi approximation
properties on symmetric tensor products.

Since Ryan [17] proved that the projective symmetric k-fold tensor product of a
Banach space E is a predual of the space of continuous k-homogeneous polynomials
on E; the relationship between both spaces has been deeply studied and shown to
be a powerful tool in infinite dimensional holomorphy (see [10, 9, 6]). This dual-
ity between polynomials and linear operators on symmetric tensor product spaces
is generalized to the vector-valued case by means of the process known as lineariza-
tion, that arose first in [17]. The linearization process establishes an isomorphism
from the space of vector valued continuous k-homogeneous polynomials P(kE; F ) and
the space of continuous linear operators defined on the projective symmetric tensor
product ⊗̂k,s

π E into F . Aron and Schottenloher [1] proved that the space P(kE)
of continuous k-homogeneous polynomials defined on a Banach space E is comple-
mented in P(nE) whenever k < n. Later, Blasco [3] got the vector valued case by
proving that the completed projective symmetric k-fold tensor product ⊗̂k,s

π E is a
complemented subspace of ⊗̂n,s

π E for k < n.
In this note we undertake a detailed study of the behavior of the main distin-

guished polynomials and linear mappings involved in the linearization process and
their interplay when the space of linear operators is identified with a complemented
subspace of homogeneous polynomials. We show two applications. On the one hand
we apply our study to the weak approximation property and the quasi approximation
property on projective symmetric tensor products. The results we obtain are related
to the results of [2], especially [2, Theorem 4.2]. On the other hand, we show that
the example of a polynomial Pγ constructed in [4], that is neither p-dominated nor
compact, and weakly compact only when the underlying space is reflexive, can be
identified with the projection map of the symmetric tensor product onto the space.
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That allows us to understand why such a polynomial plays the role of the identity
operator, and recover easily the properties concerning compactness of Pγ.

The paper is organized as follows. The first section is devoted to fix the nota-
tion and the basic procedures described in [1] and [3], to get complementation of
the projective symmetric n-fold tensor product ⊗n

s,πE into ⊗m
s,πE, and the space of

continuous n-homogeneous polynomials P(nE; F ) into P(nE; F ), whenever n < m
and E,F are Banach spaces. The projections considered are not canonical as they
depend on a suitable continuous functional γ in the topological dual E∗ of E. In
Section 2 we prove, among other related results, that the injection j⊗,k from E into
⊗k

s,πE is the projection of the diagonal k-homogeneous polynomial δk : E → ⊗k
s,πE

given by δk(x) = x⊗ · · · ⊗ x. We also give the explicit description of the projection
of an arbitrary continuous homogeneous polynomial in terms of its linearization. In
Section 3 we apply our techniques to the study of the weak (quasi) approximation
property on the completed projective symmetric tensor product ⊗̂k

s,πE. We prove
that ⊗̂k

s,πE has the weak (quasi) approximation property if and only if any com-
pact k-homogeneous polynomial P : E → ⊗̂k

s,πE can be approximated uniformly on
compact (bounded respectively) sets by finite rank polynomials. In Section 4 we
prove that the projection π⊗,k+1 : ⊗k+1

s,π E → E is the linearization of the polynomial
Pγ(z) := γ(x)kx, x ∈ E, considered in [4].

1. Notation and basic definitions

From now on, E and F will denote (real or complex) Banach spaces. L(E; F )
denotes the space of all continuous linear maps from E into F , endowed with the
usual norm ‖T‖ = sup‖x‖≤1 ‖T (x)‖, T ∈ L(E; F ). The identity map on E is denoted
by IdE.

Along the paper, k will denote a positive integer. A map P : E −→ F is said
to be a continuous k-homogeneous polynomial if there is a continuous k-linear map
A : E × · · · × E −→ F such that P (x) = A(x, . . . , x). Among all the continuous k-
linear maps that yield the same polynomial P , there is only one which is symmetric
and is denoted by

∨
P .

The set P(kE; F ) of all continuous k-homogeneous polynomials from E into F
form a Banach space when endowed with the norm defined as

‖P‖ = sup
‖x‖≤1

‖P (x)‖,

for any P ∈ P(kE; F ). We recall that a k-homogeneous polynomial P : E → F is
said to be compact (weakly compact) if P maps the closed unit ball BE of E onto a
relatively compact (respectively weakly compact) subset of F . The subspace of all
compact k-homogeneous polynomials from E to F is denoted by PK(kE; F ). When
k = 1, PK(1E; F ) is denoted by K(E; F ), the space of all compact operators from E
to F . For the theory of continuous homogeneous polynomials we refer to [9].

Let ⊗k
s,πE denote the projective symmetric k-fold tensor product of E and ⊗̂k

s,πE

its completion. Given P ∈ P(kE; F ), its linearization PL is given by PL(x ⊗ · · · ⊗
x) = P (x) and extended by linearity and continuity. That is, if we consider the k-
homogeneous polynomial δk : E → ⊗̂k

s,πE defined by δk(x) = x⊗· · ·⊗x =: ⊗kx, then
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PL is the unique continuous linear operator from ⊗̂k
s,πE to F such that P = PL ◦ δk.

Notice that δ1 is the identity on E.
Blasco [3] proved that P(kE; F ) is a complemented subspace of P(mE; F ), for

any k < m. The scalar case was proved first by Aron and Schottenloher [1]. Let
us outline the vector valued analogue of the projection defined there. Following the
ideas in [1], choose e ∈ E and γ ∈ E∗ such that ‖e‖ = γ(e) = ‖γ‖ = 1. Define
jk,F : P(kE; F ) → P(k+1E; F ) by

jk,F (Q)(x) = γ(x)Q(x),

for each Q ∈ P(kE; F ) and x ∈ E. It is clear that jk,F is injective. Indeed, if Q
is a non zero polynomial which is continuous, we can find an open ball B where Q
does not take the value 0; as ‖γ‖ = 1, γ cannot be identically zero on B. Define
πk,F : P(k+1E; F ) → P(k+1E; F ) by

πk,F (P )(x) = P (x)− P (x− γ(x)e),

for each P ∈ P(k+1E; F ) and x ∈ E. An easy calculation shows that π2
k,F = πk,F and

as in [1] both πk,F and jk,F have the same image. Indeed,

(jk,F )−1 ◦ πk,F ◦ jk,F = IdP(kE;F )

and if P ∈ P(k+1E; F ) then πk,F (P ) = jk,F (QP ), where QP is given by

(1) QP (x) =
k+1∑
j=1

(
k + 1

j

)
(−1)j+1γ(x)j−1

∨
P (e, j. . ., e, x, k+1−j. . . , x),

for all x ∈ E. Then, πk,F (P(k+1E; F )) is isomorphic to P(kE; F ). Hence, the space
P(kE; F ) is isomorphic to the complemented subspace jk,F (P(kE; F )) of P(k+1E; F ),
whose projection is πk,F .

Let us define

qk,F := (jk,F )−1 ◦ πk,F : P(k+1E; F ) → P(kE; F ).

Following [3], for each positive integer k there is an isomorphism into, that we
denote by j⊗k : ⊗k

s,π E → ⊗k+1
s,π E such that

(2) j⊗k (δk(x))γ(x) = δk+1(x)− δk+1(x− γ(x)e)

for all x ∈ E. Moreover, the linear operator π⊗k : ⊗k+1
s,π E → ⊗k

s,πE given by
π⊗k (⊗k+1x) = γ(x)⊗k x is a projection onto. It is proved in [3] that

π⊗k ◦ j⊗k = Id⊗k
s,πE

is the identity map on ⊗k
s,πE.

Finally let us define π⊗,m+1 : ⊗m+1
s,π E → E by π⊗,m+1 = π⊗1 ◦ · · · ◦ π⊗m.

2. Projections of polynomials

We define j⊗,k : E → ⊗k
s,πE given by j⊗,k := j⊗k−1 ◦ · · · ◦ j⊗1 . So defined, the

map j⊗,k is an isomorphism into. Let jk
F : L(E; F ) → P(kE; F ) be the injection

defined by jk
F := jk−1,F ◦ · · · ◦ j1,F , and let qk

F : P(kE; F ) → L(E; F ) be given by
qk
F := q1,F ◦ · · · ◦ qk−1,F .
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For short, we will denote Ek := ⊗k
s,πE whenever it appears as a subindex. For

instance,

πk−1,Ek+1
= πk−1,⊗k+1

s,π E : P(kE;⊗k+1
s,π E) → P(kE;⊗k+1

s,π E),

qk
Ek

= qk
⊗k

s,πE : P(kE;⊗k
s,πE) → L(E;⊗k

s,πE)

and
jk
Ek

= jk
⊗k

s,πE : L(E;⊗k
s,πE) → P(kE;⊗k

s,πE).

Lemma 1. For each positive integer k, πk−1,Ek+1
(j⊗k ◦ δk) = j⊗k ◦ (πk−1,Ek

(δk)).

Proof. Notice that j⊗k ◦ δk ∈ P(kE;⊗k+1
s,π E). Let x ∈ E. Then

πk−1,Ek+1
(j⊗k ◦ δk)(x) = j⊗k (δk(x))− j⊗k (δk(x− γ(x)e))

= j⊗k (δk(x)− δk(x− γ(x)e)) = j⊗k (πk−1,Ek
(δk)(x)). ¤

Proposition 2. Let k be a positive integer, k ≥ 2. Then
(i) πk−1,Ek

(δk) = jk−1,Ek
(j⊗k−1 ◦ δk−1), and

(ii) qk−1,Ek
(δk) = j⊗k−1 ◦ δk−1.

Proof. (i) For each x ∈ E, using (2) in the second equality, we get

πk−1,Ek
(δk)(x) = δk(x)− δk(x− γ(x)e) = j⊗k−1(δk−1(x))γ(x)

= jk−1,Ek
(j⊗k−1 ◦ δk−1)(x).

(ii) Using (i) in the second equality we get

qk−1,Ek
(δk) = (jk−1,Ek)

−1 ◦ πk−1,Ek
(δk)

= (jk−1,Ek)
−1(jk−1,Ek(j

⊗
k−1 ◦ δk−1)) = j⊗k−1 ◦ δk−1. ¤

Theorem 3. For each positive integer k, qk
Ek

(δk) = j⊗,k.

Proof. Using Proposition 2(ii) in the second equality we get

qk
Ek

(δk) = q1,Ek
◦ · · · ◦ qk−1,Ek

(δk) = q1,Ek
◦ · · · ◦ qk−2,Ek

(j⊗k−1 ◦ δk−1)

= q1,Ek
◦ · · · ◦ (jk−2,Ek

)−1 ◦ πk−2,Ek
(j⊗k−1 ◦ δk−1).

So, from Lemma 1 it follows that

qk
Ek

(δk) = q1,Ek
◦ · · · ◦ (jk−2,Ek

)−1(j⊗k−1 ◦ (πk−2,Ek−1
(δk−1)))

= q1,Ek
◦ · · · ◦ (jk−2,Ek

)−1(x 7→ j⊗k−1(πk−2,Ek−1
(δk−1)(x)))

= q1,Ek
◦ · · · ◦ (jk−2,Ek

)−1(x 7→ j⊗k−1(j
⊗
k−2(δk−2(x))γ(x)))

= q1,Ek
◦ · · · ◦ (jk−2,Ek

)−1(x 7→ j⊗k−1(j
⊗
k−2(δk−2(x)))γ(x))

= q1,Ek
◦ · · · ◦ (jk−2,Ek

)−1(jk−2,Ek
(j⊗k−1 ◦ j⊗k−2 ◦ δk−2)

= q1,Ek
◦ · · · ◦ qk−3,Ek

(j⊗k−1 ◦ j⊗k−2 ◦ δk−2) = · · ·
= j⊗k−1 ◦ · · · ◦ j⊗1 ◦ δ1 = j⊗k−1 ◦ · · · ◦ j⊗1 = j⊗,k. ¤

So far we have studied how projections and injections between projective tensor
products spaces or spaces of polynomials affect to the polynomial δk. We are now in
conditions to study general k-homogeneous polynomials P .
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Theorem 4. Let k be a positive integer, k ≥ 2, and let P ∈ P(kE; F ). Then

πk−1,F (P ) = PL ◦ (πk−1,Ek
(δk)) = PL ◦ (jk−1,Ek

(j⊗k−1 ◦ δk−1)) = jk,F (PL ◦ (qk−1,Ek
(δk))).

Proof. Let x ∈ E. Then

πk−1,F (P )(x) = P (x)− P (x− γ(x)e) = PL(δk(x)− δk(x− γ(x)e))

= PL(πk−1,Ek
(δk)(x)) = PL ◦ (jk−1,Ek

(j⊗k−1 ◦ δk−1))(x).

On the other hand, using Proposition 2(ii) in the second equality and (2) in the
third one,

jk,F (PL ◦ (qk−1,Ek
(δk)))(x) = PL ◦ (qk−1,Ek

(δk))(x)γ(x) = PL(j⊗k−1 ◦ δk−1(x)γ(x))

= PL(δk(x)− δk(x− γ(x)e))

= P (x)− P (x− γ(x)e) = πk−1,F (P )(x). ¤

3. The weak approximation property and the quasi
approximation property for the space ⊗̂k

s,πE

We say that E has the weak approximation property (in short, WAP) if given a
compact operator T ∈ L(E; E), a compact set K ⊂ E and ε > 0, there is a finite
rank operator Tf ∈ L(E; E) such that supx∈K ‖ Tx − Tfx ‖≤ ε. We say that E
has the quasi approximation property (in short, QAP) if given a compact operator
T ∈ L(E; E) and ε > 0, there is a finite rank operator Tf ∈ L(E; E) such that
‖ T − Tf ‖≤ ε. Lindenstrauss and Tzafriri [13, p. 37, Problem 1.e.9] posed the
following problem that remains open:

Does the QAP imply the approximation property on Banach spaces?
Trying to get a solution to that problem, Choi and Kim [7] introduced the weak
approximation property and characterized separable reflexive Banach spaces having
the QAP in terms of a stronger condition than the WAP. For examples of Banach
spaces having the WAP and the QAP and failing to have the WAP and the QAP
see [7, Examples 2.1 and 2.3]. Obviously, the QAP implies the WAP but we know
no examples of Banach spaces which have the WAP but fails to have the QAP.
For further study and relations between the WAP , the QAP and other variants of
the approximation property we refer to [8, 11, 12]. In this section we will give a
characterization of the spaces ⊗̂k

s,πE having the WAP and the QAP.
Before giving the results about the WAP and the QAP, let us give a lemma

concerning the projection of polynomials, which we use in the subsequent proofs.
For each y ∈ F and P ∈ P(kE) define (P ⊗ y)(x) = P (x)y, x ∈ E. So defined,
P ⊗ y ∈ P(kE; F ) and its image is contained in the 1-dimensional subspace of F
generated by y. A polynomial P ∈ P(kE; F ) is said to be of finite rank if there are
n ∈ N, P1, . . . , Pn ∈ P(kE) and y1, . . . , yn ∈ F such that P =

∑n
j=1 Pj ⊗ yj. Let

PF(kE; F ) denote the space of all finite rank k-homogeneous polynomials from E to
F . When k = 1, PF(1E; F ) is simply denoted by F(E; F ), the space of all finite rank
operators from E to F .

Lemma 5. For each k ∈ N,
(i) jk,F (PF(kE; F )) ⊂ PF(k+1E; F ),
(ii) πk,F (PF(k+1E; F )) ⊂ PF(k+1E; F ),
(iii) qk,F (PF(k+1E; F )) ⊂ PF(kE; F ), and
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(iv) qk
F (PF(kE; F )) ⊂ F(E; F ).

Proof. (i) Let Q ∈ PF(kE; F ). Then we can write Q =
∑n

j=1 Qj ⊗ yj for some
n ∈ N, Q1, . . . , Qn ∈ P(kE) and y1, . . . , yn ∈ F . Hence, for all x ∈ E

jk,F (Q)(x) =
n∑

j=1

jk,F (Qj ⊗ yj)(x) =
n∑

j=1

γ(x)Qj(x)yj =
n∑

j=1

jk,C(Qj)(x)yj.

Then jk,F (Q) belongs to PF(k+1E; F ).
(ii) If P =

∑l
j=1 Pj ⊗ zj ∈ PF(k+1E; F ), then

πk,F (Pj ⊗ zj)(x) = Pj(x)zj − Pj(x− γ(x)e)zj = πk,C(Pj)(x)zj = (πk,C(Pj)⊗ zj)(x).

Hence, πk,F (P ) =
∑l

j=1 πk,C(Pj)⊗ zj ∈ PF(k+1E; F ).
(iii) Recall that qk,F = (jk,F )−1 ◦ πk,F . Part (iii) follows from (ii) and the fact

that if P ∈ PF(k+1E; F ) then QP defined as in (1) belongs to PF(kE; F ). Indeed, if
we write P =

∑n
i=1 Pi ⊗ yi, for some P1, . . . , Pn ∈ P(k+1E) and y1, . . . , yn ∈ F , then

πk,F (Pi ⊗ yi) = πk,C(Pi)⊗ yi = jk,C(Qπk,C(Pi))⊗ yi = jk,F (Qπk,C(Pi) ⊗ yi).

Hence, for every i = 1, . . . , n

QP⊗yi
= Qπk,C(P ) ⊗ yi.

(iv) follows from (iii). ¤

Lemma 6. Let k be a positive integer, k ≥ 2. If T ∈ K(E; F ) then jk
F (T ) ∈

PK(kE; F ).

Proof. Define the k-homogeneous polynomial Pγ : E → E given by Pγ(x) :=
γ(x)k−1x. Then

(3) jk
F (T ) = jk−1,F ◦ · · · ◦ j1,F (T ) = γk−1 · T = T ◦ Pγ.

Since Pγ is a continuous k-homogeneous polynomial, it maps bounded sets into
bounded sets. The compactness of T and (3) yields the result. ¤

The polynomial Pγ will be studied in Section 4. Note that the result is valid if
we replace T with a compact k-homogeneous polynomial and jk

F with jk,F .
In the next proposition we give a characterization of the WAP on symmetric

projective tensor products. Let τ0 denote the topology on P(kE; F ) of uniform con-
vergence on compact subsets of E.

Proposition 7. Let E be a Banach space. Consider the following conditions:

(1) ⊗̂k
s,πE has the WAP.

(2) PK(kE; ⊗̂k
s,πE) = PF(kE; ⊗̂k

s,πE)
τ0

.

(3) K(E; ⊗̂k
s,πE) = F(E; ⊗̂k

s,πE)
τ0

.
Then 1 and 2 are equivalent and they imply 3.

Proof. 1 ⇒ 2: Let P ∈ PK(kE; ⊗̂k
s,πE), K compact in E and ε > 0. Since

PL ∈ K(⊗̂k
s,πE; ⊗̂k

s,πE) due to [17] and δk(K) is compact in ⊗̂k
s,πE, there exists

T ∈ F(⊗̂k
s,πE; ⊗̂k

s,πE) such that ‖PL − T‖δk(K) < ε. Let Q ∈ P(kE; ⊗̂k
s,πE) whose
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linearization is T . Since T has finite rank then Q also has finite rank [16]. If x ∈ K,
then

π(P (x)−Q(x)) = π(PL(δk(x))− T (δk(x))) ≤ ‖PL − T‖δk(K) < ε,

and this proves 2.
2 ⇒ 3: For short, let j := jk

⊗̂k
s,πE

and q := qk

⊗̂k
s,πE

. Let T ∈ K(E; ⊗̂k
s,πE), K a

compact subset of E and ε > 0. By Lemma 6, j(T ) ∈ PK(kE; ⊗̂k
s,πE). Then from

2 applied to j(T ), there exists P ∈ PF(kE; ⊗̂k
s,πE) such that ‖j(T ) − P‖K < ε. By

Lemma 5, q(P ) ∈ F(E; ⊗̂k
s,πE). Since

‖T − q(P )‖K = ‖q ◦ j(T )− q(P )‖K ≤ ‖q‖‖j(T )− P‖K < ε‖q‖,
part 3 follows.

2 ⇒ 1: Take T ∈ K(⊗̂k
s,πE; ⊗̂k

s,πE) and let K be a compact subset of ⊗̂k
s,πE and

ε > 0. As in the projective tensor product, the compact set K is contained in the
closed convex hull Γ(δk(K1)) of δk(K1) for some compact K1 ⊂ E. Let P := T ◦ δk ∈
P(kE; ⊗̂k

s,πE). Since PL = T is compact, then P is also compact [17]. By 2 there
exists Q ∈ PF(kE; ⊗̂k

s,πE) such that ‖P − Q‖K1 < ε. Then QL ∈ F(⊗̂k
s,πE; ⊗̂k

s,πE)
and

‖T −QL‖K ≤ ‖T −QL‖Γ(δ(K1)) = ‖T −QL‖δ(K1) = ‖P −Q‖K1 < ε,

and 1 is proved. ¤
A similar characterization can be proved for the QAP. We include the proof for

the sake of completeness.

Proposition 8. Let E be a Banach space. Consider the following conditions:
(1) ⊗̂k

s,πE has the QAP

(2) PK(kE; ⊗̂k
s,πE) = PF(kE; ⊗̂k

s,πE)
‖.‖

(3) K(E; ⊗̂k
s,πE) = F(E; ⊗̂k

s,πE)
‖.‖

Then 1 and 2 are equivalent and they imply 3.

Proof. 1 ⇒ 2: Let P ∈ PK(kE; ⊗̂k
s,πE) and ε > 0. Since PL ∈ K(⊗̂k

s,πE; ⊗̂k
s,πE)

and Γ{δ(x) : ‖x‖ < 1} is the closed unit ball of ⊗̂k
s,πE (see for example [16, Re-

mark 2.5(c)]), there exists T ∈ F(⊗̂k
s,πE; ⊗̂k

s,πE) such that ‖PL − T‖Γ(δk(UE)) < ε,
where UE denotes the open unit ball of E. Let Q ∈ P(kE; ⊗̂k

s,πE) whose lineariza-
tion is T . Since T has finite rank then Q also has finite rank [16]. If x ∈ UE then

π(P (x)−Q(x)) = π(PL(δk(x))− T (δk(x))) ≤ ‖PL − T‖δk(UE)

≤ ‖PL − T‖Γ(δk(UE)) < ε,

hence, by continuity, for any x ∈ BE we get that π(P (x) − Q(x)) ≤ ε, which shows
2.

2 ⇒ 3: Let T ∈ K(E; ⊗̂k
s,πE) and ε > 0. Since j(T ) ∈ PK(kE; ⊗̂k

s,πE), by 2
applied to j(T ), there exists P ∈ PF(kE; ⊗̂k

s,πE) such that ‖j(T ) − P‖ < ε. By
Lemma 5, q(P ) ∈ F(E; ⊗̂k

s,πE). Since

‖T − q(P )‖ = ‖q ◦ j(T )− q(P )‖ ≤ ‖q‖‖j(T )− P‖ < ε‖q‖,
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we have 3.
2 ⇒ 1: Take T ∈ K(⊗̂k

s,πE; ⊗̂k
s,πE) and let ε > 0. We know that B⊗̂k

s,πE
=

Γ(δ(UE)). Let P := T ◦ δ ∈ P(kE; ⊗̂k
s,πE). Since PL = T is compact, then P is also

compact [17]. By 2 there exists Q ∈ PF(kE; ⊗̂k
s,πE) such that ‖P − Q‖ < ε. Then

QL ∈ F(⊗̂k
s,πE; ⊗̂k

s,πE) and

‖T −QL‖Γ(δ(UE)) = ‖T −QL‖δ(UE) = ‖T ◦δ−QL ◦δ‖UE
= ‖P −Q‖UE

= ‖P −Q‖ < ε,

which shows 1. ¤
Since E is a complemented subspace of the space ⊗̂k

s,πE it is easy to see that E

has the WAP (resp., the QAP) whenever ⊗̂k
s,πE has the WAP (resp., the QAP). We

do not know if the reverse implication is true.

4. Connection with p-dominated polynomials

A continuous n-homogeneous polynomial P : E −→ F is said to be p-dominated
if there is a constant C > 0 such that

(
m∑

j=1

‖P (xj)‖p/n

)n/p

≤ C sup
x∗∈BE∗

(
m∑

j=1

|〈x∗, xj〉|p
)n/p

for any positive integer m and any finite sequence of vectors x1, . . . , xm ∈ E. The
least constant C for which the above inequality holds is denoted by ‖P‖d,p. Let
Pd,p(

nE; F ) denote the set of all p-dominated n-homogeneous polynomials from E
into F . It is well known that Pd,p(

nE; F ) endowed with ‖ ‖d,p is a Banach space
when p ≥ n and a p/n-norm when p < n (see, e.g., [5]).

Dominated polynomials appeared as a generalization of summing linear opera-
tors to the wider context of homogeneous polynomials. Actually, p-dominated 1-
homogeneous polynomials are just p-summing linear operators.

Let E be an infinite dimensional Banach space, let n be a positive integer and
choose ϕ ∈ E ′, ϕ 6= 0. Botelho [4] constructed an n-homogeneous polynomial
Pϕ : E → E which plays the role of the identity operator in the sense that (i) Pϕ is
neither p-dominated nor compact, (ii) Pϕ is weakly compact if and only if E is reflex-
ive. The polynomial Pϕ is given by Pϕ(x) := ϕ(x)n−1x, x ∈ E. Part (i) was actually
proved by Matos [15]. Next proposition clarifies the inherent nature of Pϕ and shows
that (ii) should not surprise us at the same time that provides a straightforward
proof.

Proposition 9. The projection π⊗,n+1 is the linearization of Pγ.

Proof. Let x ∈ E. From the definition of π⊗,n+1 it follows that

π⊗,n+1 ◦ δn+1(x) = π⊗,n+1(x⊗ · · · ⊗ x) = γ(x)nx. ¤
To be more precise, the linearization of Pγ is the extension π̂⊗,n+1 of π⊗,n+1 to the

complete projective symmetric tensor product ⊗̂n+1
s,π E. Ryan [17] proved that an n-

homogeneous polynomial is compact (weakly compact) if and only if its linearization
is compact (respectively weakly compact). Applying these results to the polynomial
Pγ we get that Pγ is weakly compact if and only if π̂⊗,n+1 is weakly compact. By the
Open Mapping Theorem, π̂⊗,n+1 is an open mapping and so, π̂⊗,n+1(B⊗̂n+1

s,π E
) contains
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a ball, which is weakly relatively compact in E whenever Pγ is weakly compact. Then
we have got (ii).
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