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Abstract. In this paper, we study the existence and regularity results for some parabolic
equations with degenerate coercivity.

1. Introduction and statement of the main results

This paper will deal with the following problem

(P )





∂u
∂t

+ Au = f in Q,

u = 0 on ∂Ω× (0, T ),

u(x, 0) = 0 in Ω,

where
Au = − div(a(x, t, u)Du),

f ∈ Lm(Q), m ≥ 1, Ω is an open bounded subset of RN(N ≥ 2), T is a positive
constant, Q = Ω× (0, T ) with the lateral boundary ∂Ω× (0, T ).

Let a : Q × R → R be a Carathéodory function satisfying for almost every
(x, t) ∈ Q and every s ∈ R,

(1.1)
α

(1 + |s|)θ
≤ a(x, t, s) ≤ β

and

(1.2) 0 ≤ θ < 1 +
2

N
,

where α, β are two positive constants.
If (1.1) holds true, the differential operator A(u) is not coercive as u becomes

large. This shows that the classical methods (see [22]) can’t be applied to prove the
existence of solutions to problem (P ) even if the data f is sufficiently regular. The
goal in this paper is to study the problem (P ) under the assumptions of (1.1)–(1.2).
The proof is essentially based on the approximate problems (Pn) with some non-
degenerate coercivity and a priori estimates on the weak solutions of these problems.
Similar problem to elliptic equations has already been studied in [13] (see also [1,
2, 9, 10, 18, 19]). Recently, Porzio and Pozio in [24] have discussed the case of
f ≡ 0, u(x, 0) = u0 6= 0.

Now we state the main results of this paper.
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Theorem 1.1. Under the hypotheses (1.1)–(1.2), if f ∈ Lm(Q) with m > N
2

+1,
then there exists a bounded weak solution u ∈ L2(0, T ; H1

0 (Ω)) ∩ L∞(Q) to problem
(P ).

Remark 1.1. This result doesn’t depend on θ and is similar to the one obtained
in the coercive case. This seems to be natural, since if one looks for bounded solutions,
the lack of coercivity of the differential operator A (which is caused by unbounded
functions) “disappears”. Moreover, if θ = 0, this result has been proved by Aronson
and Serrin (see [4]).

Theorem 1.2. Under the hypotheses (1.1)–(1.2), if f ∈ Lm(Q) with m = N
2

+1,
then there exists a weak solution u ∈ L2(0, T ; H1

0 (Ω)) ∩ Lr(Q) to problem (P ) with
2 ≤ r < +∞.

Remark 1.2. Theorem 1.2 gives the result in the limit case m = N
2

+ 1 for
parabolic equations. As far as I know, I haven’t found other works dealing with the
limit case for parabolic equations even if θ = 0.

Theorem 1.3. Under the hypotheses (1.1)–(1.2), if f ∈ Lm(Q) with m such
that

(1.3)
2(N + 2 + θ)

N + 4− (N − 2)θ
≤ m <

N

2
+ 1,

then there exists a weak solution u ∈ L2(0, T ; H1
0 (Ω)) ∩ Lr(Q) of problem (P ) with

(1.4) r =
m[N(1− θ) + 2]

N + 2− 2m
.

Remark 1.3. If 0 ≤ θ < 2
N−1

, then 2(N+2+θ)
N+4−(N−2)θ

< 2, and in this case the function
f is not in general in L2(0, T ; H−1(Ω)). If 2

N−1
≤ θ < 1 + 2

N
, then 2(N+2+θ)

N+4−(N−2)θ
≥ 2,

and in this case the function f belongs to the space L2(0, T ; H−1(Ω)). In any case,
we always hope to find a weak solution u ∈ L2(0, T ; H1

0 (Ω)) of problem (P ), but the
weak solution u can not be directly obtained from the equation because u may be
unbounded. Here we find the weak solution by means of a priori estimates in Lr(Q)
which is then used to prove that |Du| belongs to L2(Q).

Remark 1.4. If a is independent of s or θ = 0 in (1.1), the previous theorem
has been proved in [20] and [8], respectively (see [12]).

Theorem 1.4. Under the hypotheses (1.1)–(1.2), if f ∈ Lm(Q) with m > 1 such
that

(1.5)
N + 2 + θ

N + 3− θ(N − 1)
< m <

2(N + 2 + θ)

N + 4− (N − 2)θ
,

then there exists a function u ∈ Lq(0, T ; W 1,q
0 (Ω)) ∩ Lr(Q) with

(1.6) q =
m[N(1− θ) + 2]

N + 1− (1 + θ)(m− 1)
, r =

m[N(1− θ) + 2]

N + 2− 2m

and satisfies problem (P ) in the sense of distributions, that is, for any ψ in C∞(Q̄)
which is zero in a neighborhood of ∂Ω× (0, T ) and Ω× {T} such that

(1.7) −
ˆ

Q

uψ′ dx dt +

ˆ

Q

a(x, t, u)DuDψ dx dt =

ˆ

Q

fψ dx dt.
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Remark 1.5. The lower bound for m in (1.5) is due to the fact that q must
not be smaller than 1. The upper bound for m in (1.5) implies q < 2. In the above
theorem, we also suppose m > 1 because if 0 ≤ θ < 1

N
, then N+2+θ

N+3−θ(N−1)
< 1. If

θ = 0, the result of Theorem 1.4 coincides with the classical regularity result for
parabolic equations with coercivity (see [11]).

In the above theorems, the solutions belong to some Sobolev space. If the summa-
bility conditions on f will be weaken, the gradient of u may no longer be in L1(Ω).
To overcome this difficulty, we may give the meaning to solutions of problem (P ) by
using the concept of entropy solutions (for elliptic equations, see [6], for parabolic
equations, see [3, 17, 21, 23, 25, 26]).

For k > 0, let

(1.8) Tk(s) = min{k, max{−k, s}}, Sk(s) =

ˆ s

0

Tk(τ) dτ, ∀s ∈ R.

Theorem 1.5. Under the hypotheses (1.1)–(1.2), if f ∈ Lm(Q) with

(1.9) 1 ≤ m ≤ max{ N + 2 + θ

N + 3− θ(N − 1)
, 1},

then there exists an entropy solution u to problem (P ) in the sense of Definition 2.1
with

(1.10) u ∈Mr(Q), r =
m[N(1− θ) + 2]

N + 2− 2m

and

(1.11) |Du| ∈ Mq(Q), q =
m[N(1− θ) + 2]

N + 1− (1 + θ)(m− 1)
,

where Mr(Q) and Mq(Q) are Marcinkiewicz spaces defined in Definition 2.2.

Remark 1.6. If 0 ≤ θ < 1
N
, then (1.9) becomes m = 1, thus r = N(1−θ)+2

N
>

1, q = N(1−θ)+2
N+1

> 1. By the embedding theorems between Marcinkiewicz and
Lebesgue spaces, we can deduce that u belongs to Lp(0, T ; W 1,p

0 (Ω)) for every 1 ≤
p < q = N(1−θ)+2

N+1
. If in particular θ = 0, this is the same result obtained in [11] and

[14] for parabolic equations with measure data (see also [3, 5, 15, 26]).

Remark 1.7. If 1
N
≤ θ < 1 + 2

N
, then (1.9) becomes 1 ≤ m ≤ N+2+θ

N+3−θ(N−1)

and q must be smaller than 1. It is not possible to deduce that |Du| belongs to
some Sobolev space even if 1 < m ≤ N+2+θ

N+3−θ(N−1)
. Thus Theorem 1.5 shows that the

regularity of solutions to parabolic equations with degenerate coercivity is essentially
different from that of parabolic equations with coercivity, since the solutions belong
to some Sobolev space for the latter so long as m > 1 (see [11, 15]).

Remark 1.8. Here the upper bound on θ in (1.2) is 1 + 2
N
, but 1 for elliptic

equations (see [1, 2, 9, 10, 13, 18, 19]). This is due to two different types of partial
differential equations. The condition θ < 1 + 2

N
implies that the assumpations (1.3)

and (1.5) hold, otherwise (1.3) and (1.5) become empty.

Theorem 1.6. Under the hypothesis (1.1), let f = 0, u0 ∈ Ld(Ω), d0 ≡
min{d1, d2}, d1 ≡ θ+2

2
, d2 ≡ N(θ+1)

N+1
where θ is a nonnegative constant.
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(i) Suppose that 0 ≤ θ ≤ 2
N−1

. If 1 ≤ d ≤ Nθ
2
, then there exists an entropy

solution u to problem (P ) in the sense of Definition 2.1 with

(1.12) u ∈ L∞(0, T ; Ld(Ω))

and

(1.13) |Du| ∈ Mq(Q), q =
2d

θ + 2
,

whereMq(Q) is Marcinkiewicz spaces defined in Definition 2.2. If max{1, Nθ
2
} ≤

d ≤ d0, then (1.12) still holds and

(1.14) |Du| ∈ Mq(Q), q =
(N + 2)d−Nθ

N + d
.

(ii) Suppose that 2
N−1

≤ θ. If 1 ≤ d ≤ d0, then there exists an entropy solution u
to problem (P ) in the sense of Definition 2.1 with

(1.15) u ∈ L∞(0, T ; Ld(Ω))

and

(1.16) |Du| ∈ Mq(Q), q =
2d

θ + 2
.

Remark 1.9. Porzio and Pozio in Theorem 2.9 of [24] have discussed the case
of f = 0, u0 ∈ Ld(Ω), d > max{1, d0}, and in Theorem 2.10 of [24], they only
consider the case of d > Nθ

2
. Here Theorem 1.6 discussed all cases of 1 ≤ d ≤ d0.

Therefore, Theorem 1.6 is a complement of [24]. Furthermore, as d = 1, Theorem 1.6
shows more regular solution than Theorem 2.13 in [24] and don’t need the smaller
conditions of θ.

Figure 1. This figure gives different results obtained in this paper dependent of m and θ.
If (m, θ) lies in the different regions A, line segment ab, B, C, D, these results are obtained in
Theorems 1.1–1.5, respectively.
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This paper is organized as follows. In Section 2, some preliminary results and a
priori estimates will be given. In Section 3, we will finish the proofs of Theorems 1.1–
1.6.

2. Some preliminary results and a priori estimates

Before we prove Theorem 1.1–1.6, we need some preliminary results.

Definition 2.1. A measurable function u ∈ L∞(0, T ; L1(Ω)) will be called an
entropy solution to problem (P ) if Tk(u) ∈ L2(0, T ; H1

0 (Ω)) for every k > 0, and if

(2.1)
ˆ

Ω

Sk(u(t)− φ(t)) dx ∈ C[0, T ],

ˆ

Ω

Sk(u(T )− φ(T )) dx−
ˆ

Ω

Sk(−φ(0)) dx +

ˆ T

0

〈φt, Tk(u− φ)〉 dt

+

ˆ

Q

a(x, t, u) Du DTk(u− φ) dx dt ≤
ˆ

Q

fTk(u− φ) dx dτ,

(2.2)

for every k > 0 and φ ∈ L2(0, T ; H1
0 (Ω))∩L∞(Q) such that φt ∈ L2(0, T ; H−1(Ω)) +

L1(Q).

Similarly to Lemma 2.1 in [6], we also have

Lemma 2.1. For every k > 0, if Tk(u) ∈ L2(0, T ; H1
0 (Ω)), then there exists a

unique measurable function v : Q 7−→ RN such that

DTk(u) = vχ{|u|<k} a.e. in Q,

where χ{|u|<k} denotes the characteristic function over the set {|u| < k}. Defining
the derivative Du of u as the unique function v which satisfies the above equality.
Furthermore, u ∈ L2(0, T ; H1

0 (Ω)) if and only if v ∈ L2(Q), and then v ≡ Du in the
usual weak sense.

Proof. The proof of Lemma 2.1 is the same as that of Lemma 2.1 in [6], we omit
the details. ¤

Definition 2.2. [7, 26] For 0 < q < +∞, the set of all measurable functions
u : Q → R such that the functional [u]q = supk>0 k meas{(x, t) ∈ Q : |u(x, t)| > k} 1

q

is finite is called a Marcinkiewicz space and is denoted by Mq(Q).

One can deduce that Mq(Q) ⊂Mr(Q) for r < q, and Lq(Q) ⊂Mq(Q) ⊂ Lr(Q)
for r < q (see [13,15]).

We also recall a consequence of the Gagliardo–Nirenberg embedding theorem.

Lemma 2.2. [16, Proposition 3.1] Let v ∈ Lh(0, T ; W 1,h
0 (Ω)) ∩ L∞(0, T ; L%(Ω)),

%, h ≥ 1. Then v belongs to Lq0(Q), where q0 = h (N+%)
N

, and there exists a positive
constant C depending only on N, h, % such that

ˆ

Q

|v(x, t)|q0 dx dt ≤ C

(
ess sup

0<t<T

ˆ

Ω

|v(x, t)|% dx

) h
N
ˆ

Q

|Dv(x, t)|h dx dt.

The following lemma gives another version of Lemma 3.2 in [13].
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Lemma 2.3. Let v be a measurable function in Mµ(Q) for µ > 0, and assume
that there exist two nonegative constants ν > γ such that

ˆ

Q

|DTk(v)|2 dx dt ≤ M(1 + k)γkν−γ, ∀k > 0,

where M is a positive constant independent of k. Then |Dv| ∈ Mδ(Q), with δ = 2µ
µ+ν

.

Proof. Let l be a fixed positive number. We have for every k > 0,

meas{|Dv| > l} ≤ meas{|v| > k}+ meas{|Dv| > l, |v| ≤ k}.
Moreover,

meas{|Dv| > l, |v| ≤ k} ≤ 1

l2

ˆ

Q

|DTk(v)|2 dx dt ≤ M
(1 + k)γkν−γ

l2
.

If k > 1, then the above inequality turns into

meas{|Dv| > l, |v| ≤ k} ≤ 2γM
kν

l2
.

By Definition 2.2 and v ∈Mµ(Q), then there exists a positive constant M1 indepen-
dent of k such that

meas{|v| > k} ≤ M1

kµ
.

Hence, we have

meas{|Dv| > l} ≤ M2(
kν

l2
+

1

kµ
),

where M2 = max{2γM,M1}. Minimizing with respect to k, we easily prove that as
k = (µ

ν
)

1
µ+ν l

2
µ+ν , the minimum value of the right side term in the above inequality is

achieved, and we get

meas{|Dv| > l} ≤ M3

lδ
,

where M3 is a positive constant independent of l. However, the above conclusion is
obtained under the assumpation k > 1, that is l > ( ν

µ
)

1
2 . If l ≤ ( ν

µ
)

1
2 , since Q is

bounded, the above inequality obviously holds. This inequality and Definition 2.2
yield |Dv| ∈ Mδ(Q). ¤

For convenience, we will denote the Lebesgue measure of any measurable set E
by |E| in the follwing text.

In order to discuss problem (P ), we need consider the approximate problems.

(Pn)





∂un

∂t
− div(a(x, t, Tn(un))Dun) = fn in Q,

un = 0 on ∂Ω× (0, T ),

un(x, 0) = 0 in Ω,

where fn ∈ D(Q) and satisfy

(2.3) ‖fn‖Lm(Q) ≤ ‖f‖Lm(Q), ∀n,

(2.4) fn → f strongly in Lm(Q).
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Then from the well-known result of [22], there exists at least a solution un ∈ C([0, T ];
L2(Ω)) ∩ L2(0, T ; H1

0 (Ω)) to problem (Pn) such that u′n ∈ L2(0, T ; H−1(Ω)) and sat-
isfies

ˆ

Q

u′nψ dx dt +

ˆ

Q

a(x, t, Tn(un)) Dun Dψ dx dt =

ˆ

Q

fnψ dx dt,

for any ψ ∈ L2(0, T ; H1
0 (Ω)) and un(x, 0) = 0.

We have a priori estimates on un as follows.

Lemma 2.4. Assume that m > N
2

+ 1 in (2.3)–(2.4) and (1.1)–(1.2) hold. Then
for every solution un of problem (Pn), there exists a positive constant C1 independent
of n such that

‖un‖L∞(Q) ≤ C1,(2.5)
‖un‖L2(0,T ;H1

0 (Ω)) ≤ C1,(2.6)

‖u′n‖L2(0,T ;H−1(Ω))+Lm(Q) ≤ C1.(2.7)

Proof. (i) Suppose that θ > 0. Let Gk(s) = s − Tk(s),∀s ∈ R, k > 0. For all
τ ∈ (0, T ], using Gk(un(x, t))χ(0,τ)(t) as a test function for problem (Pn), where χ(0,τ)

denotes the characteristic function of (0, τ) in (0, T ], we get
ˆ τ

0

ˆ

Ω

u′nGk(un) dx dt +

ˆ τ

0

ˆ

Ω

a(x, t, Tn(un)) Dun DGk(un) dx dt

=

ˆ τ

0

ˆ

Ω

fnGk(un) dx dt.

(2.8)

Let

Ak(t) = {x ∈ Ω: |un(x, t)| > k}.

By (1.1) and Hölder’s inequality, we obtain

1

2

ˆ

Ak(τ)

|Gk(un(τ))|2 dx + α

ˆ τ

0

ˆ

Ak(t)

|Dun|2
(1 + |un|)θ

dx dt

≤ 1

2

ˆ

Ak(τ)

|Gk(un(τ))|2 dx + α

ˆ τ

0

ˆ

Ak(t)

|Dun|2
(1 + |Tn(un)|)θ

dx dt

≤ ‖fn‖Lm(Q)

(ˆ τ

0

ˆ

Ak(t)

|Gk(un)|m′
dx dt

) 1
m′

.

(2.9)

Hence

ess sup
0≤t≤T

ˆ

Ak(t)

|Gk(un(t))|2 dx + 2α

ˆ T

0

ˆ

Ak(t)

|Dun|2
(1 + |un|)θ

dx dt

≤ 2‖fn‖Lm(Q)

(ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
dx dt

) 1
m′

.

(2.10)
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For all 1 < σ < 2, (2.10), Hölder’s inequality and (2.3) imply that
ˆ

Q

|DGk(un)|σ dx dt =

ˆ

Q

|DGk(un)|σ
(1 + |un|)θσ/2

(1 + |un|)θσ/2 dx dt

≤
(ˆ T

0

ˆ

Ak(t)

|DGk(un)|2
(1 + |un|)θ

dx dt

)σ
2
(ˆ T

0

ˆ

Ak(t)

(1 + |un|)
θσ

2−σ dx dt

) 2−σ
2

≤ α−
σ
2 ‖fn‖

σ
2

Lm(Q)

(ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
) σ

2m′ (ˆ T

0

ˆ

Ak(t)

(1 + |un|)
θσ

2−σ

) 2−σ
2

≤ C2

(ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
) σ

2m′ (ˆ T

0

ˆ

Ak(t)

(k + |Gk(un)|) θσ
2−σ

) 2−σ
2

.

(2.11)

The last term in the above inequality is due to 1 + |un| ≤ 2(k + |Gk(un)|) as k ≥ 1.
Let σ = 2N+4−Nθ

N+2
, then we have θσ

2−σ
= (N+2)σ

N
, 1 < σ < 2 and 0 < 2 − σ < 1. From

(2.11), we get
ˆ

Q

|DGk(un)|σ dx dt ≤ 2
θσ−2+σ

2 C2

(ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
dx dt

) σ
2m′

·
[
k

θσ
2

(ˆ T

0

|Ak(t)| dt

) Nθ
2(N+2)

+

(ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) Nθ
2(N+2)

]
.

(2.12)

By Lemma 2.2(here v = Gk(un), h = σ, % = 2), (2.10) and (2.12), we obtain
ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

≤
(

ess sup
0≤t≤T

ˆ

Ak(t)

|Gk(un(t))|2 dx

) σ
N
ˆ T

0

ˆ

Ak(t)

|DGk(un)|σ dx dt

≤ C3

(ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
dx dt

) σ
m′N (ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
dx dt

) σ
2m′

·
[
k

θσ
2

(ˆ T

0

|Ak(t)| dt

) Nθ
2(N+2)

+

(ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) Nθ
2(N+2)

]

= C3

(ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
dxdt

)σ(N+2)

2m′N

·
[
k

θσ
2

(ˆ T

0

|Ak(t)|dt

) Nθ
2(N+2)

+

(ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) Nθ
2(N+2)

]
.

(2.13)

By virtue of m > N
2

+ 1 and 1 < σ < 2, then we have σ(N+2)
m′N > 1. Using Hölder’s

inequality, we obtain
ˆ T

0

ˆ

Ak(t)

|Gk(un)|m′
dx dt

≤
(ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) m′N
σ(N+2)

(ˆ T

0

|Ak(t)| dt

)1− m′N
σ(N+2)

.

(2.14)
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(2.13) and (2.14) yield

ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dxdt

≤ C3

(ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) 1
2
(ˆ T

0

|Ak(t)| dt

)σ(N+2)(m−1)
2Nm

− 1
2

·
[
k

θσ
2

(ˆ T

0

|Ak(t)| dt

) Nθ
2(N+2)

+

(ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) Nθ
2(N+2)

]
.

(2.15)

Hence,

ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

≤ C4

(ˆ T

0

|Ak(t)|dt

)σ(N+2)(m−1)
Nm

−1 [
kθσ

(ˆ T

0

|Ak(t)|dt

) Nθ
N+2

+

(ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) Nθ
N+2

]
.

(2.16)

By virtue of θ < 1 + 2
N

, then Nθ
N+2

< 1. Thus we can use Young’s inequality with ε,

C4

(ˆ T

0

|Ak(t)| dt

)σ(N+2)(m−1)
Nm

−1 (ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

) Nθ
N+2

≤ ε

ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt

+ C(ε)

(ˆ T

0

|Ak(t)| dt

)[
σ(N+2)(m−1)

Nm
−1]

(N+2)
N+2−Nθ

.

(2.17)

Applying (2.17) to (2.16) and taking ε = 1
2
, we get

ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt ≤ C5k

θσ

(ˆ T

0

|Ak(t)| dt

)σ(N+2)(m−1)
Nm

−1+ Nθ
N+2

+ C5

(ˆ T

0

|Ak(t)| dt

)[
σ(N+2)(m−1)

Nm
−1]

(N+2)
N+2−Nθ

.

(2.18)

The condition m > N
2

+1 implies σ(N+2)(m−1)
Nm

−1+ Nθ
N+2

> 1. Let λ+1 = σ(N+2)(m−1)
Nm

−
1 + Nθ

N+2
, then λ > 0. It’s easy to see that [σ(N+2)(m−1)

Nm
− 1] (N+2)

N+2−Nθ
> σ(N+2)(m−1)

Nm
−

1 + Nθ
N+2

= λ + 1, since σ = 2N+4−Nθ
N+2

and m > N
2

+ 1.
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Hence, if k ≥ 1, we have
ˆ T

0

ˆ

Ak(t)

|Gk(un)| (N+2)σ
N dx dt ≤ C5k

θσ

(ˆ T

0

|Ak(t)| dt

)λ+1

+ C5|Q|[
σ(N+2)(m−1)

Nm
−1]

(N+2)
N+2−Nθ

−λ−1

(ˆ T

0

|Ak(t)| dt

)λ+1

≤ C6k
θσ

(ˆ T

0

|Ak(t)| dt

)λ+1

,

(2.19)

where C6 = max{C5, C5|Q|[
σ(N+2)(m−1)

Nm
−1]

(N+2)
N+2−Nθ

−λ−1}. Recalling the property of Gk(s),
if h > k, we have |Gk(un)| > h− k on Ah(t), and Ah(t) ⊂ Ak(t). Hence,

(2.20)
ˆ T

0

|Ah(t)| dt ≤
C6k

θσ
(´ T

0
|Ak(t)| dt

)λ+1

(h− k)
(N+2)σ

N

, ∀h > k ≥ 1.

Let

(2.21) ϕ(k) =

ˆ T

0

|Ak(t)| dt.

By virtue of θσ = (2− σ) (N+2)σ
N

, 2− σ < 1, (2.20) can be written as

(2.22) ϕ(h) ≤ C6k
(2−σ)

(N+2)σ
N ϕ(k)λ+1

(h− k)
(N+2)σ

N

, ∀h > k ≥ 1.

Thus we can use Lemma A.2 in [13] and obtain a positive constant k∗ independent
of n such that

(2.23) ϕ(k∗) = 0.

Hence (2.23) yields (2.5).
Taking un as a test function for problem (Pn) and using (2.5), it is easy to prove

(2.6). In fact, we have

1

2

ˆ

Ω

|un(T ))|2 dx + α

ˆ

Q

|Dun|2
(1 + |un|)θ

dx dt

≤ 1

2

ˆ

Ω

|un(T ))|2 dx + α

ˆ

Q

|Dun|2
(1 + |Tn(un)|)θ

dx dt

≤ ‖fn‖Lm(Q)

(ˆ

Q

|un|m′
dx dt

) 1
m′

.

The above inequality and (2.5) yield
ˆ

Q

|Dun|2 dx dt =

ˆ

Q

|Dun|2
(1 + |un|)θ

(1 + |un|)θ dx dt

≤ ‖1 + |un|‖θ
L∞(Q)

ˆ

Q

|Dun|2
(1 + |un|)θ

dx dt

≤ (1 + C1)
θC1α

−1|Q| 1
m′ ‖fn‖Lm(Q).

Thus by the above estimate and (2.3)–(2.5), we get (2.6).
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By the first equation of problem (Pn) and combining with (2.3) and (2.6), we can
get (2.7).

(ii) Suppose that θ = 0. Using the same arguments as the above proof, we only
need to take θ = 0 in (2.10), θ = 0, σ = 2 in (2.13)–(2.16) and (2.20) and delete the
term k(2−σ)

(N+2)σ
N in (2.22). ¤

Lemma 2.5. Assume that m = N
2

+ 1 in (2.3)–(2.4) and (1.1)–(1.2) hold. Then
for every solution un of problem (Pn), there exists a positive constant C7 independent
of n such that

‖un‖L2(0,T ;H1
0 (Ω)) ≤ C7,(2.24)

‖un‖Lr(Q) ≤ C7,(2.25)
‖u′n‖L2(0,T ;H−1(Ω))+Lm(Q) ≤ C7,(2.26)

for every 2 ≤ r < +∞.

Proof. Let ψ(s) = [(1 + |s|)p − 1] sign(s),∀s ∈ R, where p > 1 is a positive
constant which will be determined lately. For ∀τ ∈ (0, T ], using ψ(un(x, t))χ(0,τ)(t)
as a test function for problem (Pn), and combining with (1.1), we get

ˆ

Ω

Ψ(un(x, τ)) dx + pα

ˆ τ

0

ˆ

Ω

|Dun|2
(1 + |un|)θ

(1 + |un|)p−1 dx dt

≤
ˆ τ

0

ˆ

Ω

|fn|[(1 + |un|)p − 1] dx dt,

(2.27)

where Ψ(s) =
´ s

0
ψ(ξ) dξ.

By the definitions of ψ(s) and Ψ(s), we can get whenever p > 1,

(2.28) Ψ(s) ≥ 1

p + 1
|s|p+1, ∀s ∈ R.

Thus (2.27)–(2.28) and Hölder’s inequality imply that

1

p + 1

ˆ

Ω

|un(x, τ)|p+1 dx + pα

ˆ τ

0

ˆ

Ω

|Dun|2(1 + |un|)p−1−θ dx dt

≤ ‖fn‖Lm(Q)

(ˆ

Q

|(1 + |un|)p − 1|m′
dx dt

) 1
m′

.

(2.29)

If p ≥ 1 + θ, the above estimate and (2.3) yield

ess sup
0≤t≤T

ˆ

Ω

[|un(x, t)| p+1−θ
2 ]

2(p+1)
p+1−θ dx +

ˆ

Q

|D|un|
p+1−θ

2 |2 dx dt

≤ C8

(ˆ

Q

|un|pm′
dx dt

) 1
m′

+ C8,

(2.30)
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where C8 is a positive constant independent of n. By Lemma 2.2 (here v(x, t) =

|un(x, t)| p+1−θ
2 , h = 2, % = 2(p+1)

p+1−θ
), we obtain

ˆ

Q

[|un|
p+1−θ

2 ]
2(N+

2(p+1)
p+1−θ

)

N dx dt

≤
(

ess sup
0≤t≤T

ˆ

Ω

[|un(x, t)| p+1−θ
2 ]

2(p+1)
p+1−θ dx

) 2
N
ˆ

Q

|D|un|
p+1−θ

2 |2 dx dt

≤ [C8

(ˆ

Q

|un|pm′
dx dt

) 1
m′

+ C8]
N+2

N ≤ C9

(ˆ

Q

|un|pm′
dx dt

)N+2
Nm′

+ C9.

(2.31)

That is

(2.32)
ˆ

Q

|un|
2(p+1)+N(p+1−θ)

N dx dt ≤ C9

(ˆ

Q

|un|pm′
dx dt

)N+2
Nm′

+ C9.

By virtue of m = N
2

+ 1, θ < 1 + 2
N
, we have

pm′ <
2(p + 1) + N(p + 1− θ)

N
,

N + 2

Nm′ = 1,
p(N + 2)

2(p + 1) + N(p + 1− θ)
< 1.

Using Hölder’s inequality and Young’s inequality with ε, we obtain
(ˆ

Q

|un|pm′
dx dt

)N+2
Nm′

≤
(ˆ

Q

|un|
2(p+1)+N(p+1−θ)

N dx dt

) p(N+2)
2(p+1)+N(p+1−θ)

|Q|[1− Npm′
2(p+1)+N(p+1−θ)

]
(N+2)

Nm′

=

(ˆ

Q

|un|
2(p+1)+N(p+1−θ)

N dx dt

) p(N+2)
2(p+1)+N(p+1−θ)

|Q|1− p(N+2)
2(p+1)+N(p+1−θ)

≤ ε

ˆ

Q

|un|
2(p+1)+N(p+1−θ)

N dx dt + C(ε).

(2.33)

Taking (2.33) in (2.32) and letting ε = 1
2C9

, we get

(2.34)
ˆ

Q

|un|
2(p+1)+N(p+1−θ)

N dx dt ≤ C10.

Let

(2.35)
2(p + 1) + N(p + 1− θ)

N
= r.

Then

(2.36) p =
Nr − 2−N(1− θ)

N + 2
.

(2.34) and (2.35) yield (2.25).
To ensure p ≥ 1+ θ, this needs r ≥ 2(N+2)

N
+ 2

N
θ. Thus, if r ≥ 2(N+2)

N
+ 2

N
θ, (2.25)

is proved. If 2 ≤ r < 2(N+2)
N

+ 2
N

θ, it is classical since Q is bounded.
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By (2.3), (2.29) (here τ = T ), (2.33) (here ε = 1), (2.34) and p ≥ 1 + θ, we get

(2.37)
ˆ

Q

|Dun|2 dx dt ≤
ˆ

Q

|Dun|2(1 + |un|)p−1−θ dx dt ≤ C11.

Thus (2.24) is proved. By (2.24) and (2.3), (2.26) can be obtained. ¤
Lemma 2.6. Assume that m in (2.3)–(2.4) satisfies (1.3), and (1.1) and (1.2)

hold. Then for every solution un of problem (Pn), there exists a positive constant
C12 independent of n such that

‖un‖L2(0,T ;H1
0 (Ω)) ≤ C12,(2.38)

‖un‖Lr(Q) ≤ C12,(2.39)
‖u′n‖L2(0,T ;H−1(Ω))+Lm(Q) ≤ C12,(2.40)

where r is defined in (1.4).

Proof. Here we simply revise the proof of Lemma 2.5. Let

(2.41) pm′ =
2(p + 1) + N(p + 1− θ)

N
.

Then

(2.42) p =
[2 + N(1− θ)](m− 1)

N + 2− 2m
.

It is obvious to see that

(2.43) pm′ = r.

By virtue of m < N
2

+ 1, then we have N+2
Nm′ < 1. Using Young’s inequality with ε, we

obtain

(2.44)
(ˆ

Q

|un|pm′
dx dt

)N+2
Nm′

≤ ε

ˆ

Q

|un|pm′
dx dt + C(ε).

Taking (2.44) in (2.32) and letting ε = 1
2C9

, by (2.41) and (2.43), we obtain (2.39).
Furthermore, the condition m ≥ 2(N+2+θ)

N+4−(N−2)θ
in (1.3) ensures that p ≥ 1 + θ holds.

The rest of the proof is the same as that of Lemma 2.4. ¤
Lemma 2.7. Assume that m in (2.3)–(2.4) satisfies (1.5) and m > 1, and (1.1)

and (1.2) hold. Then for every solution un of problem (Pn), there exists a positive
constant C13 independent of n such that

‖un‖Lq(0,T ;W 1,q
0 (Ω)) ≤ C13,(2.45)

‖un‖Lr(Q) ≤ C13,(2.46)
‖u′n‖Lq(0,T ;W−1,q(Ω))+Lm(Q) ≤ C13,(2.47)

where r and q are defined in (1.6).

Proof. By the definitions of ψ(s) and Ψ(s) in the proof of Lemma 2.5, we also
have if 0 < p < 1 + θ,

(2.48) Ψ(s) ≥ Cp|s|p+1 − C̃p, ∀s ∈ R,
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where Cp = 1
2(p+1)

, C̃p = 2
1
p , p will be fixed after. Replacing (2.28), (2.29) and (2.30)

with (2.48) and the following two inequalities respectively,

Cp

ˆ

Ω

|un(x, τ)|p+1 dx + pα

ˆ τ

0

ˆ

Ω

|Dun|2(1 + |un|)p−1−θ dx dt

≤ ‖fn‖Lm(Q)

(ˆ

Q

|(1 + |un|)p − 1|m′
dx dt

) 1
m′

+ C̃p|Ω|,
(2.49)

ess sup
0≤t≤T

ˆ

Ω

|un(x, t)|p+1 dx +

ˆ

Q

|Dun|2
(1 + |un|)θ+1−p

dx dt

≤ C14

(ˆ

Q

|un|pm′
dxdt

) 1
m′

+ C14,

(2.50)

where C14 is a positive constant independent of n.
For all q < 2, (2.50) and Hölder’s inequality imply that

ˆ

Q

|Dun|q dx dt =

ˆ

Q

|Dun|q
(1 + |un|)

(θ+1−p)q
2

(1 + |un|)
(θ+1−p)q

2 dx dt

≤
(ˆ

Q

|Dun|2
(1 + |un|)θ+1−p

dx dt

) q
2
(ˆ

Q

(1 + |un|)
(θ+1−p)q

2−q dx dt

) 2−q
2

≤
[
C14

(ˆ

Q

|un|pm′
dx dt

) 1
m′

+ C14

] q
2

2
(θ+1−p)q

2

[
|Q|+

ˆ

Q

|un|
(θ+1−p)q

2−q dx dt

] 2−q
2

≤ C15

[(ˆ

Q

|un|pm′
dx dt

) 1
m′

+ 1

] q
2 [ˆ

Q

|un|
(θ+1−p)q

2−q dx dt + 1

] 2−q
2

.

(2.51)

Let

(2.52) pm′ =
(θ + 1− p)q

2− q
.

It follows from (2.51) that

(2.53)
ˆ

Q

|Dun|q dx dt ≤ C16

(ˆ

Q

|un|pm′
dx dt

) q
2m′+

2−q
2

+ C16.

By Lemma 2.2 (here v(x, t) = un(x, t), h = q, % = p + 1), (2.50) and (2.53), we get
ˆ

Q

|un|
(N+p+1)q

N dx dt ≤
(

ess sup
0≤t≤T

ˆ

Ω

|un(x, t)|p+1 dx

) q
N
ˆ

Q

|Dun|q dx dt

≤
[
C14

(ˆ

Q

|un|pm′
dx dt

) 1
m′

+ C14

] q
N

[
C16

(ˆ

Q

|un|pm′
dx dt

) q
2m′+

2−q
2

+ C16

]

≤ C17

(ˆ

Q

|un|pm′
dx dt

) q(N+2)

2Nm′ + 2−q
2

+ C17.

(2.54)

Set

(2.52′) pm′ =
(p + 1 + N)q

N
.
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Then this equality and (2.52) yield

(2.55) p =
[2 + N(1− θ)](m− 1)

N + 2− 2m
, q =

m[N(1− θ) + 2]

N + 1− (1 + θ)(m− 1)
.

Thus by direct calculation and the assumption of upper bound for m in (1.5), we
have

(2.56) pm′ = r, p < 1 + θ.

Rewriting (2.54) as follows

(2.57)
ˆ

Q

|un|r dx dt ≤ C17

(ˆ

Q

|un|r dx dt

) q(N+2)

2Nm′ + 2−q
2

+ C17.

By virtue of m < N
2

+ 1, therefore we have q(N+2)
2Nm′ + 2−q

2
< 1. Thus it follows from

(2.57) and Young’s inequality with ε that (2.46). By (2.46), (2.53) and (2.56), we get

(2.58)
ˆ

Q

|Dun|q dx dt ≤ C18.

Thus (2.45) is proved. It is easy to obtain (2.47) from (2.45) and (2.3). ¤
Lemma 2.8. Assume that m in (2.3)–(2.4) satisfies (1.9), and (1.1) and (1.2)

hold. Then for every solution un of problem (Pn), there exists a positive constant
C19 independent of n and k such that

‖un‖L∞(0,T ;L1(Ω)) ≤ C19,(2.59)

‖Tk(un)‖L2(0,T ;H1
0 (Ω)) ≤ C19(1 + k)

1+θ
2 ,(2.60)

meas{|un| > k} ≤ C19

kr
, and(2.61)

meas{|Dun| > k} ≤ C19

kq
,(2.62)

where r and q as in (1.10) and (1.11).

Proof. The proof is divided into three cases.
(i) Suppose that m > 2(N+2)

N+4
. For all τ ∈ (0, T ], choosing Tk(un(x, t))χ(0,τ)(t) as

a test function for problem (Pn), and using (1.1) and Hölder’s inequality, we get
ˆ

Ω

Sk(un(x, τ)) dx + α

ˆ τ

0

ˆ

Ω

|DTk(un)|2
(1 + |un|)θ

dx dt

≤ ‖fn‖Lm(Q)

(ˆ τ

0

ˆ

Ω

|Tk(un)|m′
dx dt

) 1
m′

.

(2.63)

By virtue of Sk(un(x, τ)) ≥ |Tk(un(x,τ))|2
2

, then we have

ess sup
0≤t≤T

ˆ

Ω

|Tk(un(x, t))|2 dx +

ˆ

Q

|DTk(un)|2
(1 + |un|)θ

dx dt

≤ C20

(ˆ

Q

|Tk(un)|m′
dx dt

) 1
m′

.

(2.64)
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Hence

ˆ

Q

|DTk(un)|2 dx dt =

ˆ

Q

|DTk(un)|2
(1 + |Tk(un)|)θ

(1 + |Tk(un)|)θ dx dt

≤ C20(1 + k)θ

(ˆ

Q

|Tk(un)|m′
dx dt

) 1
m′

.

(2.65)

If m > 2(N+2)
N+4

, we have m′ < 2(N+2)
N

, thus we can choose ρ < 2 such that ρ(N+2)
N

= m′.
Then

(2.66) ρ =
Nm

(N + 2)(m− 1)
.

For the above ρ, (2.64) and Hölder’s inequality imply that

ˆ

Q

|DTk(un)|ρ dx dt =

ˆ

Q

|DTk(un)|ρ
(1 + |Tk(un)|) θρ

2

(1 + |Tk(un)|) θρ
2 dx dt

≤
(ˆ

Q

|DTk(un)|2
(1 + |Tk(un)|)θ

dx dt

) ρ
2
(ˆ

Q

(1 + |Tk(un)|) θρ
2−ρ dx dt

) 2−ρ
2

≤ C
ρ
2
20

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ
2m′

(ˆ

Q

(1 + |Tk(un)|) θρ
2−ρ dx dt

) 2−ρ
2

.

(2.67)

By Lemma 2.2 (here v(x, t) = Tk(un(x, t)), h = ρ, % = 2), we obtain

ˆ

Q

|Tk(un)| (N+2)ρ
N dx dt ≤

(
ess sup

0≤t≤T

ˆ

Ω

|Tk(un)|2 dx

) ρ
N
ˆ

Q

|DTk(un)|ρ dx dt

≤ C
ρ
N
20

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ
Nm′

C
ρ
2
20

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ
2m′

·
(ˆ

Q

(1 + |Tk(un)|) θρ
2−ρ dx dt

) 2−ρ
2

= C21

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ(N+2)

2Nm′
(ˆ

Q

(1 + |Tk(un)|) θρ
2−ρ dx dt

) 2−ρ
2

.

(2.68)

Now m > 2(N+2)
N+4

and (1.9) imply m ≤ N+2+θ
N+3−θ(N−1)

. However, by virtue of θ < 1 + 2
N
,

then

N + 2 + θ

N + 3− θ(N − 1)
<

2(N + 2)−Nθ

N + 4−Nθ
.
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Thus from the above inequality and (2.66), we can deduce that θρ
2−ρ

> m′, if k ≥ 1,
(2.68) yields

ˆ

Q

|Tk(un)| (N+2)ρ
N dx dt =

ˆ

Q

|Tk(un)|m′
dx dt

= C21

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ(N+2)

2Nm′

·
(ˆ

Q

(1 + |Tk(un)|) θρ
2−ρ

−m′
(1 + |Tk(un)|)m′

dx dt

) 2−ρ
2

≤ C21

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ(N+2)

2Nm′

· (2k)( θρ
2−ρ

−m′) (2−ρ)
2

(ˆ

Q

(1 + |Tk(un)|)m′
dx dt

) 2−ρ
2

≤ C21

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ(N+2)

2Nm′

· (2k)( θρ
2−ρ

−m′) (2−ρ)
2

(
2m′ |Q|+ 2m′

ˆ

Q

|Tk(un)|m′
dx dt

) 2−ρ
2

≤ C22k
θρ
2
− (2−ρ)m′

2

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ(N+2)

2Nm′
(

1 +

ˆ

Q

|Tk(un)|m′
dx dt

) 2−ρ
2

,

(2.69)

where C22 = 2
θρ
2 C21(|Q|+ 1)

2−ρ
2 .

If
´

Q
|Tk(un)|m′

dx dt ≥ 1, it follows from (2.69) that

ˆ

Q

|Tk(un)|m′
dx dt ≤ C222

2−ρ
2 k

θρ
2
− (2−ρ)m′

2

(ˆ

Q

|Tk(un)|m′
dx dt

) ρ(N+2)

2Nm′ + 2−ρ
2

.

Hence
(ˆ

Q

|Tk(un)|m′
dx dt

)1− ρ(N+2)

2Nm′ −
2−ρ
2

≤ C222
2−ρ
2 k

θρ
2
− (2−ρ)m′

2 .

Thus we get
ˆ

Q

|Tk(un)|m′
dx dt ≤ (C222

2−ρ
2 )

1

1− ρ(N+2)
2Nm′ −

2−ρ
2 k

[ θρ
2
− (2−ρ)m′

2
] 1

1− ρ(N+2)
2Nm′ −

2−ρ
2

= C23k
[θρ−(2−ρ)m′]Nm′

Nm′ρ−(N+2)ρ

= C23k
−m[N(m−2)+4(m−1)]−θNm(m−1)

(m−1)(N−2m+2) ,

(2.70)

where C23 = (C222
2−ρ
2 )

1

1− ρ(N+2)
2Nm′ −

2−ρ
2 = (C222

2−ρ
2 )

2Nm′
Nm′−ρ(N+2) . The above second equality

is due to ρ = Nm
(N+2)(m−1)

. Now θ < 1+ 2
N

and m ≤ N+2+θ
N+3−θ(N−1)

imply N−2m+2 > 0.
Moreover, N+2+θ

N+3−θ(N−1)
< 2(N+2)−Nθ

N+4−Nθ
yields N(m − 2) + 4(m − 1) − θN(m − 1) < 0.
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Thus we get

−m[N(m− 2) + 4(m− 1)]− θNm(m− 1)

(m− 1)(N − 2m + 2)
> 0.

If
´

Q
|Tk(un)|m′

dx dt ≤ 1, by virtue of k ≥ 1, then
ˆ

Q

|Tk(un)|m′
dx dt ≤ 1 ≤ k−

m[N(m−2)+4(m−1)]−θNm(m−1)
(m−1)(N−2m+2) .

Let C24 = max{C23, 1}. It is obvious to see that for any k ≥ 1,

(2.71)
ˆ

Q

|Tk(un)|m′
dx dt ≤ C24k

−m[N(m−2)+4(m−1)]−θNm(m−1)
(m−1)(N−2m+2) .

Because m′ > −m[N(m−2)+4(m−1)]−θNm(m−1)
(m−1)(N−2m+2)

which is due to θ < 1 + 2
N
, if k ≤ 1, we

have

(2.72)
ˆ

Q

|Tk(un)|m′
dx dt ≤ |Q|km′ ≤ |Q|k−m[N(m−2)+4(m−1)]−θNm(m−1)

(m−1)(N−2m+2) .

Let C25 = max{C24, |Q|}. It follows from (2.71) and (2.72) that for any k > 0,

(2.73)
ˆ

Q

|Tk(un)|m′
dx dt ≤ C25k

−m[N(m−2)+4(m−1)]−θNm(m−1)
(m−1)(N−2m+2) .

Therefore we have

(2.74) km′
meas{(x, t) ∈ Q : |un(x, t)| > k} ≤ C25k

−m[N(m−2)+4(m−1)]−θNm(m−1)
(m−1)(N−2m+2) .

Namely,

meas{(x, t) ∈ Q : |un(x, t)| > k} ≤ C25k
−m[N(m−2)+4(m−1)]−θNm(m−1)

(m−1)(N−2m+2)
−m′

= C25k
−m[N(1−θ)+2]

N+2−2m = C25k
−r.

(2.75)

Thus (2.61) is proved.
Now (2.65) and (2.73) yield

(2.76)
ˆ

Q

|DTk(un)|2 dx dt ≤ C26(1 + k)θk−
[N(m−2)+4(m−1)]−θN(m−1)

(N−2m+2) .

By (2.76) and Lemma 2.3 (here v(x, t) = un(x, t), µ = m[N(1−θ)+2]
N+2−2m

, γ = θ, ν =
−[N(m−2)+4(m−1)]+θ(Nm−2m+2)

N−2m+2
, δ = q), we can obtain (2.62).

(ii) Suppose that 1 < m ≤ 2(N+2)
N+4

. Note that m′ ≥ 2(N+2)
N

. Then we have

(2.77)
(ˆ

Q

|Tk(un)|m′
dx dt

) 1
m′
≤ k1− 2(N+2)

Nm′

(ˆ

Q

|Tk(un)| 2(N+2)
N dx dt

) 1
m′

.

From (2.64)–(2.65) and (2.77), we get

ess sup
0≤t≤T

ˆ

Ω

|Tk(un(x, t))|2 dx ≤ C20k
1− 2(N+2)

Nm′

(ˆ

Q

|Tk(un)| 2(N+2)
N dx dt

) 1
m′

,(2.78)

ˆ

Q

|DTk(un)|2 dx dt ≤ C20(1 + k)θk1− 2(N+2)

Nm′

(ˆ

Q

|Tk(un)| 2(N+2)
N dx dt

) 1
m′

.(2.79)
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By (2.78)–(2.79) and Lemma 2.2 (here v(x, t) = Tk(un(x, t)), h = 2, % = 2), we
conclude

(2.80)
ˆ

Q

|Tk(un)| 2(N+2)
N dx dt ≤ C27k

(N+2)(−Nm+2N−4m+4)+θN2m
N(N−2m+2) .

Indeed,
ˆ

Q

|Tk(un)| 2(N+2)
N dx dt ≤

(
ess sup

0≤t≤T

ˆ

Ω

|Tk(un)|2 dx

) 2
N
ˆ

Q

|DTk(un)|2 dx dt

≤ C
2
N

+1

20 (1 + k)θk[1− 2(N+2)

Nm′ ]( 2
N

+1)

(ˆ

Q

|Tk(un)| 2(N+2)
N dx dt

)N+2
Nm′

.

(2.81)

By virtue of m ≤ 2(N+2)
N+4

, then N+2
Nm′ ≤ 1

2
. Thus we get

(ˆ

Q

|Tk(un)| 2(N+2)
N dx dt

)1−N+2
Nm′

≤ C
2
N

+1

20 (1 + k)θk[1− 2(N+2)

Nm′ ]( 2
N

+1).

Hence
ˆ

Q

|Tk(un)| 2(N+2)
N dx dt ≤

(
C

2
N

+1

20 (1 + k)θk[1− 2(N+2)

Nm′ ]( 2
N

+1)
) 1

1−N+2
Nm′

= C
(N+2)m
N−2m+2

20 (1 + k)
Nmθ

N−2m+2 k
(N+2)(−Nm+2N−4m+4)

N(N−2m+2) .

(2.82)

If k ≥ 1, it follows from (2.82) that

(2.83)
ˆ

Q

|Tk(un)| 2(N+2)
N dx dt ≤ 2

Nmθ
N−2m+2 C

(N+2)m
N−2m+2

20 k
(N+2)(−Nm+2N−4m+4)+θN2m

N(N−2m+2) .

If k ≤ 1, since 2(N+2)
N

> (N+2)(−Nm+2N−4m+4)+θN2m
N(N−2m+2)

which is due to θ < 1 + 2
N
, we

have

(2.84)
ˆ

Q

|Tk(un)| 2(N+2)
N dx dt ≤ |Q|k 2(N+2)

N ≤ |Q|k (N+2)(−Nm+2N−4m+4)+θN2m
N(N−2m+2) .

Thus (2.83) and (2.84) yield (2.80). Therefore from (2.80) we can obtain (2.61).
Finally, (2.62) can be deduced from (2.79)–(2.80) and Lemma 2.3.

(iii) Suppose that m = 1. We only need to replace (
´

Q
|Tk(un)|m′

dx dt)
1

m′ with
|Q| 1

m′ k in (2.63)–(2.65). That is
ˆ

Ω

Sk(un(x, τ)) dx + α

ˆ τ

0

ˆ

Ω

|DTk(un)|2
(1 + |un|)θ

dx dt ≤ ‖fn‖Lm(Q)|Q| 1
m′ k,(2.85)

ess sup
0≤t≤T

ˆ

Ω

|Tk(un(x, t))|2 dx +

ˆ

Q

|DTk(un)|2
(1 + |un|)θ

dx dt ≤ C20|Q| 1
m′ k,(2.86)

ˆ

Q

|DTk(un)|2 dx dt =

ˆ

Q

|DTk(un)|2
(1 + |Tk(un)|)θ

(1 + |Tk(un)|)θ dx dt(2.87)

≤ C20|Q| 1
m′ (1 + k)θk.
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By (2.86)–(2.87) and Lemma 2.2 (here v(x, t) = Tk(un(x, t)), h = 2, % = 2), going
through the same process as that of (2.80), we obtain

(2.88)
ˆ

Q

|Tk(un)| 2(N+2)
N dx dt ≤ C28k

N+2+θN
N .

Thus it’s easy to get (2.61) by (2.88). Now (2.87)–(2.88) and Lemma 2.3 imply that
(2.62) holds.

Taking T1(un)χ(0,τ)(t) as a test function for problem (Pn), and using (1.1) and
Hölder’s inequality, we getˆ

Ω

S1(un(x, τ)) dx + α

ˆ τ

0

ˆ

Ω

|DT1(un)|2
(1 + |un|)θ

dx dt

≤ ‖fn‖Lm(Q)

(ˆ τ

0

ˆ

Ω

|T1(un)|m′
dx dt

) 1
m′

.

(2.89)

Note that |s| − 1/2 ≤ S1(s) ≤ |s|, for any s ∈ R. Then we have

(2.90) ess sup
0≤t≤T

ˆ

Ω

|un(x, t)| dx ≤ ‖fn‖Lm(Q)|Q| 1
m′ +

1

2
|Ω|.

So (2.3) and (2.90) yield (2.59).
By (2.86) and (2.87), we obtainˆ

Q

|Tk(un(x, t))|2 dx dt ≤ C20|Q| 1
m′ Tk,(2.91)

ˆ

Q

|DTk(un)|2 dx dt ≤ C20|Q| 1
m′ (1 + k)θk.(2.92)

The above two inequalities imply (2.60). ¤
Lemma 2.9. Assume that fn ≡ 0, u0 ∈ Ld(Ω) in problem (Pn), where 1 ≤ d ≤

d0, d0 as in Theorem 1.6, and (1.1) holds. Then for every solution un of problem
(Pn), there exists a positive constant C29 independent of n and k such that

‖un‖L∞(0,T ;Ld(Ω)) ≤ C29,(2.93)

‖Tk(un)‖L2(0,T ;H1
0 (Ω)) ≤ C29(1 + k)

θ−d+2
2 .(2.94)

(i) Suppose that 0 ≤ θ ≤ 2
N−1

. If 1 ≤ d ≤ Nθ
2

, then

(2.95) meas{|Dun| > k} ≤ C29

kq1
,

where q1 = 2d
θ+2

.
If max{1, Nθ

2
} ≤ d ≤ d0, then

(2.96) meas{|Dun| > k} ≤ C29

kq2
,

where q2 = (N+2)d−Nθ
N+d

.
(ii) Suppose that 2

N−1
≤ θ. If 1 ≤ d ≤ d0, then

(2.97) meas{|Dun| > k} ≤ C29

kq1
,

where q1 = 2d
θ+2

.
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Proof. Using [(1 + |un|)d−1 − 1] sign(un) as a test function for problem (Pn), we
can obtain

(2.98) ess sup
0≤t≤T

ˆ

Ω

(1 + |un|)d dx +

ˆ

Q

|Dun|2
(1 + |un|)θ−d+2

dx dt ≤ C30.

Thus the above estimate yields (2.93). Hence for any k > 0,
ˆ

Q

|DTk(un)|2 dx dt =

ˆ

Q

|DTk(un)|2
(1 + |Tk(un)|)θ−d+2

(1 + |Tk(un)|)θ−d+2 dx dt

≤ C30(1 + k)θ−d+2.

(2.99)

From (2.99) we get (2.94). Now (2.98) yields

(2.100)
ˆ

Q

|Tk(un)|d dx ≤ TC30.

The proof is divided into three cases:

(i) Suppose that 0 ≤ θ ≤ 2
N−1

whenever 1 ≤ d ≤ Nθ
2
. Now (2.100) implies that

(2.101) meas{|un| > k} ≤ TC30

kd
,

From (2.99), we deduce for any k ≥ 1, λ ≥ 1,

(2.102) meas{|Dun| > λ, |un| ≤ k} ≤ C302
θ−d+2kθ−d+2

λ2
.

Hence
meas{|Dun| > λ} ≤ meas{|Dun| > λ, |un| ≤ k}+ meas{|un| > k}

≤ C302
θ−d+2kθ−d+2

λ2
+

TC30

kd
.

(2.103)

Choosing k = λ
2

θ+2 , we obtain

(2.104) meas{|Dun| > λ} ≤ C31

λ
2d

θ+2

.

As λ < 1, by virtue of

(2.105) meas{|Dun| > λ} ≤ |Q| ≤ |Q|
λ

2d
θ+2

.

Thus let C29 = max{|Q|, C31} and replace λ by k, the above inequalities imply (2.95).

(ii) Suppose that 0 < θ ≤ 2
N−1

whenever max{1, Nθ
2
} ≤ d ≤ d0. By (2.98)–(2.99)

and Lemma 2.2 (here v(x, t) = Tk(un(x, t)), h = 2, % = d), we conclude
ˆ

Q

|Tk(un)| 2(N+d)
N dx dt ≤

(
ess sup

0≤t≤T

ˆ

Ω

|Tk(un)|d dx

) 2
N
ˆ

Q

|DTk(un)|2 dx dt

≤ C31(1 + k)θ−d+2.

(2.106)

Thus we get for any k > 0,

(2.107) meas{|un| > k} ≤ (|Q|+ C312
θ−d+2)

k
(N+2)d−Nθ

N

.

The proceeding is the same as that of (i), here we only replace (2.101) by (2.107).
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(iii) Suppose that 2
N−1

≤ θ whenever 1 ≤ d ≤ d0. The proof is the same as that
of (i) because d0 ≤ Nθ

2
in the case. ¤

3. Proof of Theorems 1.1–1.6

Because the proofs of Theorem 1.1, Theorem 1.2 and Theorem 1.3 are similar to
that of Theorem 1.4, the proof of Theorem 1.6 is also similar to that of Theorem 1.5,
here we only give the proof of Theorem 1.4 and Theorem 1.5.

Proof of Theorem 1.4. By Lemma 2.7, there exist a subsequence of {un} (still
denoted by {un}) and a measurable function u such that

un −→ u weakly in Lq(0, T ; W 1,q
0 (Ω)),(3.1)

u′n −→ u′ weakly in Lq(0, T ; W−1,q(Ω)) + Lm(Q), and(3.2)
un −→ u weakly in Lr(Q).(3.3)

Now (3.1)–(3.2) and a compactness result (see [27]) imply that

(3.4) un −→ u strongly in L1(Q).

Hence

(3.5) un −→ u a.e. in Q,

so (1.1) and (3.5) yield

(3.6) a(x, t, Tn(un)) −→ a(x, t, u) weak* in L∞(Q).

For any given ψ in C∞(Q̄) which is zero in a neighborhood of ∂Ω×(0, T ) and Ω×{T},
using ψ as a test function for problem (Pn), we have

(3.7) −
ˆ

Q

unψ
′ dx dt +

ˆ

Q

a(x, t, Tn(un)) Dun Dψ dx dt =

ˆ

Q

fnψ dx dt.

Let n →∞, by (2.4), (3.1), (3.4) and (3.6), we get

(3.8) −
ˆ

Q

uψ′ dx dt +

ˆ

Q

a(x, t, u) Du Dψ dx dt =

ˆ

Q

fψ dx dt.

Here we only give the detailed proof of the second term on the left side of (3.8), the
other terms are easily got.

By the absolute continuity of the integral, for all ε > 0, there exists δ > 0 such
that for every measurable subset E ⊂ Q of measure less than δ,

(3.9)
(ˆ

E

|Dψ|q′ dx dt

) 1
q′

<
ε

6βC13

,

where β is as in (1.1), C13 is a positive constant defined in Lemma 2.7.
Now (3.5) yields

(3.10) a(x, t, Tn(un)) −→ a(x, t, u) a.e. in Q.

Therefore, (3.10) and the Egorov theoren imply that for the above δ > 0, there exists
a measurable subset Qδ ⊂ Q such that |Q−Qδ| ≤ δ and

(3.11) a(x, t, Tn(un)) −→ a(x, t, u) uniformly on Qδ.
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Namely, for the above ε > 0, there exists a large nature number N0 such that for
every n > N0,

(3.12) |a(x, t, Tn(un))− a(x, t, u)| < ε

3C13‖Dψ‖Lq′ (Q)

, ∀x ∈ Qδ.

By (3.1), there is a large nature number N1 ≥ N0 such that for every n > N1,

(3.13)
∣∣∣∣
ˆ

Q

a(x, t, u)(Dun −Du)Dψ dx dt

∣∣∣∣ <
ε

3
.

On one hand, we have
ˆ

Q

[a(x, t, Tn(un))Dun − a(x, t, u)Du] Dψ dx dt

=

ˆ

Qδ

[a(x, t, Tn(un))− a(x, t, u)]DunDψ dx dt

+

ˆ

Q−Qδ

[a(x, t, Tn(un))− a(x, t, u)]DunDψ dx dt

+

ˆ

Q

a(x, t, u)(Dun −Du)Dψ dx dt.

(3.14)

On the other hand, (3.12), Hölder’s inequality and (2.45) imply that for every n > N0,∣∣∣∣
ˆ

Qδ

[a(x, t, Tn(un))− a(x, t, u)]DunDψ dx dt

∣∣∣∣

<
ε

3C13‖Dψ‖Lq′ (Q)

‖Dun‖Lq(Q)‖Dψ‖Lq′ (Q) ≤
ε

3
.

(3.15)

Using Hölder’s inequality, (2.45), (3.6) and (1.1), let E = Q−Qδ in (3.9), we obtain
∣∣∣∣
ˆ

Q−Qδ

[a(x, t, Tn(un))− a(x, t, u)]DunDψ dx dt

∣∣∣∣

≤ 2β‖Dun‖Lq(Q)‖Dψ‖Lq′ (Q−Qδ) < 2βC13
ε

6βC13

=
ε

3
, ∀n.

(3.16)

Thus (3.13)–(3.16) imply that for all ε > 0, there exists a large natural number N1

such that for every n > N1,

(3.17)
∣∣∣∣
ˆ

Q

[a(x, t, Tn(un))Dun − a(x, t, u)Du]Dψ dx dt

∣∣∣∣ <
ε

3
+

ε

3
+

ε

3
= ε.

Hence

(3.18)
ˆ

Q

a(x, t, Tn(un)) DunDψ dx dt −→
ˆ

Q

a(x, t, u)) DuDψ dx dt.

Thus we obtain u is a solution to problem (P ) in the sense of distributions. The
proof of Theorem 1.4 is finished. ¤

Proof of Theorem 1.5. Let

(3.19) hk(s) = 1− |T1(s− Tk(s))|, Hk(s) =

ˆ s

0

hk(τ) dτ, ∀s ∈ R, ∀k > 0.
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If we multiply the approximate equation of problem (Pn) by hk(un), we get in the
sense of distributions

(Hk(un))t = div(hk(un)a(x, t, Tn(un))Dun)

− a(x, t, Tn(un)) Dun Dunh′k(un) + fnhk(un).
(3.20)

Note that supp(hk) ⊆ [−k − 1, k + 1], 0 ≤ hk ≤ 1, |h′k| ≤ 1, if n > k + 1,
hk(un)a(x, t, Tn(un))Dun = hk(un)a(x, t, Tk+1(un))DTk+1(un),

a(x, t, Tn(un)) Dun Dunh
′
k(un) = a(x, t, Tk+1(un))DTk+1(un)DTk+1(un)h′k(un).

By Lemma 2.8, (2.1) and the above equalities, for fixed k > 0, we can deduce that
hk(un)a(x, t, Tn(un))Dun is bounded in L2(Q), and a(x, t, Tn(un))DunDunh′k(un) is
bounded in L1(Q). Hence (Hk(un))t is bounded in L2(0, T ; H−1(Ω)) + L1(Q), thus
there exists some s > 1 such that (Hk(un))t is bounded in L1(0, T ; H−s(Ω)). By
virtue of DHk(un) = hk(un)Dun = hk(un)DTk+1(un), (2.60) implies that Hk(un) is
bounded in L2(0, T ; H1

0 (Ω)). Hence a compactness result (see [27]) allows to con-
clude that Hk(un) is compact in L1(Q). By Theorem 1.1 in [23], we have Hk(un) ∈
C([0, T ]; L1(Ω)). Thus there exists a subsequence of {Hk(un)} (still be denoted by
{Hk(un)}) such that it also converges in measure and almost everywhere in Q.

For all σ > 0 and ε > 0, we have
meas{|un − um| > σ} ≤ meas{|un| > k}+ meas{|um| > k}

+ meas{|Hk(un)−Hk(um)| > σ}.(3.21)

By (2.61) in Lemma 2.8, we can choose k large enough to have

(3.22) meas{|un| > k}+ meas{|um| > k} <
ε

2
, ∀n,m.

Furthermore, for the above fixed k, we can choose a large N̄ such that

(3.23) meas{|Hk(un)−Hk(um)| > σ} <
ε

2
, ∀n,m > N̄.

(3.22) and (3.23) yield
(3.24) meas{|un − um| > σ} < ε, ∀n,m > N̄.

Now (3.24) implies that {un} is a Cauchy sequence in measure in Q. Hence there
exists a measurable function u such that
(3.25) un −→ u a.e. in Q.
Thus we get
(3.26) Hk(un) −→ Hk(u) a.e. in Q.

Since |Hk| ≤ k + 1, (3.26) and Lebesgue’s dominated convergence theorem yield

(3.27) Hk(un) −→ Hk(u) strongly in L2(Q).

Since Hk(un) is bounded in L2(0, T ; H1
0 (Ω)) and noting that (3.27) holds, we have

(3.28) Hk(un) −→ Hk(u) weakly in L2(0, T ; H1
0 (Ω)).

Now (3.25) yields
(3.29) Tk(un) −→ Tk(u) a.e. in Q.

Using Lebesgue’s dominated convergence theorem once again, we get
(3.30) Tk(un) −→ Tk(u) strongly in L2(Q).
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From (2.60) and (3.30), it follows that

(3.31) Tk(un) −→ Tk(u) weakly in L2(0, T ; H1
0 (Ω)).

Then (2.59), (3.25) and Fatou’s lemma yield u ∈ L∞(0, T ; L1(Ω)).
Similarly to Theorem 2.1 in [23], we can prove

(3.32) Tk(un) −→ Tk(u) strongly in L2(0, T ; H1
0 (Ω)).

Hence

(3.33) DTk(un) −→ DTk(u) a.e. in Q.

Choosing T1(un − Tk(un)) as a test function for problem (Pn), we can obtain

(3.34)
ˆ

Ω

T̃ (un(T )) dx+

ˆ

{k<|un|≤k+1}
a(x, t, Tn(un))|Dun|2 dx dt ≤

ˆ

{|un|≥k}
|fn| dx dt,

where T̃ (un(T )) =
´ un(T )

0
T1(s− Tk(s)) ds.

It is easy to see that T̃ (un(T )) ≥ 0 a.e. in Ω. Hence we have

(3.35)
ˆ

{k<|un|≤k+1}
a(x, t, Tn(un))|Dun|2 dx dt ≤

ˆ

{|un|≥k}
|fn| dx dt.

Letting n → ∞ in (3.35) and using Fatou’s lemma and Vitali’s theorem on the left
side and right side of (3.35) respectively, we get

(3.36)
ˆ

{k<|u|≤k+1}
a(x, t, u))|Du|2 dx dt ≤

ˆ

{|u|≥k}
|f |dxdt.

Thus from (3.36) we can deduce that

(3.37) lim
k→∞

ˆ

{k<|u|≤k+1}
a(x, t, u))|Du|2 dx dt = 0.

Then (3.25), (3.29), (3.32) and Vitali’s theorem imply that

(3.38) hk(un)a(x, t, Tn(un))Dun −→ hk(u)a(x, t, Tk+1(u))DTk+1(u)

strongly in L2(Q) and

(3.39) a(x, t, Tn(un))DunDunh′k(un) −→ a(x, t, Tk+1(u))DTk+1(u)DTk+1(u)h′k(u)

strongly in L1(Q). Let n →∞ in (3.20). We obtain in the sense of distributions that

(Hk(u))t = div(hk(u)a(x, t, Tk+1(u))DTk+1(u))

− a(x, t, Tk+1(u))DTk+1(u)DTk+1(u)h′k(u) + fhk(u).
(3.40)

Hence (Hk(u))t ∈ L2(0, T ; H−1(Ω)) + L1(Q). By Theorem 1.1 in [23], we also have
Hk(u) ∈ C([0, T ]; L1(Ω)). Since Hk(un(0)) = 0, thus we get Hk(u(0)) = 0. For every
φ ∈ L2(0, T ; H1

0 (Ω)) ∩ L∞(Q) such that φt ∈ L2(0, T ; H−1(Ω)) + L1(Q) and for all
τ ∈ (0, T ], using Tl(Hk(u) − φ)χ(0,τ)(t) as a test function in (3.40), and integrating
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by parts we obtainˆ

Ω

Sl(Hk(u)− φ)(τ) dx−
ˆ

Ω

Sl(−φ(0)) dx +

ˆ τ

0

〈φt, Tl(Hk(u)− φ)〉 dt

+

ˆ τ

0

ˆ

Ω

hk(u)a(x, t, Tk+1(u))DTk+1(u)DTl(Hk(u)− φ) dx dt

+

ˆ τ

0

ˆ

Ω

a(x, t, Tk+1(u))DTk+1(u)DTk+1(u)h′k(u)Tl(Hk(u)− φ) dx dt

=

ˆ τ

0

ˆ

Ω

fhk(u)Tl(Hk(u)− φ) dx dt.

(3.41)

Noting that if k →∞, we have

(3.42) hk(u) −→ 1 a.e. in Q

and

(3.43) Hk(u) −→ u a.e. in Q.

Since h′k(u) = − sign(u)χ{k≤|u|≤k+1}, sign(Hk(u)) = sign(u), and |Hk(u)| > k if |u| >
k; and Hk(u) = u if |u| ≤ k. Moreover, if |Hk(u)| > l + ‖φ‖L∞(Q) = L, we have
DTl(Hk(u)− φ) = 0. Hence if k > l + ‖φ‖L∞(Q), Thus we have

ˆ τ

0

ˆ

Ω

hk(u)a(x, t, Tk+1(u))DTk+1(u)DTl(Hk(u)− φ) dx dt

=

ˆ τ

0

ˆ

Ω

a(x, t, TL(u))DTL(u)DTl(TL(u)− φ) dx dt.

(3.44)

It follows from (3.37) that

(3.45) lim
k→∞

ˆ τ

0

ˆ

Ω

a(x, t, Tk+1(u))DTk+1(u)DTk+1(u)h′k(u)Tl(Hk(u)− φ) dx dt = 0.

Lebesgue’s dominated convergence theorem and (3.42)–(3.43) imply that

(3.46) lim
k→∞

ˆ τ

0

ˆ

Ω

fhk(u)Tl(Hk(u)− φ) dx dt =

ˆ τ

0

ˆ

Ω

fTl(u− φ) dx dt.

We can also prove if k →∞,

(3.47) Tl(Hk(u)− φ) −→ Tl(u− φ) strongly in L2(0, T ; H1
0 (Ω))

and

(3.48) Tl(Hk(u)− φ) −→ Tl(u− φ) weak* in L∞(Ω).

From (3.47) and (3.48) we get

(3.49) lim
k→∞

ˆ τ

0

〈φt, Tl(Hk(u)− φ)〉 dt =

ˆ τ

0

〈φt, Tl(u− φ)〉 dt.

Since for a.e. τ ∈ [0, T ], a.e. x ∈ Ω,

|Hk(u)| ≤ |u|, 0 ≤ Sl(Hk(u)− φ)(τ) ≤ l[|u(τ)|+ |φ(τ)|],
combining with u ∈ L∞(0, T ; L1(Ω)) and φ ∈ C([0, T ]; L1(Ω)), by Lebesgue’s domi-
nated convergence theorem and (3.43), we get

(3.50) lim
k→∞

ˆ

Ω

Sl(Hk(u)− φ)(τ) dx =

ˆ

Ω

Sl(u− φ)(τ) dx.
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Now (3.44)–(3.46), (3.49)–(3.50) and (3.41) yield for a.e. τ ∈ [0, T ],
ˆ

Ω

Sl(u− φ)(τ) dx−
ˆ

Ω

Sl(−φ(0)) dx +

ˆ τ

0

〈φt, Tl(u− φ)〉 dt

+

ˆ τ

0

ˆ

Ω

a(x, t, u) DuDTl(u− φ) dx dt =

ˆ τ

0

ˆ

Ω

fTl(u− φ) dx dt.

(3.51)

This shows that the first term on the left side of the above equality is almost ev-
erywhere equal to a continuous function on [0, T ]. Replacing l with k in (3.51), we
obtain (2.1)–(2.2) and u is an entropy solution to problem (P ). By (2.61), we have

(3.52)
ˆ

Q

χ{|un|>k} dx dt = meas{|un| > k} ≤ C19

kr
.

Thus (3.25), (3.52) and Fatou’s lemma yield

(3.53) meas{|u| > k} =

ˆ

Q

χ{|u|>k} dx dt ≤ C19

kr
.

Rewriting (3.43) as follows

(3.54) k meas{|u| > k} 1
r ≤ C

1
r
19.

Thus by Definition 2.2, we obtain u ∈Mr(Q).
To complete the proof of (1.11), we need to prove

(3.55) Dun −→ Du a.e. in Q.

In fact, for all σ > 0 and ε > 0, we have
meas{|Dun −Du| > σ} ≤ meas{|un| > k}+ meas{|u| > k}

+ meas{|DTk(un)−DTk(u)| > σ}.(3.56)

By (2.61) in Lemma 2.8 and (1.10), we can choose k large enough to have

(3.57) meas{|un| > k}+ meas{|u| > k} <
ε

2
, ∀n.

For the above k, (3.33) implies that there exists a large N̄ such that

(3.58) meas{|DTk(un)−DTk(u)| > σ} <
ε

2
, ∀n > N̄.

Now (3.57) and (3.58) yield

(3.59) meas{|Dun −Du| > σ} < ε, ∀n > N̄.

Hence from (3.54), we can deduce that (3.55) (up to a subsequence) holds. Similarly
to (3.52)–(3.54), by (2.62) and (3.55), we obtain |Du| ∈ Mq(Q). Thus the proof of
Theorem 1.5 is completed. ¤
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