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Abstract. We extend a factorization due to Krĕın to arbitrary analytic functions from the
upper half-plane to itself. The factorization represents every such function as a product of fractional
linear factors times a function which, generally, has fewer zeros and singularities than the original
one. The result is used to construct functions with given zeros and poles on the real line.

1. Introduction

Denote by C+ = {x+iy : x ∈ R, y > 0} the upper half of the complex plane. We
consider the multiplicative structure of the Herglotz class H consisting of analytic
functions f : C+ → C+. (This class, along with its matrix-valued analogues, is dis-
cussed in detail in [6].) We start with a classical result of Krĕın [10, Theorem 27.2.1].
Assume that k ∈ H is the restriction of a meromorphic function defined on C with
the property that k(z) = k(z) and, in addition, k has infinitely many positive and
infinitely many negative zeros. Denote by {an)∞n=1 the zeros of k, all of which are real
and simple, and by {bn}∞n=1 all the poles of k, all of which are also real and simple,
arranged so that the interval (bn, an) contains no zeros or poles. Then Krĕın proved
that there exist positive constants {cn}∞n=1 such that

(1.1) k(z) =
∞∏

n=1

cn
z − an

z − bn

.

The constants cn are needed for convergence of the product, and they can be taken
to be equal to bn/an for all but one or two values of n. This result was studied in
further detail by Chalendar, Gorkin, and Partington [3], including the cases where
there are, for instance, only finitely many negative zeros. Furthermore, [3] addresses
the more general situation where f is not meromorphic, but is allowed a finite number
of essential singularities on the real line. However, the results are not as complete in
this more general situation.

Our main result states that any function f ∈ H can be written as
f = kg,

where k is a product of the form (1.1), and g ∈ H has the following additional
property: if I ⊂ R is any interval such that g extends continuously to a real-valued
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function on I, then the extension is positive on I. This factorization is of interest only
for functions f which do extend to a real function on a nonempty open subset Ω of R.
When the complement of this set Ω has linear measure equal to zero, the factor g is a
positive constant, and this covers Krĕın’s theorem as well as the factorization results
in [3]. In particular, we see in Section 4 under what conditions we can prescribe the
real zeros and poles of a function in H.

Our factorization is closely related to results of Aronszajn and Donoghue [1].
These authors also consider the multiplicative structure of H starting with the ob-
servation that log f ∈ H provided that f ∈ H \ {0}. A result essentially equivalent
to Krĕın’s theorem is stated in [1, page 331]. The emphasis in this work is however
not on factorization into linear fractional factors. We also refer to Donoghue’s book
[5] for information about the class H, and Section 2 of [6] for a brisk review of the
basic results concerning this class.

It would be of interest, for instance in the study of finite rank perturbations of
selfadjoint operators, to prove analogues of our factorization results for the matrix-
valued analogue of the Herglotz class. This situation is complicated by the following
fact: given a meromorphic matrix-valued function f in the Herglotz class, and a point
t on the real line, it is possible that t is a pole for both f(z) and f(z)−1.

2. Krĕın products

We now describe in more detail the products k needed in our results. Given a
proper open interval J ⊂ R ∪ {∞}, there exists a unique conformal automorphism
pJ ∈ H such that pJ is negative precisely on J , and |pJ(i)| = 1. Explicitly, if
J = (b, a) with b < a is a finite interval, then

pJ(z) =
|i− b|
|i− a| ·

z − a

z − b
.

If J = (−∞, a), then

pJ(z) =
z − a

|i− a| .
If J is the complement of a closed interval J ′, where J ′ is of the preceding two types,
then

pJ = − 1

pJ ′
.

We also agree that p∅(z) = 1 and pR∪{∞}(z) = −1.
In order to simplify the notation of intervals in R ∪ {∞}, we set

(b, a) = (b,∞) ∪ {∞} ∪ (−∞, a)

when b > a. With this convention, we have

ϕ((b, a)) = (ϕ(b), ϕ(a))

for every conformal automorphism ϕ of the upper half-plane. This notation allows
for concise statements of our results, and it only comes into use when considering the
unbounded component of a relatively open subset of R ∪ {∞} containing ∞.

Consider now an arbitrary open subset O ⊂ R∪ {∞}, and write it as a union of
pairwise disjoint open intervals

O =
⋃

0≤n<N

Jn, Jn = (bn, an), 0 ≤ n < N,
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where N ∈ {0, 1, . . . ,∞}. Denote by X the closure of the set {bn : 0 ≤ n < N} in
R ∪ {∞}. The function

kO(z) =
∏

0≤n<N

pJn

is called the Krĕın product associated with the set O.
We collect in the following statement the basic properties of Krĕın products. The

proofs are similar to the ones available in the classical case where supn bn = +∞ and
infn bn = −∞. We sketch these arguments for the reader’s convenience.

Proposition 2.1. Consider an open set O =
⋃

0≤n<N(bn, an) ⊂ R∪{∞}, where
the intervals (bn, an) are pairwise disjoint. Denote by X the closure of the set {bn : 0 ≤
n < N} in R ∪ {∞}.

(1) The product kO converges uniformly on compact subsets of C+, and it defines
a function in H.

(2) The function kO continues analytically to (C ∪ {∞}) \X.
(3) The function kO|(R ∪ {∞}) \X is real-valued. More precisely, kO(x) < 0 for

x ∈ O and kO(x) > 0 for x ∈ (R ∪ {∞}) \O.
(4) If an /∈ X for some n, then an is a simple zero of kO.
(5) If bn is an isolated point of X for some n, then bn is a simple pole of kO.
(6) Let O1, O2 ⊂ R ∪ {∞} be two open sets such that the symmetric difference

O14O2 has linear Lebesgue measure equal to zero. Then kO1 = kO2 .
(7) If ϕ is a conformal automorphism of C+, then kϕ−1(O) = ckO ◦ ϕ, where

c = 1/|kO(ϕ(i))| > 0.

Proof. The convergence in (1) only needs to be discussed when N = ∞. For
z ∈ C+, the argument arg pJn(z) is equal to the angle at z subtended by the interval
(bn, an), and therefore the sum of these arguments converges to a number ≤ π. Since
|p(bn,an)(i)| = 1, we conclude that the infinite product kO(i) converges and |kO(i)| = 1.
Convergence elsewhere in C+ can be deduced via a normal family argument. Indeed,
the partial products p(b0,a0)p(b1,a1) · · · p(bn,an) form a normal family in C+, and any
limit point f of this family is such that |f(i)| = 1 and arg f(z) equals the angle at z
subtended by the set O. This determines the function f completely, hence f is the
limit (uniform on compact subsets of C+) of these partial products.

To verify (2) and (3), we use the alternative formula kO = ev, where

v(z) =

ˆ

O

1 + tz

t− z
· dt

1 + t2
.

Indeed, <v(i) = 0, while

=v(z) = =z

ˆ

O

dt

|t− z|2 , z /∈ O.

When =z > 0, this integral equals precisely the angle at z subtended by O. The
function v is analytic on (C∪{∞})\O, and it is real-valued on (R∪{∞})\O. Thus
kO(x) is positive on this last set. The same argument shows that kO/p(an,bn) can be
continued analytically across the interval (bn, an), and the continuation is positive
on this interval. We deduce that kO can also be continued across (bn, an), and the
continuation is negative on this interval.

Properties (4) and (5) follow from the fact that kO/p(bn,an) is analytic and positive
at an if an /∈ X, and it is analytic and positive at bn if bn /∈ X.
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To prove (6), observe that arg kO1(z) = arg kO2(z) for z ∈ C+. It follows that
kO1/kO2 is constant, and the constant is 1, as can be seen by evaluating the quotient
at z = i.

For (7), observe that pϕ−1(J)/pJ ◦ ϕ is a positive constant (depending on J) for
every interval J . It follows that kϕ−1(J)/kJ ◦ ϕ is a positive constant as well. ¤

Part (6) of the preceding proposition indicates how a Krĕın product can be mod-
ified to minimize the number of factors. To make this precise, we define the Lebesgue
regularization of an open set O to consist of all points x ∈ R for which there is ε > 0
such that (x− ε, x + ε) \O has Lebesgue measure equal to zero. Thus, the Lebesgue
regularization of O is the largest open set O1 ⊃ O such that the Lebesgue measure
of O1 \O is equal to zero, and therefore we have kO = kO1 . For instance,

k(1,2)∪(2,3) = p(1,3).

More generally, the Lebesgue regularization of a union
⋃

n(bn, an) of subintervals of
(b, a) is equal to (b, a) if a − b =

∑
n(an − bn). Thus, kR\C = −1 if C denotes the

usual Cantor ternary set.
An open set O is said to be Lebesgue regular if it equals its Lebesgue regulariza-

tion.

3. The Nevanlinna representation

The additive structure of the class H is described by the Nevanlinna representa-
tion. This type of representation is also available for the operator-valued analogue of
the Herglotz class, and we refer to [6] for a good introduction. Given α ≥ 0, β ∈ R,
and a finite, positive Borel measure ρ on R, the function

(3.1) f(z) = αz + β +

ˆ

R

1 + zt

t− z
dρ(t), z ∈ C+,

belongs to H. Conversely, every function f ∈ H can be represented under this form.
The constants α, β and the measure ρ are uniquely determined by the function f .
For instance,

α = lim
y→+∞

f(iy)

iy
,

while ρ is the weak limit as ε ↓ 0 of the measures

dρε(t) =
=f(t + iε)

π(1 + t2)
dt.

We denote by σ(f) the closed support of the measure ρ, to which we add ∞ if α > 0
or the support is unbounded. If the set Ω(f) = (R∪ {∞}) \ σ(f) is not empty, then
the formula (3.1) defines an analytic function in (C ∪ {∞}) \ σ(f) which takes real
values on Ω(f). Conversely, if J ⊂ R is an interval such that f can be extended to
a continuous function on J , then J ⊂ Ω(f). The isolated points of σ(f) are simple
poles of f . Observe that

f ′(z) = α +

ˆ

R

1 + t2

(t− z)2
dρ(t),

and this shows that f is an increasing function on any interval in R disjoint from
σ(f). In particular, the zeros of f in such an interval must be simple.
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A few simple illustrations will help clarify these notions. The function f(z) = z+i
belongs to H, and it is the restriction to C+ of an entire function. However, this
entire function is not real-valued at any point of R, and therefore σ(f) = R ∪ {∞}.
The measure ρ corresponding to this function is the Cauchy distribution

dρ(t) =
dt

π(1 + t2)
.

A more interesting example is the function

f(z) = z +
√

z2 − 1,

where the square root is taken to be positive for z > 1, for which we have σ(f) =
[−1, 1] ∪ {∞}. For this example we have

− 1

f(z)
=
√

z2 − 1− z,

and σ(−1/f) = [−1, 1]. For a Krĕın factor pJ , where J = (b, a) is a proper interval,
we have σ(pJ) = {b}.

For any function f ∈ H, the limit

f(t) = lim
ε↓0

f(t + iε)

exists for almost every t ∈ R (relative to Lebesgue measure). Moreover, the abso-
lutely continuous part of the measure ρ in the representation (3.1) is equal to

=f(t) dt

π(1 + t2)
.

In particular, the measure ρ is singular relative to Lebesgue measure if and only if
f(x) is real for almost every x ∈ R.

The following result was proved by Letac [9]; the case of measures with finite
support is due to Boole [2].

Theorem 3.1. Assume that the function f ∈ H is given by

f(z) = z + β +

ˆ

R

1 + zt

t− z
dρ(t), z ∈ C+,

where ρ is singular relative to Lebesgue measure. Then the map f preserves Lebesgue
measure, that is, the Lebesgue measure of the set

{x ∈ R : f(x) ∈ (c, d)}
equals d− c when −∞ < c < d < ∞.

We will actually require an equivalent result, first proved by Hruščëv and Vino-
gradov [8]. We include the simple derivation from Theorem 3.1. Given a finite,
positive, measure µ on R, singular with respect to Lebesgue measure, the Cauchy
transform

Gµ(z) =

ˆ

R

dµ(t)

z − t
, z ∈ C+,

has real limit values
Gµ(x) = lim

ε↓0
Gµ(x + iε)

for almost every x ∈ R. Here is the result of [8]; the special case of measures with
finite support is due again to Boole [2].
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Theorem 3.2. Let µ be a finite, positive measure on R, singular with respect
to Lebesgue measure. For every y > 0, the Lebesgue measure of the sets

{x ∈ R : Gµ(x) > y}, {x ∈ R : Gµ(x) < −y}
is equal to µ(R)/y.

Proof. It suffices to consider the case when µ is a probability measure. The
function f(z) = 1/Gµ(z) is easily seen to belong to H, and f(x) is real for almost
every x ∈ R. Moreover, since

lim
y→∞

iyGµ(iy) = µ(R) = 1,

we deduce that Theorem 3.1 applies to f . The result follows now immediately be-
cause, for instance,

{x ∈ R : Gµ(x) > y} = {x ∈ R : f(x) ∈ (0, 1/y)}. ¤

We need an easy consequence of this result.

Corollary 3.3. Assume that the function f ∈ H is given by (3.1), and the
restriction of the measure ρ to an interval J is nonzero but singular relative to
Lebesgue measure. Then the function f is not essentially bounded below or above
on the interval J .

Proof. Denote by µ the restriction of the measure (1 + t2) dρ(t) to the interval
J . Then the function f(z) + Gµ(z) can be continued analytically across the interval
J , thus f(x) + Gµ(x) is bounded on any compact subset of J . The corollary follows
now immediately from Theorem 3.2. ¤

Corollary 3.4. For every f ∈ H, the set

Γ(f) = {x ∈ Ω(f) : f(x) < 0}
is Lebesgue regular.

Proof. Assume to the contrary that there exists x ∈ R \ Γ(f) and ε > 0 such
that the interval J = (x − ε, x + ε) is contained almost everywhere in Γ(f), but
J ∩σ(f) 6= ∅. If the function f ∈ H is given by (3.1), it follows that the restriction of
ρ to J is nonzero, and this restriction is singular as well since its support is a closed
set of Lebesgue measure equal to zero. Corollary 3.3 implies that f is not essentially
bounded above on J , contrary to the assumption that f < 0 almost everywhere on
J . ¤

Proposition 2.1 describes the sets σ(f), Ω(f), and Γ(f) in the case of a Krĕın
product. We state the result for further use.

Proposition 3.5. Consider a Lebesgue-regular open set O =
⋃

0≤n<N(bn, an) ⊂
R∪ {∞}, where the intervals (bn, an) are pairwise disjoint. Denote by X the closure
of the set {bn : 0 ≤ n < N} in R ∪ {∞}. Then

(1) σ(kO) = X;
(2) Γ(kO) = O;
(3) the real poles of kO are precisely the points bn which are isolated in X;
(4) a point an is in σ(kO) precisely when an ∈ X, otherwise an is a simple zero.
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4. Factorization

We begin by considering factors of the form pJ .

Lemma 4.1. Consider a nonzero function f ∈ H, and an interval J ⊂ Ω(f) such
that f(x) < 0 for all x ∈ J . Then there exists a function g ∈ H such that f = pJg.

Proof. Replacing the function f by f ◦ ϕ for some conformal automorphism of
C+, we may assume that J = (−∞, 0), so that we need to prove that the function
f(z)/z belongs to H. Since

f(z)

z
= lim

ε↓0
f(z − ε)

z
, z ∈ C+,

and H is closed under pointwise limits, we may also assume that σ(f) ⊂ [ε, +∞] for
some ε > 0, and f(0) < 0. Thus f can be written as

f(z) = αz + β +

ˆ

[ε,+∞)

1 + zt

t− z
dρ(t), z ∈ C+,

for some α > 0, β ∈ R, and some finite, positive, Borel measure ρ on [ε, +∞). We
have then

f(0) = β +

ˆ

[ε,+∞)

1

t
dρ(t) < 0,

so that
f(z)

z
= α +

[
β +

ˆ

[ε,+∞)

1

t
dρ(t)

]
1

z
+

ˆ

[ε,+∞)

[
1 + zt

z(t− z)
− 1

zt

]
dρ(t)

= α +

[
β +

ˆ

[ε,+∞)

1

t
dρ(t)

]
1

z
+

ˆ

[ε,+∞)

1 + t2

t(t− z)
dρ(t),

and it is clear that this function has nonnegative imaginary part for z ∈ C+. ¤
Our main factorization result follows. Recall that Ω(f) = (R ∪ {∞}) \ σ(f) and

Γ(f) = {x ∈ Ω(f) : f(x) < 0}.
Theorem 4.2. For every nonzero function f ∈ H there exists g ∈ H such that

f = kΓ(f)g. The function g has the following properties:
(1) σ(g) ⊂ σ(f).
(2) g(x) > 0 for every x ∈ Ω(g).
(3) The set Ω(g) is Lebesgue regular.
(4) Ω(f) = Ω(kΓ(f)) ∩ Ω(g).

Proof. Denote by (Jn)0≤n<N the connected components of Γ(f), so that

kΓ(f) =
∏

0≤n<N

pJn .

We first verify by induction that the function

gk = f/
∏

0≤n<k

pJn

belongs toH for every finite k ≤ N . The case k = 0 is vacuously verified since g0 = f .
The function gk has the property that Jk+1 ⊂ Γ(gk), and thus the fact that gk+1 ∈ H
follows by an appplication of Lemma 4.1. If N is finite, we are done showing that
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g ∈ H. If N is infinite, we have g(z) = limn→∞ gn(z) for all z ∈ C+, and we conclude
again that g ∈ H.

Assume next that x ∈ Ω(f). If f(x) > 0 then x is at positive distance from
Γ(f), and therefore the product kΓ(f) converges on a neighborhood of x, and it takes
positive values at real points close to x. (This argument also works for x = ∞ with
the usual interpretation of the word ‘close’.) It follows that x ∈ Ω(g). If f(x) < 0
then kΓ(f) is again analytic in a neighborhood of x, and it takes negative values at
real points close to x. We conclude again that x ∈ Ω(g). If f(x) = 0, it follows
that, for some ε > 0, (x − ε, x) ⊂ Γ(f) and (x, x + ε) ∩ Γ(f) = ∅. In particular, f
has a simple zero at x. In this case kΓ(f) also has a simple zero at x, and the ratio
g = f/kΓ(f) is positive in (x− ε, x + ε) and analytic near x. In particular, x ∈ Ω(g).
This verifies property (1).

The above argument also shows that g(x) > 0 for every x ∈ Ω(f). Assume now
that x ∈ Ω(g) \ Ω(f) and g(x) < 0. Since kΓ(f) = f/g, we deduce that we have
x ∈ σ(kΓ(f)), and therefore x is an accumulation point of a sequence of endpoints of
some intervals Jn. Since g is positive on each Jn, we deduce g(x) ≥ 0, a contradiction.
Thus we must have g(x) ≥ 0 for x ∈ Ω(g). However, when a function g in H vanishes
at some point x ∈ Ω(g), the function g must change sign in a neighborhood of that
point. This proves (2).

Property (3) follows from Corollary 3.4 applied to the function −1/g.
The inclusion Ω(f) ⊃ Ω(kΓ(f)) ∩ Ω(g) is obvious. Conversely, observe that any

point a ∈ Ω(f) such that f(a) = 0 is a simple zero of f and of kΓ(f). Indeed, there
is an interval (b, a) ⊂ Γ(f), and a is isolated in ∂Γ(f). Moreover, kΓ(f) is analytic
and real in a neighborhood of a. It follows that the quotient g = f/kΓ(f) is analytic
and real on a neighborhood of a. It is also clear that f and kΓ(f) are analytic and
nonzero in the neighborhood of any point a ∈ Ω(f) such that f(a) 6= 0. Thus both
kΓ(f) and g are analytic and real on Ω(f), thus verifying the opposite inclusion. ¤

The preceding result is most effective when σ(f) is small.

Corollary 4.3. Assume that f ∈ H and σ(f) has Lebesgue measure equal to
zero. Then we have f = ckΓ(f) for some positive constant c.

Proof. Consider the factorization f = kΓ(f)g provided by the preceding theorem.
The set Ω(g) is Lebesgue regular, and hence Ω(g) = R∪{∞} because its complement
has measure zero. The Nevanlinna representation of g shows then that g is a constant
function, and the constant is positive by Theorem 4.2(2). ¤

The preceding corollary recovers Krĕın’s original factorization result, as well as
the extensions considered in [3]. Note that the measure ρ in the Nevanlinna repre-
sentations of the functions considered in [3] is a discrete measure whose support has
only finitely many accumulation points. Our corollary covers functions for which the
support of ρ is an arbitrary closed set of Lebesgue measure zero, for instance the
ternary Cantor set.

5. Functions g positive on Ω(g)

In this section we analyze more carefully the factor g in the decomposition f =
kΓ(f)g. The characteristic properties of these functions are that Ω(g) is Lebesgue
regular, and g(x) > 0 for x ∈ Ω(g). Such a function can then be written as g = eh
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for some function h ∈ H such that

0 < =h(z) < π

for all z ∈ C+. Moreover, the function h can be continued analytically across Ω(g),
and h(x) ∈ R for x ∈ Ω(g). Conversely, g can be continued analytically across Ω(h),
and g(x) > 0 for x ∈ Ω(h). We conclude that Ω(h) = Ω(g) and σ(h) = σ(g). These
facts imply that the Nevanlinna representation of the function h is of the form

h(z) = γ +

ˆ

σ(g)

1 + zt

t− z
· ψ(t)

1 + t2
dt, z ∈ C+,

where γ ∈ R, ψ : σ(g) → (0, 1] is a measurable function, and there is no open interval
J such that ψ(t) = 1 almost everywhere on J . The fact that σ(h) = σ(g) amounts to
saying that the support of the measure ψ(t) dt is equal to σ(g) or, equivalently since
Ω(g) is Lebesgue regular, ψ(t) > 0 for almost every t ∈ σ(g).

Conversely, assume that σ ⊂ R is a closed set such that R\σ is Lebesgue regular,
and ϕ : σ → (0, 1] is measurable. We can then define a function v ∈ H by setting

v(z) =

ˆ

σ

1 + zt

t− z
· ϕ(t)

1 + t2
dt, z ∈ C+.

This function satisfies

=v(z) = =z

ˆ

σ

ϕ(t)

|t− z|2 dt ≤ =z

ˆ

σ

dt

|t− z|2 ≤ =z

ˆ ∞

−∞

dt

|t− z|2 = π.

Moreover, Γ(g) = ∅ provided that ϕ is not equal to 1 almost everywhere on any
open interval.

We summarize these observations below.

Theorem 5.1. Assume that f ∈ H. There exist a constant γ ∈ R and a
measurable function ψ : σ(f) → [0, 1] such that

f(z) = kΓ(f)(z)eh(z), z ∈ C+,

where h ∈ H is defined by

h(z) = γ +

ˆ

σ(f)

1 + zt

t− z
· ψ(t)

1 + t2
dt, z ∈ C+.

Conversely, given a closed set σ ⊂ R, an open subset O ⊂ (R ∪ {∞}) \ σ, and a
measurable function ϕ : σ → [0, 1] such that ϕ is not equal to 1 almost everywhere
on any open interval, the function

kO(z)ev(z), z ∈ C+,

where v is defined by

v(z) =

ˆ

σ

1 + zt

t− z
· ϕ(t)

1 + t2
dt, z ∈ C+,

belongs to the class H, and ev(t) > 0 for every t ∈ Γ(ev).

Proof. We only need to verify the last assertion. Recall that the argument of
kO(z) equals the angle subtended by the set Γ at z, that is

=z

ˆ

O

dt

|t− z|2 .
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As shown above, the argument of ev(z) is at most

=z

ˆ

σ

dt

|t− z|2 ,

and the sum of these two numbers is at most π because σ∩O = ∅. It follows that the
argument of kΓev is at most equal to π, and therefore this function belongs to H. ¤

6. Interpolation

A natural question arises as to which pairs (Ω, O) of open subsets of R ∪ {∞}
are of the form (Ω(f), Γ(f)).

Proposition 6.1. Consider open sets Ω and O =
⋃

0≤n<N(bn, an) in R ∪ {∞}.
Denote by X the closure in R ∪ {∞} of the set {bn : 0 ≤ n < N}, and by Ω1 the
Lebesgue regularization of Ω. The following conditions are equivalent.

(1) There exists a function f ∈ H such that Ω(f) = Ω and Γ(f) = O.
(2) The sets Ω and O satisfy the following three requirements:

(a) O ⊂ Ω;
(b) O is Lebesgue regular;
(c) Ω = Ω1 \X.

Proof. Assume first f ∈ H satisfies (1), and factor f = kOg for some g ∈ H.
Condition (a) is obviously satisfied. The sets O and Ω(g) are Lebesgue regular by
Corollary 3.4 and Theorem 4.2(3), and

Ω = Ω(f) = Ω(g) ∩ Ω(kO) = Ω(g) \X.

Condition (c) now follows because Ω(g) ⊃ Ω1 by regularity, while Ω ∩X = ∅.
Conversely, assume that conditions (a–c) are satisfied, and set f = kOg, where

g = ev and v is defined as

v(z) =
1

2

ˆ

R\Ω1

1− zt

t− z
· dt

1 + t2
z ∈ C+.

We have Γ(f) = O and Ω(g) = Ω1, while Ω(kO) = R \X. It is now easy to conclude
using Theorem 4.2(4) that

Ω(f) = Ω(g) ∩ Ω(kO) = Ω1 ∩ Ω(kO) = Ω1 \X = Ω.

We conclude that f satisfies (1). ¤
It is easy to construct examples of sets Ω and O satisfying conditions (a–c) of

the preceding theorem. Consider, for instance the ternary Cantor set C, obtained
by removing 2k−1 intervals of length 3−k from the interval [0, 1] for k ≥ 1, and
set Ω = R \ C. Denote by (bn, cn) these intervals, and select for each n a point
an ∈ (bn, cn). Then O =

⋃
n(bn, an) is a Lebesgue regular open set and kO has zeros

at the points an and essential singularities at all the points of C. If we consider instead
the union O of all intervals (bn, cn) of length 3−k with k even, then kO has no zeros or
poles and it is still singular at all points in C. In general, if Ω = Ω(f), O = Γ(f), and
(b, c) is a connected component of Ω, the intersection (b, c) ∩ O can be any interval
of the form (b, a) for some a ∈ [b, c].

The following result can be viewed as an interpolation result which yields, in the
special case of a finite set Y , the results of [3]. The set A in the statement is the
proposed set of zeros of a function in H, B is the proposed set of poles, and Y is a set
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where the function is allowed to be essentially singular. The conditions in assertion
(3) could be summarized by saying that the points of A and B are interlaced in each
component of the complement of Y .

Theorem 6.2. Consider pairwise disjoint sets A,B, Y ⊂ R such that Y is closed,
and the limit points of A ∪B belong to Y . The following conditions are equivalent.

(1) There exists a function f ∈ H such that A ⊂ {x ∈ Ω(f) : f(x) = 0} ⊂ A ∪ Y
and B ⊂ σ(f) ⊂ B ∪ Y .

(2) There exists a Lebesgue regular open set O =
⋃

0≤n<N(bn, an) such that the
intervals (bn, an) are pairwise disjoint, A ⊂ {an : 0 ≤ n < N} ⊂ A ∪ Y , and
B ⊂ {bn : 0 ≤ n < N} ⊂ B ∪ Y .

(3) For every connected component J of (R ∪ {∞}) \ Y , the following two con-
ditions are satisfied.
(a) If a and a′ are two distinct points in A∩J , there is a point b ∈ B between

a and a′.
(b) If b and b′ are two distinct points in B∩J , there is a point a ∈ A between

b and b′.
If these equivalent conditions are satisfied and Y is of Lebesgue measure equal to
zero, then every function f satisfying (1) is of the form f = ckO, where c > 0 and O
is one of the open sets satisfying (2).

Proof. Assume first that f satisfies the conditions in (1), set O = Γ(f), and
write O =

⋃
0≤n<N(bn, an) with pairwise disjoint intervals (bn, an). Then f has a

zero at each point a ∈ A, and therefore a = an for some n. On the other hand, if
a /∈ A ∪ Y then f is (at worst) meromorphic in a neighborhood of a and f(a) 6= 0,
so that a 6= an for all n. Similarly, if b ∈ B then b is isolated in B ∪ Y , in particular
b is isolated in σ(f). It follows that b is a pole of f , and therefore b = bn for some
n. Finally, if b /∈ B ∪ Y then b /∈ σ(f) so that f is analytic at b. We conclude that
b 6= bn for all n. We have then verified that O satisfies the conditions in (2).

Conversely, assume that O is a Lebesgue regular open set satisfying the conditions
in (2), and set f = kO. The set σ(f) is the closure of {bn : 0 ≤ n < N} and it therefore
contained in B∪Y . Every a ∈ A is of the form a = an for some n, and the hypothesis
on the set A implies that an /∈ B ∪ Y . We conclude that an ∈ Ω(f) and f(an) = 0.
On the other hand, if a /∈ A ∪ Y then a 6= an for all n and therefore f(a) 6= 0 when
a ∈ Ω(f). This proves the first two inclusions in (1). Similarly, each b ∈ B is equal
to some bn and it is an isolated point in σ(f), thus a pole. Points b /∈ B ∪ Y belong
to Ω(f), and this verifies the last two inclusions in (1).

We have established the equivalence of (1) and (2). The equivalence of (2) and
(3) is easily verified. Indeed, assume that (2) is satisfied, J is a component of the
complement of Y , and a, a′ ∈ A∩Y . There are then integers n,m so that a = an and
a′ = am. Then we have bn, bm ∈ B ∩ Y , and therefore one of these points is between
a and a′. The second condition in (3) is verified similarly.

Conversely, assume that (3) holds. For each connected component (c, d) of the
complement of Y there exists then a family {(bi, ai) : i ∈ I} of pairwise disjoint
intervals contained in (c, d) such that A∩(c, d) ⊃ {ai : i ∈ I}, B∩(c, d) ⊃ {bi : i ∈ I},
and the sets (A ∩ (c, d)) \ {ai : i ∈ I} and (B ∩ (c, d)) \ {bi : i ∈ I} contain at most
one point each. If (A ∩ (c, d)) \ {ai : i ∈ I} = {a}, then (c, a) is disjoint from (bi, ai)
for all i. Analogously, if (B ∩ (c, d)) \ {bi : i ∈ I} = b then (b, d) is disjoint from all
the intervals (bi, ai). The set O is now defined to be the smallest Lebesgue regular
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open set containing all the intervals (bi, ai) as well as the intervals (c, a) and (b, d)
when needed.

The last assertion in the statement follows immediately from Corollary 4.3. ¤
The special points a, b which appear in the proof of (3) ⇒ (2) are the ‘loners’ of

[3]. When a loner a exists, the function f = kO has a pole at c ∈ Y unless there is
also a loner on the other side of c. Similarly, the function f may have a zero at d.

When a component (c, d) of (R ∪ {∞}) \ Y contains no points in A ∪ B, the
entire interval (c, d) can be added to the set O. This is the extent of nonuniqueness
allowed in the selection of the set O, and thus in the choice of the function f , when
Y has zero Lebesgue measure.

The preceding result can be reformulated as an interpolation result for self maps
of the unit disk using the conformal map z 7→ (z− ζ)/(z + ζ) of C+ onto the disk D
for some ζ ∈ C+. We state a particular case which may be useful in other contexts.
We denote by T = ∂D the unit circle.

Corollary 6.3. Assume that A,B, and Z are three pairwise disjoint subsets of
T such that Z is closed, the limit points of A and B are contained in Z, and A and
B are interlaced on every component of T \Z. Fix α, β ∈ T with α 6= β. Then there
exists an analytic function ϑ : D → D such that

(1) ϑ can be continued analytically across T \ Z;
(2) |ϑ(z)| = 1 for all z ∈ T \ Z;
(3) A = {a ∈ T \ Z : ϑ(a) = α} and B = {b ∈ T \ Z : ϑ(b) = β}.

When Z has zero linear Lebesgue measure, the function θ can be chosen to be inner.

The case of a finite set Z is considered in [3], while Z = ∅, corresponding to
finite Blaschke products, was studied in [7].
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