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WIMAN–VALIRON THEORY IN SEVERAL VARIABLES
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Abstract. Wiman–Valiron theory of entire functions of several complex variables is developed
up to results on the asymptotic behaviour of the derivatives.

1. Introduction

Let f be a transcendental entire function of n complex variables z1, . . . , zn, with
Taylor series

(1) f(z) =
∑

j

ajz
j,

where z = (z1, . . . , zn), j = (j1, . . . jn), j1, . . . , jn being non-negative integers, and
zj = zj1

1 · · · zjn
n . We adopt the conventions that 00 = 1 and 0/0 = 1. The aim here

is to establish results for general n that are known for n = 1 and, in a somewhat
piecemeal and unsystematic form, for n = 2 [6, 7, 10].

In what follows, 0 = (0, . . . , 0), 1 = (1, . . . , 1) and, for 1 ≤ j ≤ n, 1j =
(0, . . . , 1, . . . , 0), the vector in which all components are 0 except the jth, which
is 1. For z = (z1, . . . , zn) and w = (w1, . . . , wn), we write zw = (z1w1, . . . , znwn),
z/w = (z1/w1, . . . , zn/wn), z ·w = z1w1 + · · · + znwn, |z| = (|z1|, . . . , |zn|), ‖z‖ =
max1≤j≤n |zj| and ‖z‖◦ = |z1| + · · · + |zn|. We call j the degree of ajz

j, and write
j = deg(ajz

j).
With the understanding that r ≥ s or r > s means rj ≥ sj or rj > sj for

1 ≤ j ≤ n, we write log r = (log r1, . . . , log rn) for r > 0. More generally, if h is a
real- or complex-valued function of a real or complex variable z, we define h(z) =
(h(z1), . . . , h(zn)). We write log S = {log r : r ∈ S} for any set S ⊆ {r : r > 0}, and
define the logarithmic measure of S by

(2) logmeasS =

ˆ

log S

dr,

where dr = dr1 · · · drn. Given r2 ≥ r1 ≥ 0, we write ∆r1,r2 = {r : r1 < r < r2}.
For r ≥ 0, the maximum term of the function f given by (1) is

(3) µ(r, f) = max
j≥0

|aj|rj;

this is well-defined since, for each fixed r, ajr
j → 0 as ‖j‖ → ∞. Any j for which the

maximum in (3) is attained is a central index of f , denoted by N(r, f). The central
index is uniquely defined for most r ≥ 0, as we will see. We also define the maximum
modulus of f for r ≥ 0 by M(r, f) = max|z|=r |f(z)|.
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These definitions apply equally to functions that are analytic at 0 but not nec-
essarily entire. We will call a function h that is analytic in ‖z‖ < R fully indexed
if, given any N ∈ (N ∪ {0})n, we can find rN, with 0 < ‖rN‖ < R, such that the
central index of h at rN is unique and equal to N. We call {rN : N ∈ (N∪ {0})n} an
indexing set for h.

Given an increasing function α : [0,∞) → R, we define

(4) αj = αj1 · · ·αjn , where αj = exp

(
−
ˆ j

0

α(t)dt

)
,

and

(5) ρj = (ρj1 , . . . , ρjn), where ρj = exp(α(j)).

It can be checked that, for all j ≥ 0 and N ≥ 0,

(6) αjρ
j
N < αNρN

N (j 6= N).

Thus

(7) hα(z) =
∑

j≥0

αjz
j,

which is analytic in ‖z‖ < eα∞ , where α∞ = limt→∞ α(t), is fully indexed and
{ρN : N ∈ (N ∪ {0})n} is an indexing set for hα.

The sequences αj and ρj and the function hα are elements of the comparison
version of Wiman–Valiron theory developed by Kövari [11, 12], Clunie [2, 3], Hayman
[9, 10] and others. Hayman’s survey [10] gives a detailed account of this method, as
well as a comprehensive list of references, and his approach is carried over into what
follows. A reader familiar with [10] will be aware of the debt that I owe it.

Our methods apply generally to all entire functions but the main inequalities
(the subject of Theorem 1 below) can be applied to give more refined results for, for
example, functions of finite order. This has not been pursued. In the one-variable
case, there is a version of the theory that gives results for functions of finite lower
growth [4, 5]. A similar approach appears to be possible in several variables but is
beyond the scope of this note, and in any case would be of secondary interest.

The results presented here are known, in less precise forms, in the one- and
two-variable cases, and the narrative direction, so to speak, is predictable. However,
geometrical intuition, which bolsters arguments in one and two variables, is not avail-
able in higher dimensions and then the discussion, especially of the central index (in
section 3 below), needs to be undertaken more formally. Theorem 1 gives inequalities
for the terms of the series (1) on the so-called normal set. For n = 2 it is more general
than its equivalent in [6], and when n = 1 gives the one-variable inequalities in [10,
p. 319 ff.]. It also provides a better estimate of the size of the normal set than the one
given in [6], which has the useful consequence that conclusions about the growth of
solutions of partial differential equations, which in [8] appear as lower estimates for
the order, can be improved to give lower estimates for the lower order. Theorem 2
expresses the fact that, at normal values, the terms of the series (1) that are far away
from the maximum term are collectively insignificant in comparison with the maxi-
mum term. This is needed to establish the asymptotic expressions for the derivatives
of f , which are the concern of Theorem 3. The statement of Theorem 3 is more
general than its two-variable counterpart in [7]; in particular, the expressions for the
derivatives apply in discs of a specified radius about ‘near maximum’ points rather
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than simply at the maximum points themselves. Theorem 3 has the disadvantage
that it contains a hypothesis—which cannot be eliminated, as we will show—that
makes it difficult to apply in practice. This disadvantage can be circumvented using
Theorem 4, which involves a transformed version of f . The idea is to use Theorem 4
to obtain information about the growth of the transformed function, then to express
this information in terms of the growth of f . An illustration of this approach rounds
out the paper.

2. Results

The main result provides general estimates for the coefficients of the function (1).

Theorem 1. (cf. [6, pp. 4406–08]) Suppose that f is a transcendental entire
function given by (1). Suppose also that h(z) =

∑
j≥0 Ajz

j is a fully indexed analytic
function, with indexing set {rN : N ∈ (N ∪ {0})n}, which is such that

(8) F (z) =
∑

j≥0

aj

Aj

zj

is entire. Then the inequalities

(9) |aj|rj ≤ µ(r, f)
Aj

AN

rj−N
N ,

where N = N(r, f), hold for all j ≥ 0 and all r in the set

(10) S = {trN(t,F ) : t ≥ 0}.
The set S is such that, for all r2 ≥ r1 ≥ 0,

(11) logmeas (S ∩∆r1,r2) ≥ logmeas (∆r′1,r′2),

where r′2 ≥ r′1 ≥ 0 are any points such that, for all t ∈ ∆r′1,r′2 , we have tρN(t,F ) ∈
∆r1,r2 .

The r1 and r2 in (11) are not be confused with the elements rN of the indexing
set for h; the latter are always indicated by a boldface subscript.

Results that are more useful in applications can be obtained from Theorem 1 by
making specific choices of h. More particularly, we will take h = hα, where hα is
given by (7), and make specific choices of α, as in the following corollary.

Corollary 1. (cf. [6, Theorem 1]) Define α(t) by

(12) α(0) = 0, α′(t) =

{
ε/

(
t log t · · · (logq+1 t)1+ε

)
, t ≥ t0,

α′(t0), 0 ≤ t ≤ t0,

where ε is a positive number, q is a non-negative integer, logq+1 is the (q + 1)th
iterated logarithm, and t0 is the (q +1)th iterated exponential evaluated at 1. Let αj

and ρj be given by (4) and (5), and let S be the set of Theorem 1 that corresponds
to hα. Then for all r1 ≥ 0 and r2 ≥ e1+εr1,

(13) logmeas (S ∩∆r1,r2) ≥ logmeas (∆r1,e−1−εr2
).

Remarks. (a) Values of r ≥ 0 at which the inequalities (9) hold are referred to
here as normal for f with respect to h; all other r ≥ 0 are exceptional. Since the
right-hand side of (9) is less than 1 if j 6= N, the central index is unique at every
normal value.
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(b) If a0 = f(0) 6= 0, then, taking j = 0 in (9), we have

(14) log
(
ANrN

N

) ≤ log (µ(r, f)) + O(1)

as r → ∞ through normal values. This inequality can be used to estimate N in
terms of µ, cf. [10, pp 331–332].

(c) Suppose, on the other hand, that a0 = 0. Evidently all r ≥ 0 that are normal
for f + 1 are also normal for f , and further, if r ≥ 0 is such that µ(r, f) > 1, then
µ(r, f) = µ(r, f + 1) and N(r, f) = N(r, f + 1). Thus (14) holds in this case for all
r ≥ 0 that are normal for f + 1 and such that µ(r, f) > 1.

Our second result, a so-called Clunie theorem, provides estimates for those terms
of the function (1) that are reasonably far from the maximum term. To state the
result we need some additional notation, cf. [7, formulas (6), (7) and (8)]. With
N = (N1, . . . , Nn), we write

(15) N∗ = ‖N‖ = max
1≤j≤n

Nj, N∗ = min
1≤j≤n

Nj,

and define the following quantities:

(16) λj = λj(β) =

√
60β log N∗

α′(Nj)
, 1 ≤ j ≤ n,

where α is given by (12) for some ε and q, and β is a positive constant;

λ = (λ1, · · · , λn)

and

(17) k =

{
λ if λ ≤ N,

λ2/N if λ ≥ N.

We have:

Theorem 2. (cf. [7, Theorem 2]) Suppose that f is a transcendental entire
function given by (1), that α is given by (12) for some ε and q, and that β is a
positive constant. Suppose that R ≥ 0 is normal for f with respect to hα given by
(7), and let r ≥ 0 be such that

(18)
∣∣∣log r

R

∣∣∣ ≤ 1

k
,

where k is given by (17) with N = N(R, f). Then, given p ≥ 0, there are constants
C = C(p) and N0 = N0(p, q, ε, β) such that, if N∗ ≥ N0, we have

(19)
∑

|j−N1`|≥k1`

jp |aj| rj ≤ CN∗n−1−2βNp |aN| rN, 1 ≤ ` ≤ n.

We prove also:

Theorem 3. (cf. [7, Theorem 3]) Suppose that f is a transcendental entire
function given by (1), that α is given by (12) for some ε and q, and that γ is a
positive constant. Suppose that R ≥ 0 is normal for f with respect to hα given by
(7), and let Z be such that |Z| = R and

(20) |f(Z)| ≥ ηM(R, f),
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where η depends on N = N(R, f) and satisfies 0 < η ≤ 1 and

(21) η‖N‖γ →∞
as N →∞. Let z be such that

(22)
∣∣∣log z

Z

∣∣∣ = o

(
η
1

k

)

as R →∞, where k is given by (17) with N = N(R, f). Suppose that p ≥ 0. If

(23) log N∗ ≤ N2
∗ α′(N∗)

120(n− 1 + ‖p‖◦ + γ)
,

then

(24) f (p)(z) =
(
1 + O(η−1σ) + o(1)

) (
N

z

)p

f(z)

as R →∞, where

(25) |σ| = O

(√
log N∗

N2∗ α′(N∗)

)
.

Remarks. The effect of (23) is to ensure that N∗ is not too small compared with
N∗. Evidently (see also the remark in [7, p. 216]), this hypothesis compromises the
usefulness of Theorem 3, since one rarely possesses information of this kind about the
central index. (The case n = 1 is an exception, since then N∗ = N∗ and (23) holds
for all large z.) Nevertheless, for n ≥ 2 no general result leading to the conclusion

(26) f (p)(z) = (1 + o(1))

(
N

z

)p

f(z)

as z → ∞ through a reasonably large set is possible without some such hypothesis
as (23).

To see this, consider the example

(27) E(z) = ez1 + · · ·+ ezn .

Given any r ≥ 0, the largest term in the power series for E when |z| = r is µ(rj, e
z),

where j is any subscript for which rj = ‖r‖. With the same j, a value of the central
index is N(rj)1j, where N is the central index of ez. More generally, the central
index of E, N(r, E), is any nonzero member of the set

{[
rj

‖r‖
]

N(‖r‖)1j : 1 ≤ j ≤ n

}
,

where [ ] denotes the integer part. Thus (23) fails for E for all large z, except those
for which |z| = r1 for some r > 0. Values r1 are not normal, however, since N is not
unique there (cf. Remark (a) following Theorem 1 Corollary 1). So Theorem 3 gives
no information about the partial derivatives of E. But this is not surprising, since
(26) is actually false for all large z for which it makes sense, that is, for all large z for
which the central index is uniquely defined. For if (26) were to hold at z, we would
have, taking p = 1j,

(28) ezj = (1 + o(1))

[ |zj|
‖z‖

]
N(‖z‖)

zj

(ez1 + · · ·+ ezn).
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This is impossible unless |zj| = ‖z‖ for all j, and in that case the central index is not
uniquely defined.

Theorem 3 is thus effectively useless for the investigation of partial differential
equations. The next theorem, a two-variable version of which can be assembled from
comments in [8, p. 573–75], provides a way of analysing partial differential equations
using Wiman–Valiron methods. An illustration of its use, involving the same function
E that we have just considered, is given in the last section of the paper.

Theorem 4. Let Φ : Cn → Cn be defined by

(29) z = Φ(ζ) = ζ1 ζ.

Then the following hold.
(a) Φ maps C onto C and maps {ζ : ζ> 0} one-one onto {z : z> 0}. The Jacobian

of the transformation log ζ → log z is

∂(log z)

∂(log ζ)
= n + 1.

(b) For all j1 and j2, if deg
(
Φ(ζ)j1

)
= deg

(
Φ(ζ)j2

)
then j1 = j2.

(c) With f given by (1) and

(30) F(ζ) = f(z),

we have, for ζ > 0,

(31) M(ζ,F) = M(z, f), µ(ζ,F) = µ(z, f)

and

(32) N(ζ,F) = N(z, f) + ‖N(z, f)‖◦ 1.

(d) Suppose that α is given by (12) for some ε and q, and that γ is a positive
number. Suppose that R > 0 is normal for F with respect to hα given by
(7), and let Z be such that |Z| = R and

(33) |F(Z)| ≥ ηM(R,F),

where η depends on N = N(R,F) and satisfies 0 < η ≤ 1 and

(34) η‖N ‖γ →∞
as N →∞. Let ζ be such that

(35)
∣∣∣∣log

ζ

Z

∣∣∣∣ = o

(
η
1

k

)

as R →∞, where k is given by (17) with N = N . If p ≥ 0, then

(36) F (p)(ζ) = (1 + O(η−1σ) + o(1))

(N
ζ

)p

F(ζ)

as R →∞, where

(37) |σ| = O

(√
log ‖N ‖

‖N ‖2 α′(‖N ‖)

)
.



Wiman–Valiron theory in several variables 35

Remark. Equation (36) is most useful when η−1σ = o(1) as R → ∞. In view
of (37) and (12), we have

σ ≤ ε−1/2‖N ‖−1/2 log ‖N ‖ (
log2 ‖N ‖ · · · (logq+1 ‖N ‖)1+ε

)1/2
.

The smallest allowable η from which a useful conclusion can be drawn from Theorem 4
is thus

(38) η0(N ) = ‖N ‖−1/2 log ‖N ‖
(
log2 ‖N ‖ · · · (logq+1 ‖N ‖)1+ε′

)1/2

,

where ε′ > ε. The corresponding γ is γ = 1/2. We thus have:

Corollary 1. Suppose that α is given by (12) for some ε and q, and that R > 0
is normal for F with respect to hα given by (7). Let Z be such that |Z| = R and

(39) |F(Z)| ≥ ηM(R,F),

where η satisfies η0(N ) < η ≤ 1 and N = N(R,F). Let ζ be such that

(40)
∣∣∣∣log

ζ

Z

∣∣∣∣ = o

(
η
1

k

)

as R →∞, where k is given by (17) with N = N . If p ≥ 0 then

(41) F (p)(ζ) = (1 + o(1))

(N
ζ

)p

F(ζ)

as R →∞.

Remark. When η = 1 in Theorem 2 Corollary 1, condition (40) is equivalent to

|log ζ/Z| = o
(‖N ‖−1/2(log ‖N ‖)−1(log2 ‖N ‖ · · · (logq+1 ‖N ‖)1+ε)−1/2

)
.

In the case n = 1 this is the condition implicit in [[10]]. A recent result of Bergweiler
[1, Theorem 1.1 and Remark 1], proved using different methods, shows that in the
case n = 1 it is possible to replace this condition by

|log ζ/Z| = o
(‖N ‖ log ‖N ‖ log2 ‖N ‖ · · · (logq+1 ‖N ‖)1+ε

)−1/2
,

and that this is sharp. (In fact he shows slightly more.) This suggests that the
numbers λj in (16) are too large by a factor of (log N∗)1/2. While this has little or no
practical consequence, it is interesting evidence of a small gap in the methods used
here.

3. The central index

When n = 1 the central index behaves in a particularly simple way: we have
N(r1, f) ≤ N(r2, f) for 0 ≤ r1 ≤ r2. But the behaviour may be more complicated
for n ≥ 2. For n = 2, for example, the central index of

∞∑
j=0

1

j!
(zj

1 + zj−1
1 z2 + · · ·+ z1z

j−1
2 + zj

2)

has the form (N, 0) if |z1| > |z2| and (0, N) if |z2| > |z1|. Thus, by increasing |z| we
do not necessarily increase N.

We consider here some general properties of the central index that are useful in
what follows, beginning with a several-variables version of the Newton polygon [13,
p. 28 et seq.].
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With f given by (1), let

B = {(j,− log |aj|) : j ≥ 0 and aj 6= 0},
a set in Rn+1, and consider the relation of B to the hyperplane Hr,b in Rn+1 defined
by

x · (log r,−1) = b,

where r > 0 and b ∈ R are fixed. Let us write

H+
r,b = {x ∈ Rn+1 : x · (log r,−1) > b}.

Since f is entire, we have log |aj|/‖j‖ → −∞ as j →∞, and thus

(42) (j,− log |aj|) · (log r,−1) = j · log r + log |aj| → −∞
as j →∞, for each fixed r > 0. It follows that B∩H+

r,b = ∅ if b is large enough. There
is thus a smallest value of b for which Hr,b supports B, in the sense that B∩H+

r,b = ∅
and B ∩Hr,b 6= ∅ (and is necessarily finite, from (42)). Let us denote this value of b
by b(r).

Suppose that (N,− log |aN|) ∈ B ∩Hr,b(r). Then, for all j,

(43) j · log r + log |aj| ≤ b(r) = N · log r + log |aN|,
that is

(44) log
(|aj/aN|rj−N

) ≤ 0,

so that N is a central index on f . Note also that, from (43), b(r) = log µ(r, f).
Conversely, if N = N(r, f) for some r > 0, and b is such that Hr,b supports B, then
(N,− log |aN|) ∈ B ∩Hr,b. The central index can thus be characterized as follows:
N = N(r, f) for some r > 0 if and only if the hyperplane Hr,b that supports B
contains (N,− log |aN|). Expressed slightly differently, r > 0 is a point for which
the central index has a given value N if and only if B is supported by the hyperplane
through (N,− log |aN|) with normal (log r,−1).

This approach can be extended to cover values of r ≥ 0, and for this purpose we
define log 0 = −∞ and 0 · (±∞) = 0. Then Hr,b is defined for all r ≥ 0, with the
exception of those r for which all terms in the series for f(r) vanish. (Hr,b is no longer
a hyperplane if one or more of the components of r is 0 but this is of no consequence.)
It follows as before from (42)—which remains true, although the left-hand side may
be −∞ for certain j—that there is a smallest value of b for which Hr,b supports B,
in the sense that B ∩H+

r,b = ∅ and B ∩Hr,b is non-empty (and finite). All points
of B ∩ Hr,b correspond to central indices, and the previous characterization of the
central index carries over.

The set N = ∩r>0 comp(H+
r,b(r)), where ‘comp’ denotes complement, is the New-

ton polytope of f ; it is the closed, convex hull of B. At the risk of repetition: if r ≥ 0
is such that not all terms of f(r) are 0, and if Hr,b supports N, then Hr,b ∩ B 6= ∅
and is finite. All points of Hr,b ∩B then correspond to central indices of f at r, and
b = log µ(r, f).

Let us write

(45) SN = SN(f) = {log r : r > 0 and N(r,f) = N}.
Evidently log r ∈ SN if and only if (44) holds for all j. Denoting the interior of SN

by intSN, we have:
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Lemma 5. (a) The sets SN are closed and convex.
(b) If N1 6= N2 then SN1 ∩ intSN2 = ∅.
(c) For any r > 0, the set

{log r : 0 < r <r1}
is intersected by only finitely many SN.

(d) The sets SN that have non-empty interior tessellate Rn.

Proof. Part (a) follows from the observation following (45), since if r1, r2 ∈ SN

and 0 ≤ θ ≤ 1, then from (44),

log
(|aj/aN|

(
rθ
1r

1−θ
2

)j−N )
= θ log

(|aj/aN|rj−N
1

)
+ (1− θ) log

(|aj/aN|rj−N
2

) ≤ 0.

For (b), suppose that log r0 ∈ SN1 ∩ intSN2 for some N1 6= N2, and suppose
that N1 differs from N2 in the jth component. Since, necessarily, r0 > 0, we can find
ε > 0 sufficiently small that, with r = r0 ± ε1j, we have r > 0 and log r ∈ intSN2 .
Since

|aN1|r0
N1 = |aN2|r0

N2

we have
|aN1|rN1 > |aN2|rN2

for some choice of the ± sign. Thus N2 6= N(r, f), a contradiction.
For (c), note first that the set

(46) {N(r, f): 0 < r <r1}
is finite for all r > 0. For otherwise there is an r > 0, and there are points 0 < rk <
r1, such that, with Nk = N(rk, f), we have Nk → ∞ as k → ∞. Write Nk =
(N1(k), . . . , Nn(k)). Since

(47) |aNk
|rNk−N1

k ≥ |aN1| > 0,

and since the left-hand side of (47) tends to 0 as k →∞ if Nk ≥ N1, we deduce that
Nj = lim infk→∞ Nj(k) < Nj(1) for some 1 ≤ j ≤ n. We may assume without loss of
generality that j = 1 and, by taking a subsequence if necessary, that N1(k) = N1 for
all k. We repeat the argument and deduce that Nj = lim infk→∞ Nj(k) < Nj(1) for
some 2 ≤ j ≤ n, and so on. The upshot is that we can find a subsequence of Nk on
which every component is bounded, a contradiction. Thus the set (46) is finite, and
(c) follows.

We deduce from (c) that, for any r > 0,

(48) {log r : 0 < r <r1} \ ∪N intSN

is open. Also, since from (a) each SN is closed and convex, either intSN = ∅ or
SN = intSN. It follows from (c) that the set (48) is contained in a finite union
of those SN that have empty interior. It is therefore empty, which proves (d) and
completes the proof of the lemma. ¤

Remarks. (a) The central index is uniquely defined precisely on the set of r
for which log r ∈ ∪N intSN. (For such r, Hr,b(r) meets N at a single point.) For
certainly the central index is uniquely defined on this set, from Lemma 6 (b). On the
other hand, if r is not in the set then, from Lemma 6 (d), log r is a boundary point
of (one and therefore) at least two sets SN1 and SN2 , N1 6= N2, that have non-empty
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interiors. Thus r ∈ SN1 ∩ SN2 and N1 and N2 are both values of the central index
at r.

(b) Suppose that r and s are fixed, with r > 0, and that t ∈ R. If, for some N,
we have log r + ts ∈ SN for all t in a certain interval, then

(49)
d

dt
log µ(rets, f) =

d

dt

(
log

(|aN|rN
)

+ ts ·N)
= s ·N.

Thus, for all R1, R2 > 0 we have, taking r = R1 and s = log(R2/R1),

(50) log µ(R2, f)− log µ(R1, f) = log(R2/R1) ·
ˆ 1

0

N(R1e
t log(R2/R1), f) dt.

We deduce from (50) that if R2 ≥ R1 > 0 then

N(R1, f) · log(R2/R1) ≤ log µ(R2, f)− log µ(R1, f) ≤ N(R2, f) · log(R2/R1).

(c) Suppose that s ≥ 0 in (49). If, for some N, we have log r + ts ∈ SN for all t
in a certain interval, then d2/dt2(log µ(rets, f) = 0, from (49). Also, if t0 is such that
log r + t0s ∈ SN1 ∩ SN2, where N1 6= N2, and if log r + ts ∈ SN1 for all t for which
t < t0 and t is sufficiently close to t0, while log r + ts ∈ SN2 for all t for which t > t0
and t is sufficiently close to t0, then s ·N1 ≤ s ·N2. For otherwise we would have,
with r0 = ret0s,

|aN1|
(
r0e

(t−t0)s
)N1 > |aN2|

(
r0e

(t−t0)s
)N2

for all t just greater than t0, a contradiction. We deduce that if s ≥ 0 then
log µ(rets, f) is a convex, non-decreasing function of t.

4. Proof of Theorem 1

We distinguish two cases. Suppose first that t ≥ 0 and that µ(t, F ) = 0. Then
N(t, F ) is entirely ambiguous and can be any value. Nevertheless, since all terms of
f(t) are also necessarily zero, as are all terms of f(trN(t,F )), no matter what value
we assign to N(t, F ), the inequalities (9) hold at r = trN(t,F ).

Suppose next that t ≥ 0 and that µ(t, F ) > 0. Let N = N(t,F ), allowing the
possibility that N(t,F ) may take more than one value. Then, for all n,

|an|
An

tn ≤ |aN|
AN

tN.

Multiplying both sides of this inequality by rn−N
N , we obtain

(51)
|an|(trN)n

|aN|(trN)N
≤ Anr

n
N

ANrN
N

.

The right-hand side of (51) is less than 1 for n 6= N, from (6). We deduce that
N = N(trN, f) and that the inequalities (9) hold for r = trN. This proves the first
part of Theorem 1. (Let us note, incidentally, that we have shown that N(r, f) is
uniquely defined at all r of the form r = trN(t,F ), t ≥ 0, for which µ(r, f) > 0.)

Concerning (11), suppose that r1, r2, r′1, r′2 are as in the statement of the Theo-
rem 1. From Lemma 1 (d), we have

log ∆r′1,r′2 = ∪#
N

(
log ∆r′1,r′2

) ∩ SN(F ),
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the # indicating that the union is taken over only those SN(F ) that have non-empty
interior. Thus, using the fact that the boundary of a convex set has measure zero,

logmeas ∆r′1,r′2 =
∑
N

#

meas
(
(log ∆r′1,r′2) ∩ SN(F )

)

=
∑
N

#

meas
(
log rN + (log ∆r′1,r′2) ∩ SN(F )

)

=
∑
N

#

meas
(
log rN + (log ∆r′1,r′2) ∩ intSN(F )

)

=
∑
N

#

meas
({log(trN(t, F ) : log t ∈ (log ∆r′1,r′2) ∩ intSN(F )})

≤
∑
N

#

meas
({log(trN(t, F ) : t ∈ ∆r′1,r′2}

)

= logmeas
({trN(t,F ) : t ∈ ∆r′1,r′2}

)

≤ logmeas
(
∆r1,r2 ∩ {trN(t,F ) : t > 0})

= logmeas (∆r1,r2 ∩ S) ,

which completes the proof of Theorem 1. ¤
Concerning Corollary 1, let us note that

(52) α(t) =

{
tα′(t0), 0 ≤ t ≤ t0,

t0α
′(t0) + 1− (logq+1 t)−ε, t ≥ t0,

so that, for all j ≥ 0, ˆ j

0

α(t) dt ≤ Kj,

where K = α′(t0) + 1. It follows that αj given by (4) satisfies αj ≥ e−Kj for all j,
and therefore ∣∣∣∣

aj

αj

zj

∣∣∣∣ ≤ |aj(e
Kz)j|

for all j. So F given by (8) is entire. Further, with (5) in view we have, using the
fact that α and α′ are non-negative,

1 ≤ ρn ≤ e
´∞
0 α′(t) dt1 = e1+t0α′(t0)1 ≤ e1+ε1

for all n. We may therefore apply Theorem 1 with r′1 = r1 and r′2 = e−1−εr2, and
Corollary 1 follows. ¤

Remark. Taking r1 = 1 and, for any R ≥ e1+ε, r2 = R 1, we conclude that the
set S in Theorem 1 Corollary 1 is such that

logmeas (S ∩∆1,R1) ≥ (log R− 1− ε)n

=

{
log R− 1− ε, n = 1,

(log R)n − n(1 + ε)(log R)n−1 + O((log R)n−2)), n ≥ 2.

The estimate for the exceptional set that is implicit in this inequality is the one given
by Theorem 2 in [10] for n = 1 and by formula (1.7) in [6] for n = 2, and is right in
its dependence on R whatever the value of n. To see this, let ψ(z) =

∑∞
n=1 anzn be
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a transcendental entire function of one complex variable z. As we have shown, we
have

(53) |an|rn ≤ µ(r, ψ)
αn

αN

ρn−N
N ,

where N = N(r, ψ), for all r outside an exceptional set E of finite logarithmic
measure. In fact the set E has positive logarithmic measure: E contains small open
intervals about every point at which the central index changes value. For if r0 is such
a point, with, say,

N ′ = lim
r→r−0

N(r, ψ) < lim
r→r+

0

N(r, ψ) = N ′′,

and if (53) held for a sequence of r < r0 tending to r0, we would have in particular
|aN ′′ |
|aN ′| r

N ′′−N ′ ≤ |αN ′′|
|αN ′| ρN ′N

′′−N ′

for all r < r0 close enough to r0. Allowing r to approach r0 then,

1 ≤ |αN ′′|
|αN ′| ρN ′N

′′−N ′
,

which contradicts (6). Thus (53) fails for all r < r0 sufficiently close to r0. A similar
argument shows that (53) also fails for all r > r0 sufficiently close to r0. Thus the
exceptional set for f(z) = ψ(z1) is E × Rn−1, and the part of this set in ∆1,R1 has
logarithmic measure (logmeas (E) + o(1))(log R)n−1.

5. Proof of Theorem 2

Using (9) with r replaced by R, and with AN = αN and rN = ρN, we have

(54)
|aj|rj

|aN|rN
=

|aj|Rj

|aN|RN

( r

R

)j−N

≤ αj

αN

(rρN

R

)j−N

,

and thus

(55)
∑

|j−N1`|≥k1`

jp
|aj|rj

|aN|rN
≤

∑

|j−N1`|≥k1`

jp
αj

αN

(rρN

R

)j−N

=
n∏

l=1

Sl`,

where

(56) Sl` =
∑
jl≥0

jpl

l

αjl

αNl

(
rlρNl

Rl

)jl−Nl

, l 6= `,

and

(57) S`` =
∑

|j`−N`|≥k`

jp`

`

αj`

αN`

(
r`ρN`

R`

)j`−N`

.

The sums (56) and (57) are precisely those given by formulas (19) and (20) of [[7]].
According to the estimates obtained in the proof of [7, Theorem 2]—see, in particular,
formulas (43), (45) and (51) of [7]—there is a number N0 = N0(p, q, ε, β) such that if
N∗ ≥ N0 then Sl` ≤ CNpl+1

l , l 6= `, and S`` ≤ CNp`

` N∗−2β, where C = C(p). Thus,
from (55),

∑

|j−N1`|≥k1`

jp
|aj|rj

|aN|rN
≤ CnN∗n−1−2βNp,
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which proves Theorem 2. ¤

6. Proof of Theorem 3

With γ as in Theorem 3, we will apply Theorem 2 with

(58) β = (n− 1 + ‖p‖◦ + γ)/2.

In that case we have, from (16) and (23),

(59)
λj

Nj

≤ 1

2

√
N2∗α′(N∗)
N2

j α′(Nj)
≤ 1

2
, 1 ≤ j ≤ n,

if N is sufficiently large, since t2α′(t) is ultimately increasing and N∗ →∞ as R →∞,
from (23). Thus, from (17), k = λ whenever N is sufficiently large and so, from (59)
and (16), we have

(60)
∥∥∥∥

k

N

∥∥∥∥ ≤ min

{
1

2
,

√
30(n− 1 + ‖p‖◦ + γ) log N∗

N2∗ α′(N∗)

}

for all large N. Let us note also that λ∗ →∞ and therefore

(61) ‖1/k‖ ≤ k−1
∗ = λ−1

∗ → 0

as N →∞.
We write

(62) f(z) =
∑

|j−N|<k

ajz
j + φ(z) = zN−κP (z) + φ(z),

where κ = [k] and P is a polynomial of degree at most 2κ, so that

(63) f (p)(z) =
(
zN−κP (z)

)(p)
+ φ(p)(z).

We have:

Lemma 6. With R, Z and z as in the hypotheses of Theorem 3, and with
r = |z|, the following hold as R →∞:

M(r, P ) =
(
1 + O(N∗−γ)

)
r−N+κM(r, f),(64)

P (Z) = (1 + o(1))Z−N+κf(Z),(65)

|P (j)(z)| ≤
(

2e3κ

R

)j

M(R, P ),(66)

P (z) = (1 + o(1))P (Z),(67)

|zpφ(p)(z)| = o(rN−κ|P (z)|).(68)

Proof. To prove Lemma 6, note first that (22) ensures that (18) holds if R is
sufficiently large. Applying Theorem 2 with β as in (58), we obtain

(69) |zpφ(p)(z)| ≤ CN∗n−1+‖p‖◦−2β|aN|rN ≤ CN∗−γ|aN|rN ≤ CN∗−γM(r, f).

With p = 0 in (69), we have |φ(z)| ≤ CN∗−γM(r, f), and (64) follows from this.
Similarly, using (20) and (21), we have

|φ(Z)| ≤ CN∗−γM(R, f) = C‖N‖−γM(R, f) ≤ C‖N‖−γη−1|f(Z)| = o(|f(Z)|),
and so we have (65).
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For (66) we need the following one-variable result [10, Lemma 7, p. 337]:

Suppose that P (z) is a polynomial of degree m, and |P (z)| ≤ M , for |z| ≤ r.
Then if R ≥ r, we have

(70) |P ′(z)| ≤ eMmRm−1

rm
, |z| ≤ R.

Let R be large enough that |log(r/R)| ≤ k−1, which is possible from (22). If,
for any 1 ≤ ` ≤ n, we take r = R`, R = R`e

1/k` , m = 2κ` and M = M(R, P ) in (70),
then we obtain

(71)
∣∣∣∣
∂P

∂z`

∣∣∣∣ ≤
2eκ`

R`

e(2κ`−1)/k`M(R, P ) ≤ 2e3κ`

R`

M(R, P )

for |z`| ≤ R`e
1/k` , using the fact that κ` = [k`]. Repeating the argument several times

for each variable z`, we obtain

|P (j)(z)| ≤
(

2e3κ

R

)j

M(R, P )

for |z| ≤ Re1/k, and (66) is this inequality restricted to the smaller set of z satisfying
(22).

For (67), write Q(ζ) = P (Z + (z− Z)ζ), a function of one complex variable ζ.
Using the chain rule, (71) and (22), we have

|Q′(ζ)| ≤
∣∣∣∣
(

∂P

∂z1

, . . . ,
∂P

∂zn

)
· (z− Z)

∣∣∣∣ ≤ 2e3 ‖κ (z/Z− 1)‖◦ M(R, P )

for all large R. From (22) and (61), we have z/Z → 1 as R →∞, so

(72) ‖κ (z/Z− 1)‖◦ = (1 + o(1))‖κlog(z/Z)‖◦ = o(η)

as R →∞, again using (22). Thus |Q′(ζ)| = o(ηM(R, P ) and so

(73) |P (z)− P (Z)| =
∣∣∣∣
ˆ 1

0

Q′(ζ) dζ

∣∣∣∣ = o(ηM(R, P ))

as R →∞. From (65), (20) and (64), we have

(74) |P (Z)| ≥ (1 + o(1))ηM(R, P ),

and this together with (73) gives (67).
For (68), we have, using in turn (67), (65), (20) and (64),

|P (z)| = (1 + o(1))R−N+κ|f(Z)

≥ (1 + o(1))ηR−N+κM(R, f) = (1 + o(1))ηM(R, P ).
(75)

Also, from (72), rκ = (1 + o(1))Rκ. Thus, noting that κ = N(R, P ) and using (75),
we have

|aN|rN = rN−κ|aN|rκ = O(rN−κ|aN|Rκ) = O(rN−κµ(R, P ))

= O(rN−κM(R, P )) = O(η−1rN−κ|P (z)|),(76)

so that, from the middle inequality in (69), and (21),

|zpφ(p)(z)| = O(N∗−γη−1rN−κ|P (z)|) = o(rN−κ|P (z)|).
This completes the proof of Lemma 6. ¤
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Returning to the proof of Theorem 3, we have

zp
(
zN−κP (z)

)(p)
=

∑

0≤j≤p

Cp
j z

p
(
zN−κ

)(p−j)
P (j)(z)

=
∑

0≤j≤p

Cp
j

(N− κ)!

(N− κ− p + j)!
zN−κ+jP (j)(z),

(77)

where

(78) Cp
j =

n∏
i=1

Cpi

ji
and

(N− κ)!

(N− κ− p + j)!
=

n∏
i=1

(Ni − κi)!

(Ni − κi − pi + ji)!
.

Here Cpi

ji
is the usual binomial coefficient. The term on the right-hand side of (77)

that corresponds to j = 0 is

(79)
(N− κ)!

(N− κ− p)!
zN−κP (z) = (1 + σ)NpzN−κP (z),

where, making use of the first half of (60),

(80) |σ| ≤ C

∥∥∥∥
k

N

∥∥∥∥

and C = C(p).
We proceed to estimate the remaining terms in (77). From (66) and (75),

|P (j)(z)| ≤ (1 + o(1))η−1(2e3κ/r)j|P (z)|.(81)

It follows that any term in (77) corresponding to a value of j 6= 0 is

O
(
Np−jrN−κ+j|P (j)(z)|) = O(η−1(2e3κ/N)jNprN−κ|P (z)|)

= O
(
η−1σNprN−κ|P (z)|),(82)

where σ satisfies (80). From this and (79), we have

(83) zp
(
zN−κP (z)

)(p)
= (1 + O(η−1σ))NpzN−κP (z)

and thus, using (68),

zpf (p)(z) = (1 + O(η−1σ) + o(1))NpzN−κP (z).

Taking p = 0 in (68), we deduce that f(z) = (1 + o(1))zN−κP(z), and Theorem 3
follows. ¤

7. Proof of Theorem 4

For (a), we have Φ
(
(z1)−1/(n+1)z

)
= z. Also, if Φ (ζ1) = Φ (ζ2) then Φ (ζ1)

1 =

Φ (ζ2)
1; that is,

(
ζ1

1

)n+1
=

(
ζ1

2

)n+1 and so ζ1
1 = ζ1

2 , if ζ1, ζ2 > 0. Thus ζ1 =

Φ (ζ1))/ζ
1
1 = Φ (ζ2))/ζ

1
2 = ζ2.
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Concerning the Jacobian, we have, subtracting each row from the one before and
adding each column to the one after,

∂(log z)

∂(log ζ)
=

∣∣∣∣∣∣∣∣∣∣

2 1 1 · · · 1 1
1 2 1 · · · 1 1
...

...
...

...
...

1 1 1 · · · 2 1
1 1 1 · · · 1 2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 −1
1 1 1 · · · 1 2

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
1 2 3 · · · n− 1 n + 1

∣∣∣∣∣∣∣∣∣∣

= n + 1.

For (b), we have Φ(ζ)j = ζj+‖j‖◦1, so that if deg
(
Φ(ζ)j1

)
= deg

(
Φ(ζ)j2

)
then

j1 + ‖j1‖◦1 = j2 + ‖j2‖◦1. Summing the components of each side, we obtain ‖j1‖◦ =
‖j2‖◦ and therefore j1 = j2.

Concerning (c), note that, from (b), the Taylor series for F(ζ) is
∑

j≥0 ajΦ (ζ)j.
It follows that µ(ζ,F) = µ(Φ(ζ), f) for ζ > 0 and also, with N = N(Φ(ζ), f), that
N(ζ,F) = deg

(
Φ(ζ)N

)
= N + ‖N‖◦1.

If ζ0 is such that |ζ0| = ζ and |F(ζ0)| = M(ζ,F), then |Φ(ζ0)| = Φ(ζ) and
thus M(ζ,F) = |f (Φ(ζ0)) | ≤ M (Φ(ζ), f). Conversely, suppose that z0 is such
that |z0| = Φ(ζ) and |f(z0)| = M(Φ(ζ), f). Let ζ0 > 0 be such that z0 = Φ(ζ0);
ζ0 exists from (a). We have |Φ(ζ0)| = Φ(|ζ0|) and so, from (a), |ζ0| = ζ. Hence
M(Φ(ζ), f) = |f(z0)| = |f(Φ(ζ0))| = |F(ζ0)| ≤ M(ζ,F). Combining the two
inequalities we obtain M(ζ,F) = M (Φ(ζ), f).

Finally, (d) follows from Theorem 3 since, from the last part of (c), we have
N ∗ ≤ 2N∗, and thus (23) is trivially satisfied.

8. An application of Theorem 4

The method developed in [8] and sketched here is this: given a partial differential
equation for an entire function f(z), rewrite the equation in terms of F and ζ, given
by (30) and (29), make use of (41) and then express the conclusions, whatever they
are, in terms of f . The conclusion in the example that we consider below, and it
appears to be typical, provides a lower bound for the lower order of the solution;
here, as usual, the order and lower order of f are the upper and lower limits of

log log M(r1, f)

log r

as r →∞. The key points in the method are contained in the following lemma.

Lemma 7. With ζ as in (29), we have

(84) (n + 1)
∂ζi

∂zj

=

{
−ζi/zj, i 6= j,
nζi/zj, i = j.

Also, with F as in (30),

(85) ‖N(R,F)‖ ≤ log M(R,F) (log log M(R,F))2
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for all R that are either
normal for F with respect to hα (given by (7), where α is given by (12) for
some ε and q), if F(0) 6= 0, or
normal for F + 1 with respect to hα, if F(0) = 0,

and for which N(R,F) is sufficiently large.

Proof. For the first part of Lemma 7 we have, from (29), z1 = (ζ1)
n+1 and

therefore ζ = z−1/(n+1)z. Taking logarithms of both sides and differentiating, we
obtain (84).

For the second part, we use Remarks (b) and (c) following Theorem 1 Corollary 1.
Suppose first that F(0) 6= 0 and that R is normal for F . Taking j = 0 in (9), we
have

(86) log
(
αN ρN

N
) ≤ log (µ(R,F)/F(0)) ,

where N = N(R,F). As in [[6], formula (4.7)], the left-hand side of (86) is

(1 + o(1))
n∑

j=1

Nj

logNj log2Nj · · · (logq+1Nj)1+ε

as N →∞, recalling that, from (32), Nj →∞ for each j = 1, . . . , n as N →∞. It
follows that

(87)
N

log N log2 N · · · (logq+1 N )1+ε
≤ (1 + o(1)) log (µ(R,F)/F(0)) .

Thus log ‖N ‖ ≤ (1 + o(1)) log2 µ(R,F) as N →∞ and therefore

‖N ‖ ≤ (1 + o(1)) log (µ(R,F)/F(0)) log ‖N ‖ log2 ‖N ‖ · · · (logq+1 ‖N ‖)1+ε

≤ log µ(R,F) (log2 µ(R,F))2 ≤ log M(R,F) (log2 M(R,F))2
(88)

for all R that are normal for F and such that N is sufficiently large.
If F(0) = 0, we consider instead G = F + 1 and suppose that R is normal

for G. As above we obtain ‖N(R,G)‖ ≤ log µ(R,G) (log2 µ(R,G))2 if N(R,G)
is sufficiently large. Then (85) follows since, as we noted in Remark (c) following
Theorem 1 Corollary 1, µ(R,G) = µ(R,F) and N(R,G) = N(R,F) for any R for
which µ(R,F) > 1; and this condition is satisfied if N(R,F) is sufficiently large,
from (87). This completes the proof of Lemma 7. ¤

Remark. Higher derivatives of ζi can be obtained from (84) by repeated differ-
entiation.

To illustrate the method, consider the differential equation

(89)
∂f

∂z1

+ · · ·+ ∂f

∂zn

= f,

for which E(z) given by (27) is a solution. As we noted previously, Theorem 3 is not
applicable to E.

We write f(z) = F(ζ), where z = Φ(ζ) as in (29), and obtain, from the first
part of Lemma 7, ∣∣∣∣

∂f

∂zj

∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

∂F
∂ζi

∂ζi

∂zj

∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣
∂F
∂ζi

∣∣∣∣
∣∣∣∣
ζi

zj

∣∣∣∣ .
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From (89) then,

(90) |F| ≤
n∑

j=1

n∑
i=1

∣∣∣∣
∂F
∂ζi

∣∣∣∣
∣∣∣∣
ζi

zj

∣∣∣∣ .

Given R > 0, let R be normal, either for F with respect to hα if F(0) 6= 0, or for
F + 1 with respect to hα if F(0) = 0, and such that R1 < R < R1+2ε1. Here ε
is the number occurring in the definition of α. From (13), such an R exists. Let
ζ be such that |ζ| = R and |F(ζ)| = M(R,F). In the case F(0) = 0, notice
that, if c is such that |c| = 1 and arg c = argF(ζ), then R is normal for F + c and
|F(ζ) + c| = M(R,F + c). Applying (41) to F or F + c as appropriate, we obtain

∂F
∂ζi

(ζ) = (1 + o(1))
Ni

ζi

F(ζ),

where Ni is the ith component of N = N (R,F), and substituting this into (90) we
have

(91) 1 ≤ (1 + o(1))
n∑

j=1

n∑
i=1

Ni

|zj| ≤ (n + o(1))‖N ‖
n∑

j=1

1

|zj| .

Now
|zj| = |ζ1| . . . |ζj|2 . . . |ζn| ≥ Rn+1

and so

(92) (n−2 + o(1))Rn+1 ≤ ‖N ‖.
From the second part of Lemma 7 then,

(n−2 + o(1))Rn+1 ≤ log M(R,F) (log log M(R,F))2

≤ log M(R1+2ε1,F)
(
log log M(R1+2ε1,F)

)2
,

from which it follows that F has lower order at least (n + 1)/(1 + 2ε). Since this
holds for any ε > 0, F has lower order at least n + 1. Also, from (31), M(R1,F) =
M(Rn+11, f) and we conclude that the lower order of f is at least 1. Note that E
has lower order (and order) 1.
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