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Abstract. Localization properties are studied for operators of Schrödinger type.

1. Introduction

For f belonging to the Schwartz class S(R) we define the Fourier transform f̂ by
setting

f̂(ξ) =

ˆ

R

e−iξxf(x) dx, ξ ∈ R.

For a > 1 and f ∈ S(R) we also set

Stf(x) =

ˆ

R

eiξxeit|ξ|a f̂(x) dx, x ∈ R, t ≥ 0.

If we set u(x, t) = Stf(x)/2π, then u(x, 0) = f(x) and in the case a = 2, u satisfies
the Schrödinger equation i ∂u/∂t = ∂2u/∂x2. We also set

m(ξ) = ei|ξ|a , ξ ∈ R,

and let K denote the Fourier transform of m so that K ∈ S ′(R). It is known that
K ∈ C∞(R) (see Lemma A below) and in the case t > 0 it is clear that

eit|ξ|a = m(t1/aξ)

has the Fourier transform
Kt(y) = t−1/aK(t−1/ay).

One has Stf(x) = Kt ∗ f(x) for t > 0 and f ∈ S(R) and we set Stf(x) = Kt ∗ f(x)
for f ∈ L2(R) with compact support. We introduce Sobolev spaces Hs by setting

Hs =
{
f ∈ S ′; ‖f‖Hs < ∞}

, s ∈ R,

where

‖f‖Hs =

(ˆ

R

(
1 + ξ2

)s∣∣f̂(ξ)
∣∣2dξ

)1/2

.

It is well-known (see Sjölin [4] and Vega [5] and in the case a = 2 Carleson [1] and
Dahlberg and Kenig [2]) that

lim
t→0

1

2π
Stf(x) = f(x)

almost everywhere if f ∈ H1/4 and f has compact support. Also it is known that
H1/4 cannot be replaced by Hs if s < 1/4.
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Now assume that 0 ≤ s < 1/4.
Here we shall study the problem if there is localization or localization almost

everywhere for the above operators St and functions f ∈ Hs with compact support,
that is, do we have

lim
t→0

Stf(x) = 0

everywhere or almost everywhere in R \ (supp f)? We shall prove that there is no
localization or localization almost everywhere of this type for 0 ≤ s < 1/4. In fact
we shall prove that there exist two disjoint compact intervals I and J in R and a
function f which belongs to Hs for all s < 1/4, with the properties that supp f ⊂ I
and for every x ∈ J one does not have

lim
t→0

Stf(x) = 0.

In the special case a = 2 this was proved in 2009 by P. Sjölin and F. Soria. The
proof for a > 1 in this paper is a generalization of the proof of Sjölin and Soria for
a = 2. We remark that Sjölin and Soria also obtained the corresponding result for
a = 2 and dimension n ≥ 2.

2. Proofs

We shall use a theorem of Miyachi to obtain some properties of the kernel K
defined in the introduction.

Lemma A. One has K ∈ C∞(R) and there exists a number α ≥ 0 such that

(1)
∣∣K(x)

∣∣ ≤ C
(
1 + |x|α)

for x ∈ R.

Proof. Let ψ ∈ C∞(R) with

ψ(ξ) = 1, |ξ| ≥ 2, and ψ(ξ) = 0, |ξ| ≤ 1.

We have m = m1 + m2, where

m1(ξ) =
(
1− ψ(ξ)

)
ei|ξ|a and m2(ξ) = ψ(ξ) ei|ξ|a .

Let m1 and m2 have Fourier transforms K1 and K2 respectively. We have

K1(x) =

ˆ

|ξ|≤2

e−ixξ
(
1− ψ(ξ)

)
ei|ξ|adξ, x ∈ R,

and it is easy to see that K1 is bounded and belongs to C∞.
Also Miyachi [3] has proved that K2 ∈ C∞ and that∣∣K2(x)

∣∣ ≤ C |x|(1−a/2)/(a−1)

for |x| large. It follows that K ∈ C∞ and that (1) holds with α = 0 for a ≥ 2 and
α = (1− a/2)/(a− 1) for 1 < a < 2. Hence Lemma A is proved. ¤

We shall use the inverse Fourier transform defined by

f̌(x) =
1

2π

ˆ

R

eiξxf(ξ) dξ, f ∈ S(R).

Now choose g ∈ S(R) such that supp ǧ ⊂ (−1, 1), ǧ(0) 6= 0, and set

fv(x) = e−ix/v2

ǧ(x/v), 0 < v < 1.

It follows that supp fv ⊂ (−v, v) and fv ∈ S(R). We shall use the functions fv to
construct the counter-example mentioned in the introduction. We remark that similar
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functions were used by Dahlberg and Kenig [2]. We need the following lemma, which
is essentially contained in [2].

Lemma 1. One has f̂v(ξ) = v g(vξ + 1/v) for 0 < v < 1 and ‖fv‖Hs ≤ C v1/2−2s

for 0 < v < 1 and 0 < s < 1/4.

In our counter-example we shall use the following estimate.

Lemma 2. There exist positive numbers c0, δ and v0 such that
∣∣Sxv2a−2/afv(x)

∣∣ ≥ c0

for 0 < v < v0 and 0 < x < δ.

Proof. We have
´

g(ξ) dξ 6= 0 and we choose a large number L such that
ˆ

|ξ|≥L

∣∣g(ξ)
∣∣ dξ ≤ 1

100

∣∣∣∣
ˆ

g(ξ) dξ

∣∣∣∣ .

Setting η = vξ + 1/v we obtain

Stfv(x) =

ˆ
eixξ eit|ξ|a v g(vξ + 1/v) dξ

=

ˆ
eix(η/v−1/v2)eit|η/v−1/v2|ag(η) dη =

ˆ
eiF g dξ,

where

F = F (x, ξ, t, v) =
x

v

(
ξ − 1

v

)
+

t

va

∣∣∣∣ξ −
1

v

∣∣∣∣
a

.

We now take v0 = 1/(2L) and v such that 0 < v < v0. One has

Stf(x) =

ˆ L

−L

eiF g dξ +

ˆ

|ξ|≥L

eiF g dξ

and
∣∣Stfv(x)

∣∣ ≥
∣∣∣∣
ˆ L

−L

eiF g dξ

∣∣∣∣−
∣∣∣∣
ˆ

|ξ|≥L

eiF g dξ

∣∣∣∣ ≥
∣∣∣∣
ˆ L

−L

eiF g dξ

∣∣∣∣−
1

100

∣∣∣∣
ˆ

g dξ

∣∣∣∣ .

For |ξ| ≤ L we have

F =
x

v

(
ξ − 1

v

)
+

t

va

(
1

v
− ξ

)a

and using a Taylor expansion one obtains
(

1

v
− ξ

)a

=
1

va

(
1− vξ

)a
=

1

va

(
1− avξ +

1

2
a(a− 1) v2ξ2 + O(v3|ξ|3)

)

=
1

va
− aξv1−a +

1

2
a(a− 1)va−2ξ2 + O(v3−a).

Hence

F =
xξ

v
− x

v2
+

t

v2a
− aξtv1−2a +

1

2
a(a− 1)tv2−2aξ2 + O(tv3−2a).
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Setting t = xv2a−2/a we get

F =
xξ

v
− x

v2
+

x

av2
− ξxv2a−2v1−2a +

1

2
(a− 1)xv2a−2v2−2aξ2 + O(xv)

=
xξ

v
− x

v2
+

x

av2
− xξ

v
+

1

2
(a− 1)xξ2 + O(xv)

for x > 0. It follows that

F =
x

av2
− x

v2
+

1

2
(a− 1)xξ2 + O(xv)

and hence
∣∣∣∣
ˆ L

−L

eiF g dξ

∣∣∣∣ =

∣∣∣∣
ˆ L

−L

ei 1
2
(a−1)xξ2

eiO(xv)g(ξ) dξ

∣∣∣∣

=

∣∣∣∣
ˆ L

−L

ei 1
2
(a−1)xξ2

g(ξ) dξ +

ˆ L

−L

ei 1
2
(a−1)xξ2(

eiO(xv) − 1
)
g(ξ) dξ

∣∣∣∣

≥
∣∣∣∣
ˆ L

−L

ei 1
2
(a−1)xξ2

g(ξ) dξ

∣∣∣∣− C x ≥ 1

2

∣∣∣∣
ˆ L

−L

g(ξ) dξ

∣∣∣∣

for 0 < x < δ if δ is small.
We conclude that

∣∣Sxv2a−2/afv(x)
∣∣ ≥ 1

2

∣∣∣∣
ˆ L

−L

g dξ

∣∣∣∣−
1

100

∣∣∣∣
ˆ

g dξ

∣∣∣∣

≥ 1

2

∣∣∣∣
ˆ

g dξ

∣∣∣∣−
1

100

∣∣∣∣
ˆ

g dξ

∣∣∣∣−
1

100

∣∣∣∣
ˆ

g dξ

∣∣∣∣ ≥
1

4

∣∣∣∣
ˆ

g dξ

∣∣∣∣
for 0 < v < v0 and 0 < x < δ. Hence Lemma 2 is proved. ¤

In the remaining part of this paper δ and v0 are given by Lemma 2 and we may
also assume that δ < 1. We need two more lemmas.

Lemma 3. For 0 < v < min(v0, δ/4), 0 < t < 1, and δ/2 < x < δ one has
∣∣Stfv(x)

∣∣ ≤ C
v

tγ

where γ = (1 + α)/a > 0.

Proof. Using the estimate in Lemma A we obtain
∣∣Kt(y)

∣∣ ≤ t−1/aC
(
1 + |t−1/ay|α) ≤ C t−1/a

(
1 + t−α/a

) ≤ C t−(1+α)/a

for 0 < t < 1 and |y| ≤ 2.
One has

Stfv(x) =

ˆ
eit|ξ|a f̂v(ξ) eixξ dξ =

ˆ
Kt(y) fv(y + x) dy.

If δ/2 < x < δ and |y| ≥ 2, we obtain |y+x| ≥ |y|−|x| ≥ 2−1 = 1 and fv(y+x) = 0
and hence

Stfv(x) =

ˆ

|y|≤2

Kt(y) fv(y + x) dy
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for δ/2 < x < δ. It follows that
∣∣Stfv(x)

∣∣ ≤
ˆ

|y|≤2

∣∣Kt(y)
∣∣ ∣∣fv(y + x)

∣∣ dy ≤ C t−(1+α)/a

ˆ ∣∣fv(y)
∣∣ dy

= C t−(1+α)/a

ˆ ∣∣ǧ(y/v)
∣∣ dy = C

v

tγ

where γ = (1 + α)/a. ¤
Lemma 4. For 0 < v < min(v0, δ/4), 0 < t < 1, and δ/2 < x < δ one has

∣∣Stfv(x)
∣∣ ≤ C

t

vβ

where β = 2a.

Proof. We have

Stfv(x) =

ˆ (
eit|ξ|a − 1

)
eixξ f̂v(ξ) dξ +

ˆ
eixξf̂v(ξ) dξ.

The second integral on the above right hand side equals 2πfv(x) which vanishes since
x > δ/2 and supp fv ⊂ (−v, v) ⊂ (−δ/4, δ/4). Setting η = vξ we obtain

∣∣Stfv(x)
∣∣ ≤

ˆ
t|ξ|a

∣∣f̂v(ξ)
∣∣ dξ = t

ˆ
|ξ|av

∣∣g(vξ + 1/v)
∣∣ dξ

= t

ˆ ∣∣∣η
v

∣∣∣
a ∣∣∣g

(
η +

1

v

)∣∣∣ dη =
t

va

ˆ
|g(ξ)|

∣∣∣ξ − 1

v

∣∣∣
a

dξ

≤ t

va

(
C

ˆ
|g(ξ)| |ξ|adξ + C

ˆ
|g(ξ)| 1

va
dξ

)
≤ C

t

v2a
,

and the proof of Lemma 4 is complete. ¤
Now take v1 such that 0 < v1 < min(v0, δ/4) and set εk = 2−k for k = 1, 2, 3, . . ..

Also set
vk = εk vµ

k−1, k = 2, 3, 4, . . . ,

where
µ = max

(
(2a− 2)γ, β/(2a− 2)

)
.

Since β = 2a it is clear that µ > 1. By induction we prove that vk < 1 for k =
1, 2, 3, . . .. It follows that 0 < vk ≤ εk, k = 1, 2, 3, . . ..

Also we have vk ≤ εkvk−1 ≤ 1
2
vk−1 for k = 2, 3, 4, . . .. It follows that

∞∑

j=k+1

vj ≤ 2vk+1, k = 1, 2, 3, . . . ,

and
k−1∑
j=1

1

vβ
j

≤ C
1

vβ
k−1

, k = 2, 3, 4, . . . .

Now set f =
∑∞

k=1 fvk
. Then f ∈ Hs for s < 1/4, since

‖f‖Hs ≤
∞∑
1

‖fvk
‖Hs ≤ C

∞∑
1

v
1/2−2s
k ≤ C

∞∑
1

ε
1/2−2s
k < ∞

for 0 < s < 1/4. It is clear that supp f ⊂ (−δ/4, δ/4).
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We can now formulate our theorem.

Theorem 1. Let f be the function we have just constructed. With tk = tk(x) =
x v2a−2

k /a one has ∣∣Stk(x)f(x)
∣∣ ≥ c0/2

for δ/2 < x < δ and k ≥ k0. Here c0 denotes a positive constant. Hence we do not
have limt→0 Stf(x) = 0 in the interval (δ/2, δ). Thus we do not have localization or
localization almost everywhere for all functions in Hs if s < 1/4.

Proof. We have

Stk(x)f(x) =
∞∑

j=1

Stk(x)fvj
(x)

and
|Stk(x)f(x)| ≥ |Stk(x)fvk

(x)| −
∑

j 6=k

|Stk(x)fvj
(x)|

and using Lemma 2 we obtain

|Stk(x)f(x)| ≥ c0 −
k−1∑
j=1

|Stk(x)fvj
(x)| −

∞∑

j=k+1

|Stk(x)fvj
(x)|.

We shall estimate the two sums on the right hand side for δ/2 < x < δ. For j ≥ k+1
we have

|Stk(x)fvj
(x)| ≤ C

vj

(tk(x))γ

according to Lemma 3. Hence

|Stk(x)fvj
(x)| ≤ C

vj

(xv2a−2
k )γ

≤ C
vj

v
(2a−2)γ
k

and ∞∑

j=k+1

|Stk(x)fvj
(x)| ≤ C

1

v
(2a−2)γ
k

∞∑

j=k+1

vj ≤ C
vk+1

v
(2a−2)γ
k

.

Since µ ≥ (2a− 2)γ we have vk+1 ≤ εk+1v
(2a−2)γ
k and hence

∞∑

j=k+1

|Stk(x)fvj
(x)| ≤ Cεk+1.

For 1 ≤ j ≤ k − 1 we have

|Stk(x)fvj
(x)| ≤ C

tk(x)

vβ
j

≤ C
v2a−2

k

vβ
j

according to Lemma 4. It follows that
k−1∑
j=1

|Stk(x)fvj
(x)| ≤ Cv2a−2

k

k−1∑
j=1

1

vβ
j

≤ Cv2a−2
k

1

vβ
k−1

.

Since µ ≥ β/(2a− 2) we obtain

vk ≤ εkv
β/(2a−2)
k−1

and
v2a−2

k ≤ ε2a−2
k vβ

k−1.
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We conclude that
k−1∑
j=1

|Stk(x)fvj
(x)| ≤ Cε2a−2

k .

Thus for k ≥ k0 one obtains
|Stk(x)f(x)| ≥ c0/2

for δ/2 < x < δ and the proof of the theorem is complete. ¤
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