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Abstract. Localization properties are studied for operators of Schréodinger type.

1. Introduction

For f belonging to the Schwartz class S(R) we define the Fourier transform f by
setting

for = [ e s cer

R

For a > 1 and f € S(R) we also set

Sif(z) = / erel" f()de, zeR, t>0.
R
If we set u(x,t) = Sif(x)/2m, then u(x,0) = f(z) and in the case a = 2, u satisfies
the Schrédinger equation i Qu/dt = 9*u/dz*. We also set
m(€) =", ¢ eR,

and let K denote the Fourier transform of m so that K € S’'(R). It is known that
K € C*(R) (see Lemma A below) and in the case ¢ > 0 it is clear that

il — m(tl/ag)
has the Fourier transform
Ki(y) =tV Kt Vy).

One has S, f(z) = K; * f(x) for t > 0 and f € S(R) and we set S;f(z) = K; * f(x)
for f € L*(R) with compact support. We introduce Sobolev spaces H, by setting

Ho={feS; |flu, <o}, seR,

Hﬂm:<A@+éﬂﬂm%Qm_

It is well-known (see Sjdlin [4] and Vega [5] and in the case a = 2 Carleson [1| and
Dahlberg and Kenig [2]|) that

where

o1
11_{% %Stf(@ = f(x)
almost everywhere if f € H;/, and f has compact support. Also it is known that

H, 4 cannot be replaced by H; if s < 1/4.
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Now assume that 0 < s < 1/4.

Here we shall study the problem if there is localization or localization almost
everywhere for the above operators S; and functions f € H, with compact support,
that is, do we have

11_1(% Sef(x) =0

everywhere or almost everywhere in R\ (supp f)? We shall prove that there is no
localization or localization almost everywhere of this type for 0 < s < 1/4. In fact
we shall prove that there exist two disjoint compact intervals I and J in R and a
function f which belongs to H, for all s < 1/4, with the properties that supp f C I
and for every x € J one does not have

lim S, f () = 0.

In the special case a = 2 this was proved in 2009 by P. Sjolin and F. Soria. The
proof for a > 1 in this paper is a generalization of the proof of Sjélin and Soria for
a = 2. We remark that Sjolin and Soria also obtained the corresponding result for
a = 2 and dimension n > 2.

2. Proofs

We shall use a theorem of Miyachi to obtain some properties of the kernel K
defined in the introduction.

Lemma A. One has K € C*°(R) and there exists a number o > 0 such that
(1) |K(z)| <C (14 |z|*) for z€R.
Proof. Let ¢» € C*(R) with
v =1 [£/=>2, and ¥(§) =0, [<1
We have m = my 4+ msy, where

mi(€) = (L=9(&) ™" and  ma(€) = (&) ",

Let m; and msy have Fourier transforms K; and K, respectively. We have
Kiw) = [ e 1o ug) e seR
|€]<2
and it is easy to see that K is bounded and belongs to C'*°.
Also Miyachi [3]| has proved that K, € C*° and that
}K2(x)‘ <C ‘l.’(lfaﬂ)/(afl)

for |x| large. It follows that K € C'* and that (1) holds with & = 0 for @ > 2 and
a=(1-a/2)/(a—1) for 1 <a < 2. Hence Lemma A is proved. O

We shall use the inverse Fourier transform defined by

fla) = 5o | (@ d feSm)

Now choose g € S(R) such that suppg C (—1,1), §(0) # 0, and set
folz) = e ™ g(z/v), 0<wv<l.

It follows that supp f, C (—v,v) and f, € S(R). We shall use the functions f, to
construct the counter-example mentioned in the introduction. We remark that similar
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functions were used by Dahlberg and Kenig [2]. We need the following lemma, which

is essentially contained in [2].

Lemma 1. One has f,(€) = v g(vé +1/v) for 0 < v < 1 and || f, ||z, < Cv'/2728
for0<v<land0<s<1/4.

In our counter-example we shall use the following estimate.

Lemma 2. There exist positive numbers ¢y, 6 and vy such that

‘SxUQa—Q/an<.T)‘ Z Co
for0 < v <wvgand 0 <z <.
Proof. We have [ g(&)d¢ # 0 and we choose a large number L such that

/ElzL l9(€)] dé < Hlo '/9(5) dg‘ .

Setting n = v€ + 1/v we obtain
S, folx) = /e”£ My g(v€ +1/v) de

_ /eiz(n/v—l/v2)eit|n/v—1/v2|ag(n) dn _ /eiFg df,

where
a

1

v .

F:F(x,f,t,v):%<§—%> +£

6_

We now take vy = 1/(2L) and v such that 0 < v < vg. One has

L
S.f(z) = / ¢ gde + /|£ e

—L

and

L . L 1
iF _ F iF -
\sth:c)!z‘/_Le gdf‘ ‘/Me gdé'Z'/_Le gds‘ 100‘/9015).

For |¢] < L we have
1 t (1 ¢
v v v® \ v

and using a Taylor expansion one obtains

(2-¢) = 50-19 = L(1-ag+ gala =12 + 0P
R %a(a — 122 + O(v*™?).

Hence

t 1
F==—- "4 — —aftv'™ §a(a — Dtv* 2% 4 O(tv*2%).
v
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Setting ¢t = xv?*~%/a we get

_m§ x T 9a-2 1-2a , 1 2a—2 2—2a 2
F77_§+av2 Exv™ v —|—§(a—1) £+ O(av)

for x > 0. It follows that

F=" —£+1(a—1)x§2+0(xv)

a? 2 2

and hence

L L
‘/ e’ngf' _ / ezi(a—l)xf ezO(a:v)g(é-) df’
L L

Lo L
_ / gt 1)ze? (5) d§+/ e it(a— 1):]052( i0(zv) 1) g<§> dg‘

L —-L

L
> / z%(a 1z§2 dé_‘ Cao>= ‘/ df’
—L

for 0 <z < 6 if 4 is small.

We conclude that
1 L
- d
2‘/_Lg 5‘ 100'/9 6‘

%‘/gdgl 100'/g g‘ 100‘/gd£'_4'/gd§‘

for 0 < v <wvgand 0 < x < 9. Hence Lemma 2 is proved.

v

’Sa:UQG*Q/afv(x) |

v

In the remaining part of this paper ¢ and vy are given by Lemma 2 and we may
also assume that 6 < 1. We need two more lemmas.

Lemma 3. For 0 < v < min(vp,d/4), 0 <t <1, and §/2 < x < § one has
v

where v = (1 + «)/a > 0.
Proof. Using the estimate in Lemma A we obtain
K, ()] <t7VoC (1+[tVoy|) < Ct Vol e7/%) < el
for 0 <t <1and |yl <2
One has
Sifue) = [ fu(e e = [ Kalw) fly -+ o) dy

If§/2 <x < éand |y| > 2, weobtain |y+xz| > |y|—|z| >2—1=1and f,(y+2)=0
and hence

Sifo(z) = K(y) fo(y +2)dy

ly|<2
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for 6/2 < x < 4. It follows that

S:f ()] < /| V)] [l )] dy < ot [ 150y
— C’t—(l-l—a)/a/ ‘g(y/v)‘ dy — Ot%
where v = (1 + a)/a. O

Lemma 4. For 0 < v < min(vp,d/4), 0 <t < 1, and §/2 < x < § one has
t
}Stfv(ﬁ)‘ Sov_ﬁ

where 3 = 2a.
Proof. We have

S,fu(x) = / (M6 1) € 7, (6) de + / ¢ F (€ de.

The second integral on the above right hand side equals 27 f,,(x) which vanishes since
x> 6/2 and supp f, C (—v,v) C (=d/4,6/4). Setting n = v€ we obtain

1S, f()| < / HeP | fo(0)| de = ¢ / €7 |g(vE + 1/0)] de

fp
<% (¢ [+ o [l ) <c 2,

and the proof of Lemma 4 is complete. O

Now take v; such that 0 < v; < min(vp,d/4) and set e, =27% for k =1,2,3,....
Also set

a

o+ 1) an = [ a1~ ['ae

v =ervy , k=2,3,4,...,
where
1 =max((2a — 2)y, 8/(2a — 2)).
Since # = 2a it is clear that 4 > 1. By induction we prove that v, < 1 for k =
1,2,3,.... It follows that 0 < v, < e, k=1,2,3,....

Also we have v, < epvp_1 < %vk_l for k = 2,3,4,.... It follows that
[ee)
> w20, k=123,
j=k+1
and -
iﬁ gcﬁi, k=234, ...
=1 Yj V-1

Now set f =377, fu,- Then f € H, for s < 1/4, since

o0 00 oo
1l <l < CY S0 <03 e/ < o0
1 1 T

for 0 < s < 1/4. Tt is clear that supp f C (—d/4,d/4).
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We can now formulate our theorem.

Theorem 1. Let f be the function we have just constructed. With t, = ty(z) =

20" ?/a one has

| St f(@)] = co/2
for §/2 < x < 6 and k > kq. Here ¢y denotes a positive constant. Hence we do not
have lim;_o S;f(x) = 0 in the interval (§/2,0). Thus we do not have localization or
localization almost everywhere for all functions in H if s < 1/4.

Proof. We have
Stk :l?)f ZStk(:D)va

and

[ St F(@)] = |Suerfor @) = D |Suuerfo ()]
J#k
and using Lemma 2 we obtain

k—1 00
(St f(@)] = o= D [Si@ fuos (@) = D 1S fo; (@)
j=1

j=k+1

We shall estimate the two sums on the right hand side for 6/2 < x < 4. For j > k+1
we have

v.
Sty(a) fo; ()] < O
according to Lemma 3. Hence
U.
Sietay fo, ()] < Oy < Ot
and .
Uk
Z ’Stk fv]( z)| < 2a 2)y Z vy S (2a 2)y "
j=k+1 j=k+1
Since p > (2a — 2)y we have vy < 5k+1vk ~27 and hence
Z Sty fo, ()] < Cpg.
j=k+1
For 1 < j <k —1 we have
( U2a—2
|Stk.(:e)fvj( )|<C ﬂ) <C k/g
Yj Yj
according to Lemma 4. It follows that
-1y 1
Z |Stk f'u | < CU -2 3 S C’U’%a_2ﬁ—.
=1 Yj U1
Since u > /(2a — 2) we obtain
v < € vff(fa 2)

and
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We conclude that -
> [Sue) fo, (@)] < Cepe™.
j=1

Thus for k > ky one obtains
St f ()] = co/2
for §/2 < o < ¢ and the proof of the theorem is complete. O
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