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Abstract. In this paper, we obtain a characterization of spaces Qi in terms of fractional
order derivatives of functions. We give a description of Morrey-type spaces similar to the well-
known characterization of BMOA. A relationship between @k spaces and Morrey type spaces in
terms of the fractional order derivatives is established.

1. Introduction

There are two principal results obtained in this article. The first result is a
characterization of the space QQx in terms of some fractional order derivatives of
an analytic function in the unit disc D. In [12] we characterized the Qk spaces in
terms of higher order derivatives. The main difficulty here is to replace higher order
derivatives by fractional order derivatives. The second result is a connection between
the spaces Qx and Morrey type spaces H introduced in Section 3. We will show
that if f is a member of Qx, then some fractional order derivatives of f belongs
to H%. Conversely, if f is in the Morrey type spaces, then some fractional order
derivatives of f belongs to Q) space.

Before proceeding, it may be useful to recall a few fundamental definitions and
establish some notation.

Let K: [0,00) — [0,00) be a right-continuous and nondecreasing function. The
@k space consists of analytic functions f in D satisfying

1/2
(11 Il = (sup [ 1FGPRGE)AG) <,

where ¢(z,a) is the Green function in D with singularity at a € D, and dA(z) is the
Euclidean area element on D so that A(D) = 1.

It is clear that Qg is Mdbius-invariant, i.e., ||f o @allx = ||f|lx holds for all
a € D, where ¢,(z2) = #==; see [3] and [4] for the theory of Qx spaces. In the

case K(t) = t*,0 < p < oo, the space Qk gives (), space; see [1], [13] and [14].
Especially, Qk coincides with BMOA if K (t) = t. We know from [3] that @ spaces
are contained in the Bloch space B, which consists of analytic functions f such that

1flls = sup{(1 = |2]*)|f'(2)|: z € D} < o0.
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In this paper we assume that

1

(1.2) /O K (log %) dr < oo.

Otherwise, the space Qx contains constant functions only. By Theorem 2.1 in [3] we
may assume that K is defined on [0,1] and extend its domain to [0,00) by setting
K(t)=K(1) for t > 1.

Further we need two conditions on K as follows:

1
d
(1.3) | oS <o
B s
and
o ds
(1.4) / ng(s)SHp <oo, 0<p<2,
1
where

or(s) = sup K(st)/K(t), 0<s < oo.

0<t<1

It is obvious that K (t) = 17,0 < ¢ < 1, satisfies (1.3) and (1.4) for all 0 < p < 2.
For a subarc I C 0D, let # be the midpoint of I and denote

I
S(1) = {z €D 1— 1] < 2| <1, | —arg2| < %}
for [I] < 1 and S(I) = D for |I| > 1, where |I| denotes the length of I. For

0 < p < oo, we say that a positive measure du is a p-Carleson measure on D
provided

p(S))
= su < 00.
Il = sup K42
A positive measure du is said to be a K-Carleson measure on D if
1— 2|
(1.5) |pllx = sup K dp(z) < .
1coD Js(1) 1]

Clearly, if K(t) = t” , then p is a K-Carleson measure on D if and only if (1 —
|2|?)P dpu(2) is a p-Carleson measure on D.

In addition, we may assume that K(t) ~ K(2t). This means that K(t) <
K(2t) < K(t). Note, we say K; < Ky (for two functions K; and Kj) if there
exists a constant C' > 0 (independent of K; and K») such that K; < CK,.

In the present work we need two basic characterizations of QQx spaces and we
shall list them here for reference. First we mention the higher order derivative char-
acterization of Qk spaces given by the first author and Zhu in [12].

1
/ —QPK(S) ds < 0o
0

S

/ Pic(s) ds < 0o
1

sP

Theorem A. Suppose

or
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for some 0 < p < 2. Then for any positive integer n, an analytic function f in D
belongs to Q if and only if

igg/D [FP )P = 2P K (1~ [pa(2)]?) dA(2) < 0.

The second result we mention here is a characterization of K-Carleson measure
given by the first author and Essen and Xiao in [4].

Theorem B. Let K satisfy (1.3). A positive measure du on D is a K-Carleson
measure if and only if

sup [ K(1= lga(:) ) du(2) < o
acD JD
By Theorems A and B, we have

Theorem C. Let K satisfy (1.3). An analytic function f in D belongs to Q if
and only if | f™ (2)[2(1 — |2|*)*"~2 dA(2) is a K-Carleson measure.

The following lemma will be used in the sections 2 and 3, and its proof will be
given in Section 3.

Lemma D. If K satisfies the condition (1.4), then there exists a weight K,
comparable with K, such that K(t)/t? is non-increasing. Moreover, for some enough
small ¢ > 0, Ki(t)/t"~¢ is also non-increasing.

2. Fractional order derivative and Qi spaces

For fixed b > 1, define the a-order derivative as follows:

Foe) = Hied [T ) daw), b a0,

where I' is the Gamma function and [a] denotes the smallest integer which is larger
than or equal to a. Since

L(btnt+a—1—[a—1)I'(n+1) n—1-[a—1] _
(2")@) = Trnl(n—fa—1))  * ,on2la—1)+1,
0, n<[o—1]+1,
we know that if « =n,n =1,2,3--- , then f(® is just the derivative of order n of f.

The following is our first main result in this paper:

Theorem 2.1. Let K satisfy the conditions (1.3) and (1.4). If « > 1/2, then
f € Qg if and only if | f(@(2)]2(1 — |2]*)2(®~Y dA(z) is a K-Carleson measure.

Firstly, we give some results which will be used in our proof.

Lemma 2.1. Let K satisfy the conditions (1.3) and (1.4). Let b+« > 1+ p,
b>p and a > 0. There exists a # € (0,1) and a constant C' (independent of |I|, the
length of arc I on D) such that

() a-pr K ()

p (1= [z[)' 7o+l —wz[r+e (= w))?

(2.1)

for all w € D.
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Proof. By Lemma D, there exists a small enough ¢ > 0 such that t“PK(t) is
decreasing. Since b+a > 1+4p, b > p, a > 0, we are able to choose # € (0, min{c, 1})
such that b—p+ [ +c¢> 1. If 1 — |w| > |I|, Lemma 4.2.2 in [15] gives

K () (1= w2y 261
] (1w
dA(z) < dA
TR O e 1)
K ()
1 )
= w)P (1= |w]?)

It is easy to see that (2.1) holds when 1 — |w| < |I| and |w| < 1/2. Now we
assume 1 — |w| < |I| and |w| > 1/2. Without loss of generality we may assume that
I is centered at € = 1 and Im(w) = 0. Let v = 1 — w. We divide the unit disk D
into 1 J Sz | S3, where

Si={2:0<1—|e| <7, [arg] < /2,
Sp={z1y<l—[z] <1, |argz| < v/2}

and
={z:0<1—|z| <1, |argz| > 7v/2}.
Then
1—|z] _
/ K( I )(1—|w|2)" ! ) b/” K (t/|1]) dt
s (L= [z[)!7oFP[1 —wz|Pre STy (I = y))retiets
v
LKW,
v Jo o tiets

and

K () (= u) ) [ K(t/|1)) dt
/52 (= e e A =7 / G (T =)ot

< LR
= ~)ota—T 1b+5

On the other hand,

K () (1= )
/S N I dA(2)

1 — |z])l-otB]1 — wz|bte

o1 RGN ([T do
< 2y o tiath </’Y [(,y+t(1_,}/))2+Sin2(0/2)]b42»a> dt

< 1 /1 K(t/|1]) dt

~ o (v+i(l- 7))”*0“1151“””j

<L TEWD VE(t/]1))
fya 0 tl—a+p 1 _ b+a 1 1b+8

Since f < a, Lemma 2.1 in [4] gives

1 YK (/I Ile=8 /I i 1 et 7e I
L[ e ) (), K/
v Jo  tiTet v Sy stTeth 7" Jo s o
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Note that b —p + 3+ ¢ > 1. By Lemma D we have

PE@D " (Y (2 CP/IL
e praY: (1_,.)/)b+a71 H 1| L Bt/ |I])er
1

b—p—1+c
< 0 P / dt . KQ/II)
= (1 = y)bre-tl 1) ), to-pthte ™~ 4
The above estimates give

- eyt 1—|z] — |w|)*!
/(K<|I|>(1 |w]) ;/ fi(”)(l bl dA(z)

b 1 — |Z‘)1—a+ﬁ|1 _ wz|b+a ’Zl 1 a+ﬁ|1 _ wz|b+a

1 [T K(t/|I b-1 VK(t/|1 I
_ 1 [TREAD, ,  a @/11) 4y < K/
Yo 0 tl—a+p (1 _ f},)bJrafl N to+8 ")/B
Hence (2.1) holds. The proof is complete. O

Lemma 2.2. Let K satisfy the conditions (1.3) and (1.4). Let 1 be mea-
surable on D. If du(z) = |¢(2)[?dA(z) is a K-Carleson measure, then |1 (z)|(1 —
|2|2)P=1/2d A(z2) is a (p + 1) /2-Carleson measure.

Proof. By Lemma D, we can choose a small ¢ such that ¢ 7T¢K () is decreasing.
By Cauchy—Schwarz inequality we have

/S NECEREREEEO

= (/S(I)w(z)w( (1 I_I!|Z|> ) ( K11__|Z||Z| 7 dA(Z))W
Sl (e =1y aa >) S 2102

The above estimates give the desired result. 0

Lemma 2.3. Let K satisfy the conditions (1.3) and (1.4). Let b+« > 1+p,b >
max{p, (1 + p)/2} and a > 1/2. Let v be measurable on D and define an operator
on L*(D) as:

ru) - [ W=l ) daqw).

|1 _ wz|b+a

If du(z) = |¢(2)|?dA(z) is a K-Carleson measure, then |T(2)|?(1 — |z[?)2@"DdA(2)
is a K{-Carleson measure.

Proof. For the Carleson box S(I), we have
_ 1-—
[ repa - e (S aac)
S() /]

/s < lz') (1— |22

{ ( ) Ww% dA(w)} dA(z) S By + By,
5(21) D\S(2[) 11

wz|rt
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where

a- [k () e (el iaw)) dAC)

and

By = /S . K ( ! |_I||Z|) (1—|z[?)> ( /D o |¢(w)|—(|11__|;”§21;1 dA(w)>2 dA(2).

To estimate FE7, consider

2ow) = K((1—|2))/11]) (1 = |w]*)"~1(1 = |2]*)*!
B \/K((l — |wl)/[1]) 11— wz[ote

and the integral operator on L*(D)

Ta(2) = [ Blaw)lo(w)] dA(w)
D
Choose (¢ as in Lemma 2.1 such that 8 < b and o + g > 1. In fact, if p > 1, we

choose 5 € (1/2,min{«, 1}); if 0 < p < 1, we choose § € ((1 +p—¢)/2,(1+ p)/2),
where c is given as in Lemma 2.1.

Define
(5 ()"
]
h(z) = .
B = oy
By Lemma 4.2.2 in [15] and Lemma 2.1, we have

/DB(z,w)h(w) dA(w) < h(z)

and
/DB(z,w)h(z) dA(z) S h(w).

By Schur’s Theorem (cf. [15]) we have

/|TBg )2 dA(uw /|g )2 dA(w

for all g € L*(D). Thus the operator T5 is bounded on L?*(D) by Corollary 3.2.3 in
[15]. Consider the function

otw) = il (1 (1)) o,

where xs@n(w) =1 for w € S(27) and 0 for w ¢ S(2I). We have

(2.2) B < / Tag(w)? dA(w / lg(w)|? dAw) < k.

Next we estimate Es. Since |4 (w)[* dA(w) is a K-Carleson measure, by Lemma
2.2, dv(w) = |[Y(w)|(1 — |w?)P~D/2dA(w) is (p + 1)/2-Carleson measure. This
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deduces

/sa)K (1 1] ) (1— |2V
(g/“”“f S(2"1) = ll)l(—lm_zmj)bl dA(U))) dA(2)
/5(1 K( |_I||Z|) (1 o]2ye-

2
dv(w)
. dA(z
(; /5(2”“1 NS (27 1) |1 —wz\‘l+ (p+1)/2 ) ( )
1 - |Z| 2n+1|l|)(p+1 /2
2
SHUH@HV?/SU)K( 1 )<1_ o (Z (27 1] ot 12 dA(z)

1 1—|z| _
2 2 2(a—1)
S / K (T) (1= 22D dA(2)

1 o
S Wl e / O PPN AR ol

Here we use the following estimate:

1

2.3 <
(2:3) 11— wz| ~ 21|

w e S\ S(2"1).

Combining our estimates for F; and E5, we have

a— 1_|Z|
[ TR = R () dAG) S Dl + oy

for any I € 0D. By Theorem 3.1 in [4] we obtain that |T%(2)|?(1 — |2|?)2@~V dA(2)
is a K-Carleson measure. The proof is complete. 0J

Proof of Theorem 2.1. Now we apply Theorem A to prove Theorem 2.1. Suppose
f € Qg, then |f'(2)|*dA(z) is a K-Carleson measure. For a > 1/2, the a-order
derivative of f at z € D is

where b > 1 and b+« > 1+ p, b > max{p, (1 + p)/2}. By Lemma 2.3 we obtain
that | £ (2)2(1 — |2]?)2(®=Y dA(z) is a K-Carleson measure.

Conversely, assume that | £ (2)|?(1 —|z|>)*@=1) dA(z) is a K-Carleson measure.
We consider the Taylor series of f: f(z) = 3°72a;2’. Note that

I =TGN
L A>0.
oo~ 2 iy 7 A0
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Hence

a w[a—l] — |wl2)b1
o) = =) [ Bl ) daw)

Db+a) [T — o)t &
— ) /D =zt Z_:aj(z ) dA(w)

b—i—a w1 — w2t > .
ML [, T () = e
7=0

where
'b+4j+a)l'(j+m-+2
(bt LU )) j=0,1,--- ,m=[a—1].

2.5 o = Qitm - -
25 o %+“<NMq+m+mN«u>

Since a > 1/2, m > 0, a simple computation gives the following equality

L(b+m+1) (1 —Jw/?)*! @ (w)(1 = [w|2)* *dA(w
F(b—l—a—l)/D( _@2)b+m+1f (w)(1 = |w[*)*" dA(w)

:r@+m+n/<L{yW“2<§%mw>wmw

F'b+a—1) (1 —wz)btmtt \
Db+m+1) & obias [e=T(k+b+m+1)_ :

— . 1_ +a—2 k _k ydA
T(h+a—1) s /D( [wl) U VR A (w)

TG +m+2) i e(mt1)
_y UMD e = f ()
= TU+1)
Since | £ (w)|2(1—|w|?)**~YdA(w) is a K-Carleson measure, Lemma 2.3 implies
that |f™+D(2)]2(1 — |2]?)*"dA(z) is a K-Carleson measure. Hence f € Qg by
Theorem A. O

3. Morrey type spaces and Qk spaces

Denote H% the Morrey type space of all analytic functions f € H? on D such
that

1 2 =
1) 11 = 50 7

where
1
ﬁ—mﬂﬂO%

and the Hardy space H? consists of analytic functions f in D satisfying
1 2

sup — |f(re'®)|? df < oo.
O<r<1 27

See [8] and [16] about the Morrey space.

The Poisson extension of a function f € L*(0D) from D to D is denoted by f
and defined as follows:

1/2
o—ﬁM@Q < oo,

- [ roLL . sep,
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If f € H%, then f(z) = f(z) for z € D. Wu and Xie in [10] characterized functions
in the Morrey space in terms of p-Carleson measures. Furthermore, they reveal a
simple relation between (), space and Morrey space. In this section, we will give
a series of characterizations of the Morrey type space Hz and build a relationship
between the spaces Hz and Q.

Theorem 3.1. Let K satisfy the conditions (1.3) and (1.4). Then the following
are equivalent.

1) fe

EJE%EU— PR~ =) 4AE) < o
@@g;{ﬁZ/U’ ~leul2))AAL) < oc
(0 sup 2 [ 1t a4 <

) sup 2Ll TP < o

© sup 2 ([T~ @) < o

To prove Theorem 3.1, we need the following Lemmas. The first lemma, Lemma D,
was proved in [11] but here we state it again.

Lemma 3.1. If K satisfies the condition (1.4), then there exists a weight K,
comparable with K, such that K (t)/t? is non-increasing. Moreover, for some enough
small ¢ > 0, K;(t)/t"~° is also non-increasing.

Proof. If K satisfies the condition (1.4), we will claim that
(3.2) %in% inf K(t)/t* > 0.

If s > 1, then

K(1)/K(1/s) < ¢k (s)

> ds ! ds
-1 _ -1
/1 K(1/s) e —/0 K(s) iy <o

and by (1.4)

So, we have

tds 1 ds
p < -1 —1
tP/K(t) < K(t) /0 a7 = K(s) iy < 0
Then we obtain the claim.
We define
< K(s)
Ki(t) =t il ds, 0<t<oo0.

It is easy to see that K (t)/t? is non-increasing. Since K is nondecreasing, it follows
that K (t) > K(t),0 <t < co. We note that for ¢ € (0,1),

V'K ! t K(t) [*
[ KO < iy [ 2D g, < KO [~onte)
‘ S +p ; S +p tp 1 u1+p
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and by (3.2),
= K(s) K(1)
= <
RE ds=K(1) < -
Hence, we obtain that
(3.3) Ki(t) < K(1) (/ Wj“) ds + 1) L 0<t<l.
. site
For t € [1,00), we have
* oK (s)
(3.4) K (t) = tp/l e ds = K(1) = K(t)

By (3.3) and (3.4) we get that K; = K.
Note that if ¢ is sufficiently small, then we have
(tPKL (1) =t P(eKy(t) — K(t)) <0, 0<t<oo. O
Lemma 3.2. Let K satisfy the condition (1.4). Then
K(rt) <t’K(r), 0<r<1,1<t< 0.

Proof. By Lemma 3.1 we know that ¢t P K (¢) is non-increasing. Thus
(rt)PK(rt)K(r)
r—PK(r)
and we get the desired result. O

Proof of Theorem 3.1. We first show (1) < (5). If (1) holds, without loss of
generality, we assume that |a] > 3/4. Let I, be the subarc of 0D with the mid-
pointer a/|a| and length 1 — |a|. Moreover, let J, = 2"[, for n = 0,1,..., N — 1,
where N is the smallest positive integer such that 2V|I,| > 1. Let Jy be the unit
circle. Then we have the following estimate:

I—la* 1

K(rt) =1t°

< tPK(r),

3.5 —_— & , Cel,
(3:5) 1=l ~ L
and
1 —lal? 1
(3.6) lol” C€Jpir \Juy n=0,1,2,--- ,N — 1.

[1—ac? 221,
For a fixed point @ € D with |a| > 3/4, we obtain the following estimate.

TP = 5 [ 170 - st
S e
= /. |(f(¢) = fr.) = (f(a) — fr.)] | “acp |d(|

A —la*

S [ 10 - huP i 1

N-—1
af
< 2 d
< (/J+§:%/J\J) 10) = 1P e €
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1
< —2n _ 2
NMJ<&+§j2 /;ﬂh)ﬁ@)zMIWd
1£(C) = fal® ldC| + E

S ¢) = fal® ld¢].
|1| T IJn+1| JnH\Jn' il

By the Cauchy-Schwarz inequality and Lemma 3.2,
|fJn+1 fJn| |f(C) _fJn+1| |dC|

|Jn+1| Jn+1

5 1/2
s( \ﬂO—ﬁmJﬂ%O
|Jn+1| Jn+1

K(|Jn11]) nye (K1 —]al)
< < gnlp— .
|Jn+1| ||f||H ~ ’CL|2 ||f”H2
Therefore
a
|fJn+1 fJo|<|fJn+1 fJn|+ +|fJ1 fJo ~ np/\, ’ ‘ HfHH s

where C(n,p) = (1 — 2D/~ for 0 < p < 1, C(n,p) —nforp—lananp
27(P=1/2 for 1 < p < 2. On the other hand, the Minkowski inequality gives

! £O) = falldc]

|Jn+1| Jn+1

] 1/2
< ( |f(C)_fJn+1||dC‘) + | fr+1 — fnl
’Jn+1’ In+1

< (o) 5D 11

2

Since > 7, (C(g;f’ D i convergent, the above estimates show that

Tk < K g, Y COE < KUk

Hence, (1) = (5) holds.
Let (5) hold. For any given I C 0D, we choose a; € D such that a;/|a;| is the
center of I and |a;| =1 —|I|. Then

— fil*|d¢] =

5 [ 101€) = e = (= stan) P

|
< T /v Flan)P1d

1— !CLIP |a1|2
S R O~ flanF G
2
< L) T P,

K(1 = lar])



204 Hasi Wulan and Jizhen Zhou

The above estimate shows that (5) = (1) holds.
Now we will prove that (2) < (3). For given I C 9D, let a;/|a;| be the midpoint
of I and 1 — |as| = |I|. Note that

1 —az| =~ |1, »eS).

Then

1
K(|1])

1 — Ja;|

~ m/ (P = Ja, (2)]) dA(2)

/ PP~ |2P) dA(2)
S(I)

< sup ol / PP~ lpur (2)) dA(2),

_GIEDKl_

which shows that (3) = (2).
Conversely, suppose (2) holds. There exists a constant M such that

W(S(1)) = / ) < M)

for any I C D, where du(z) = |f'(2)]*(1—|z|*) dA(z). For any given nonzero a € D,
let I, be the subarc of D with the mid-pointer a/|a| and length 1 — |a|. By (3.5),
(3.6) and Lemma 3.2 we have

af?
1_
o) [ T )

IA
g
M|>—*

- | du(2)
. S(2n 11\ S (27 1,)

1
92n

3
I

A
W
[\

— 1
u(SEL)) < MY o K (27| L)
n=1

S
Il
—

AN
hE
[\-}
_

o K (L Jal) ~ (1~ Ja]).

i
I

Taking the supremum over a € D, we have that (2) = (3).
By the Littlewood—Paley identity (|6], p. 236)

/|f 21— |2P) /|f |21og¢dA<> /8D|f(€)—f(0)l2|d5|,

we can figure out (3) < (4) < (5) < (6). The proof is complete. O
We conclude this paper by proving a connection between Qx and H?% spaces.
Theorem 3.2. Let K satisfy the conditions (1.3) and (1.4).

(1) If f € Qk, there exists a q, 0 < g < p, such that f(l_q € HZ.
(2) If f € H%, there exists a q, 0 < ¢ < p, such that f"z) € Q.

Proof. We note that (f(®) = f+1  In fact, we consider the Taylor series of
fr [(2) = 3220027 Then f@)(2) = 372 (4,427, where a;, is defined as in (2.5).
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Since [ — 1] + 1 = [«a], we have

(f9)(2) = Z%’—H,a(j +1)2
Ry . P(b+j+1+a)(+[a—1+3)\
" 2 el ( Db+ +la—1+2)0( +2) )

R | PO+j+1+a)l(G+[a]+2)\ ;  an
_jzoaﬁ[“]“( Db+ )+ o] + TG + 1) )Z =,

We now prove (1). If f € Qg, then du = |fC2)(2)2(1 — |22)1dA(2) is
K —Carleson measure. For any given I C 0D, We have

b G2 ()21 = |2)? z
R oy 12 GIPO = 2 24C)

|]|q (ﬂ) 2 2N1— (1—|Z|)
S ’ - K dA
~ K(|1]) /5(1) i/ (=11 H (2)

L GO (N 2(1  |£12)1-4 (1 - |Z|) )
= K(D) ety /Sm PP =P = ) dAG) £ lnlic

Here we used Lemma 3.1, which shows that there exists a ¢, 0 < ¢ < p, such that
K(t)/t? is non-increasing. Thus, we obtain that FEE e H? by Theorem 3.1; that
is, (1) holds.

By Lemma 2.1 in [4], there exists a ¢, 0 < ¢ < p, such that K(¢)/t? is nonde-
creasing. For any I C 0D, we have

"N2(] — | 2]2)4 1—|z| . 1 "N2(] — |22 -
[ rera - () aae) s g [ @R - 1P ae)

1 "N2(] — |2]2 5
5m/sm|f<z>| (1 - 2[2) dA(2)

Suppose f € H%. By Theorem 3.1 we obtain that | f'(2)|*(1—|z|?)'~? is a K-Carleson
measure. We note that

I'(b o 1-— 2 b+q%3 g—1 q+1
(r+(b)2 ) /D (<1_’;|Z))b+q;1 w7 (1 = [w) % f(w) dA(w).

q+1

fEz) =

g+1

Lemma 2.3 implies that | f(*27)(2)|?> dA(2) is a K-Carleson measure. Since f(%l)(z) =
(f¢2)Y(2), we have f(*z) € Qk by Theorem 2.1. Now (2) follows. O

Remark. Carefully checking the proof of Theorem 3.2, we find that we need a
non-increasing function K (t)/t% for ¢, € (0, p) in the proof of (1) and a nondecreasing
function K (t)/t% in the proof of (2) for go € (0,p). Generally, ¢; # ¢o unless
K(t) = t9. In this case QQk coincides with @),. Therefore, we have the following
result about (), which appeared in [10].
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Corollary 3.1. Let 0 < q < 2 and f € H?® Then f € Q, if and only if
59 € H29, where

o= {re s sw o 1606~ il lacl < oo

IcoD

Consequently, f € H>? if and only if f(7) € Qq-

4. Final remark

The space (ko consists of analytic functions f in D with the property that
G [ FGPEQ - e2)F) dAG) =0
a|—1— D

It can be checked that Qi is a closed subspace in Q.
A positive Borel measure p on D is called a vanishing K-Carleson measure if

1—
lim K ( |Z|> du(z) = 0.
) 1|

|[I]—0 S

Carefully checking the proofs of Theorem 2.1 and several lemmas in Section 2 and
Theorem 3.1 in [4], we see that the little oh version of Theorem 2.1 holds as well,
from which we obtain the following.

Theorem 4.1. Let K satisfy the conditions (1.3) and (1.4). If « > 1/2, then
f € Qg if and only if |f(2)]*(1 — |2|?)*®~V dA(z) is a vanishing K-Carleson
measure.

We are also able to give the little oh versions of Theorems 3.1 and 3.2. Here we
omit the details about them.
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