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Abstract. In this paper we establish Lp-boundedness properties for Laplace type transform
spectral multipliers associated with the Schrödinger operator L = −∆+V . We obtain for this type
of multipliers pointwise representation as principal value integral operators. We also characterize
the UMD Banach spaces in terms of the Lp-boundedness of the imaginary powers Liγ , γ ∈ R, of L.

1. Introduction

We study certain class of spectral multipliers, usually called Laplace transform
type multipliers associated with the Schrödinger operator L = −∆ + V , where ∆
represents the Laplacian operator and the potential V > 0 satisfies a reverse Hölder
inequality. We prove that Lp-boundedness of some of those multipliers, the imaginary
powers of L, acting on Banach valued functions characterizes the UMD property for
the Banach space.

We now recall some definitions and properties that will be useful in order to state
and to prove our results.

We consider the Schrödinger operator L = −∆ + V on Rn, with n ≥ 3. We
assume that V > 0 is a locally integrable function on Rn belonging to the class Bq,
that is, there exists C > 0 such that, for every ball B in Rn,

(
1

|B|
ˆ

B

V q(x) dx

)1/q

≤ C
1

|B|
ˆ

B

V (x) dx,

for some q ≥ n/2.
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The operator L, suitably understood (see, for instance, [2]), is a closed unbounded
and positive operator in L2(Rn). Then, there exists the spectral measure EL associ-
ated with L. It is not hard to see that 0 is not an eigenvalue of L in L2(Rn), and
hence EL({0}) = 0. For every Borel measurable bounded function m on [0,∞), we
define the spectral multiplier TL

m by

TL
m(f) =

ˆ

(0,∞)

m(λ)EL(dλ)f, f ∈ L2(Rn).

It is well known that TL
m defines a bounded operator from L2(Rn) into itself.

We say that a function m on (0,∞) is of Laplace transform type when m(λ) =
λ
´∞

0
e−λtφ(t) dt, λ ∈ (0,∞), for a certain φ ∈ L∞(0,∞). Note that in this case m is

continuous and bounded on (0,∞). The spectral multiplier TL
m is called of Laplace

transform type when the function m is of Laplace transform type.
For every t > 0, we define the operator WL

t by

WL
t (f) =

ˆ

(0,∞)

e−λtEL(dλ)f, f ∈ L2(Rn).

The uniparametric family {WL
t }t>0 is the semigroup of operators generated by −L in

L2(Rn). For every t > 0 and 1 ≤ p ≤ ∞ the operator WL
t (f) can be extended from

Lp(Rn)∩L2(Rn) to Lp(Rn) as a contraction from Lp(Rn) into itself. The semigroup
of operators {WL

t }t>0 is not conservative. Moreover, we can write, for every t > 0
and f ∈ Lp(Rn), 1 ≤ p ≤ ∞,

WL
t (f)(x) =

ˆ

Rn

WL
t (x, y)f(y) dy, x ∈ Rn,

where WL
t (x, y), x, y ∈ Rn and t ∈ (0,∞), is a C∞(Rn × Rn × (0,∞)) such that,

according to Feynman–Kac property,

|WL
t (x, y)| ≤ CWt(x, y), x, y ∈ Rn and t > 0,

being

Wt(x, y) =
1

(4πt)n/2
e−

|x−y|2
4t , x, y ∈ Rn and t > 0.

We establish a pointwise representation of the Laplace transform type multiplier TL
m

as a principal value integral operator and we prove Lp-boundedness properties of TL
m.

As usual by C∞
c (Rn) we denote the space of smooth functions with compact support

in Rn.

Theorem 1. Suppose that m(λ) = λ
´∞
0

e−λtφ(t) dt, λ ∈ (0,∞), where φ ∈
L∞(0,∞). Then, for every f ∈ C∞

c (Rn),

(1) TL
m(f)(x) = lim

ε→0+

(
α(ε)f(x) +

ˆ

|x−y|>ε

KL
φ (x, y)f(y) dy

)
, a.e. x ∈ Rn,

where
KL

φ (x, y) = −
ˆ ∞

0

φ(t)
∂

∂t
WL

t (x, y) dt, x, y ∈ Rn, x 6= y,

and α is a certain measurable bounded function on (0,∞). Moreover, if there exists
the limit limt→0+ φ(t) = φ(0+), then

(2) TL
m(f)(x) = φ(0+)f(x) + lim

ε→0+

ˆ

|x−y|>ε

KL
φ (x, y)f(y) dy, a.e. x ∈ Rn.
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Theorem 2. Suppose that m(λ) = λ
´∞
0

e−λtφ(t) dt, λ ∈ (0,∞), where φ ∈
L∞(0,∞). Then TL

m can be extended to Lp(Rn) as a bounded operator from Lp(Rn)
into itself, for every 1 < p < ∞, and as a bounded operator from L1(Rn) into
L1,∞(Rn). Moreover, this extension can be given by (1) and, when the limit limt→0+

φ(t) = φ(0+) exists, by (2), for every f ∈ Lp(Rn), 1 ≤ p < ∞.

Note that since the semigroup of operators {WL
t }t>0 is not conservative, the

Lp-boundedness, 1 < p < ∞, of the Laplace transform type multipliers TL
m can

not be deduced from the result established in [17, p. 121]. The harmonic analysis
operators (maximal operators, Riesz transforms and Littlewood–Paley g-functions) in
the Schrödinger setting have been studied in Lp-spaces by several authors in last years
(see for instance, [1], [8] and [16]). In order to show Theorems 1 and 2, inspired in
the procedure developed by Shen [16] to analyze Riesz transforms, we take advantage
that L is a “nice” perturbation of the Laplacian operator −∆. This fact allows us to
write the multipliers in the Schrödinger setting, in some local sense, as perturbations
of the corresponding multipliers associated to the Laplacian.

In the localization of our operators the function ρ defined in [16, p. 516] by

ρ(x) = sup
{

r > 0:
1

rn−2

ˆ

B(x,r)

V (y) dy ≤ 1
}

, x ∈ Rn,

plays an important role. The main properties of this function ρ can be encountered
in [16, §1]. We also use several properties of the heat kernel WL

t (x, y) associated to
the Schrödinger operator L that can be found, for instance, in [8].

A Banach space B is said to be UMD when the Hilbert transform H defined in a
natural way on Lp(Rn)⊗B can be extended to Lp(Rn, B) as a bounded operator from
Lp(Rn, B) into itself for some (equivalently, for every) 1 < p < ∞ (see [4] and [5]).
Here, for every 1 ≤ p < ∞, by Lp(Rn, B) we represent the Bochner–Lebesgue space
of exponent p. UMD property is related to geometric properties of Banach spaces
([6]). In last years several authors have established connections between geometry
of Banach spaces and harmonic analysis. In particular, characterizations of UMD,
convexity or smoothness properties of a Banach space have been given in terms of
Lp-boundedness of certain singular integrals or Littlewood–Paley g-functions ([1],
[12], [13], [14] and [20]). Guerre-Delabrière ([11]) characterized the Banach spaces

having the UMD property by the Lp-boundedness of the imaginary power
(
− d2

dx2

)iγ

,
γ ∈ R, of the Laplacian in one dimension. Here, inspired in [11], we characterize the
Banach spaces having the UMD property by the Lp-boundedness of the imaginary
power Liγ, γ ∈ R, of the Schrödinger operator.

Let γ ∈ R. We denote by mγ the function mγ(λ) = λiγ, λ ∈ (0,∞). It is clear
that mγ(λ) = λ

´∞
0

e−λtφγ(t) dt, λ ∈ (0,∞), where φγ(t) = t−iγ/Γ(1−iγ), t ∈ (0,∞).
We define, as usual, the imaginary power Liγ of L by

Liγ = TL
mγ

.

For every ε > 0 and every f ∈ Lp(Rn, B), 1 ≤ p < ∞, we consider the truncation

(3) Liγ
ε (f)(x) = α(ε)f(x) +

ˆ

|x−y|>ε

KL
φγ

(x, y)f(y) dy,
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where α and KL
φγ

(x, y) are as in Theorem 1, and the maximal operator associated
with Liγ is defined by

Liγ
∗ (f) = sup

ε>0
‖Liγ

ε (f)‖B.

According to Theorem 2, Liγ can be extended to Lp(Rn) as a bounded operator
from Lp(Rn) into itself, for every 1 < p < ∞. If B is a Banach space we define Liγ

on Lp(Rn)⊗B, 1 < p < ∞, in a natural way.

Theorem 3. Let B be a Banach space. Then, the following properties are
equivalent:

(i) B is a UMD space.
(ii) For every γ ∈ R and for some (equivalently, for any) 1 < p < ∞, the operator

Liγ can be extended to Lp(Rn, B) as a bounded operator from Lp(Rn, B) into
itself.

(iii) For every γ ∈ R, the operator Liγ can be extended to L1(Rn, B) as a bounded
operator from L1(Rn, B) into L1,∞(Rn, B).

(iv) For every γ ∈ R and every f ∈ L1(Rn, B), Liγ
∗ (f)(x) < ∞, a.e. x ∈ Rn.

(v) For every γ ∈ R and every f ∈ L1(Rn, B), there exists the limit limε→0+

Liγ
ε (f)(x), a.e. x ∈ Rn.

In order to prove Theorem 3 we need to establish previously the following exten-
sion of [11, Theorem, p. 402]. The maximal operator (−∆)iγ

∗ is defined on L1(Rn, B)
as follows

(−∆)iγ
∗ (f) = sup

ε>0
‖(−∆)iγ

ε (f)‖B, f ∈ L1(Rn, B),

and, for every ε > 0, the truncation (−∆)iγ
ε is defined as in (3) by replacing L by the

Laplacian operator −∆.

Theorem 4. Let B be a Banach space. Then, the following assertions are
equivalent:

(i) B is a UMD space.
(ii) For every γ ∈ R and for some (equivalently, for any) 1 < p < ∞, the operator

(−∆)iγ can be extended to Lp(Rn, B) as a bounded operator from Lp(Rn, B)
into itself.

(iii) For every γ ∈ R, the operator (−∆)iγ can be extended to L1(Rn, B) as a
bounded operator from L1(Rn, B) into L1,∞(Rn, B).

(iv) For every γ ∈ R and every f ∈ L1(Rn, B), (−∆)iγ
∗ (f)(x) < ∞, a.e. x ∈ Rn.

(v) For every γ ∈ R and every f ∈ L1(Rn, B), there exists the limit limε→0+

(−∆)iγ
ε (f)(x), a.e. x ∈ Rn.

It is convenient to note that the equivalence (i) ⇔ (ii) in Theorem 4 extends [11,
Theorem, p. 402] to higher dimensions, and the equivalences (i) ⇔ (iii) ⇔ (iv) ⇔
(v) are, as far we know, news.

This paper is organized as follows. In Section 2 we present a proof of Theorem 1.
Theorems 2, 3 and 4 are proved in Section 3. Finally, we present in the Appendix,
for the sake of completeness, a proof of a version of Theorem 1 in the Laplacian
(classical) case.

Throughout this paper by C and c we always denote positive constants that can
change in each occurrence.
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2. Proof of Theorem 1

Assume that φ ∈ L∞(0,∞) and define the function m as follows

m(λ) = λ

ˆ ∞

0

e−λvφ(v) dv, λ ∈ (0,∞).

As it was commented m is continuous and bounded in (0,∞). The spectral multiplier
TL

m in the Schrödinger setting associated with m is defined by

TL
m(f) =

ˆ

(0,∞)

m(λ)EL(dλ)f, f ∈ L2(Rn),

where EL represents the spectral measure for the Schrödinger operator L. It is well
known that TL

m is a bounded operator from L2(Rn) into itself.
We are going to prove Theorem 1. Let f, g ∈ C∞

c (Rn). We can write

〈TL
m(f), g〉 =

〈ˆ

(0,∞)

m(λ)EL(dλ)f, g

〉
=

ˆ

(0,∞)

m(λ) dµf,g;L(λ),

where by µf,g;L we denote the measure defined by

µf,g;L(A) = 〈EL(A)f, g〉,
for every Borel set A ⊂ (0,∞). The set function µf,g;L is a complex measure on
(0,∞) satisfying that |µf,g;L|((0,∞)) ≤ ‖f‖2‖g‖2, where |µf,g;L| represents the total
variation measure of µf,g;L.

We have that

〈TL
m(f), g〉 =

ˆ

(0,∞)

λ

ˆ ∞

0

e−λvφ(v) dv dµf,g;L(λ) =

ˆ ∞

0

φ(v)

ˆ

(0,∞)

λe−λvdµf,g;L(λ) dv

=

ˆ ∞

0

φ(v)

ˆ

(0,∞)

(
− ∂

∂v

)
(e−λv) dµf,g;L(λ) dv.

Here, we can interchange the order of integration because
ˆ

(0,∞)

ˆ ∞

0

λe−λv|φ(v)| dv d|µf,g;L|(λ) ≤ ‖φ‖∞|µf,g;L|((0,∞)) < ∞.

Since ∣∣∣∣
e−λ(v+h) − e−λv

h

∣∣∣∣ ≤ λeλ(|h|−v) ≤ λe−λv/2, v, λ > 0 and |h| < v

2
,

and ˆ

(0,∞)

λe−λv/2 d|µf,g;L|(λ) ≤ 2

v
|µf,g;L|((0,∞)) < ∞, v > 0,

we can differentiate under the integral sign and write

〈TL
m(f), g〉 =

ˆ ∞

0

φ(v)

(
− d

dv

) ˆ

(0,∞)

e−λv dµf,g;L(λ) dv

=

ˆ ∞

0

φ(v)

(
− d

dv

)
〈WL

v (f), g〉 dv

=

ˆ ∞

0

φ(v)

(
− d

dv

) ˆ

Rn

ˆ

Rn

WL
v (x, y)f(y) dy g(x) dx dv.
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We have thatˆ

Rn

ˆ

Rn

|WL
v (x, y)−Wv(x, y)||f(y)||g(x)| dy dx < ∞, v ∈ (0,∞),

and ˆ

Rn

ˆ

Rn

∣∣∣∣
∂

∂v
(WL

v (x, y)−Wv(x, y))

∣∣∣∣ |f(y)||g(x)| dy dx < ∞, v ∈ (0,∞).

Indeed, according to [8, (2.2) and (2.7)] it follows that
ˆ

Rn

ˆ

Rn

|WL
v (x, y)−Wv(x, y)||f(y)||g(x)| dy dx

+

ˆ

Rn

ˆ

Rn

∣∣∣∣
∂

∂v
(WL

v (x, y)−Wv(x, y))

∣∣∣∣ |f(y)||g(x)| dy dx

≤ C
1 + v

vn/2+1

ˆ

Rn

ˆ

Rn

e−c
|x−y|2

v |f(y)||g(x)| dy dx

≤ C
1 + v

vn/2+1

ˆ

Rn

|f(y)| dy

ˆ

Rn

|g(x)| dx < ∞, v ∈ (0,∞).

Hence, the function

ψ(v) =

ˆ

Rn

ˆ

Rn

(WL
v (x, y)−Wv(x, y))f(y) g(x) dy dx, v ∈ (0,∞),

is differentiable in (0,∞) and

d

dv
ψ(v) =

ˆ

Rn

ˆ

Rn

∂

∂v
(WL

v (x, y)−Wv(x, y))f(y) g(x) dy dx, v ∈ (0,∞).

We can write
〈
TL

m(f), g
〉

=

ˆ ∞

0

φ(v)

(
− d

dv

) ˆ

Rn

ˆ

Rn

Wv(x, y)f(y) dy g(x) dx dv

+

ˆ ∞

0

φ(v)

ˆ

Rn

ˆ

Rn

(
− ∂

∂v

) (
WL

v (x, y)−Wv(x, y)
)
f(y) g(x) dy dx dv.(4)

Also, we have that

(5)
ˆ

Rn

ˆ

Rn

ˆ ∞

0

|φ(v)|
∣∣∣∣

∂

∂v

(
WL

v (x, y)−Wv(x, y)
)∣∣∣∣ |f(y)||g(x)| dv dx dy < ∞,

and

(6)
ˆ

Rn

ˆ ∞

0

∣∣∣∣
∂

∂v

(
WL

v (x, y)−Wv(x, y)
)∣∣∣∣ |f(y)||φ(v)| dv dy < ∞.

Indeed, to see (6) we write
ˆ

Rn

ˆ ∞

0

∣∣∣∣
∂

∂v

(
WL

v (x, y)−Wv(x, y)
)∣∣∣∣ |f(y)||φ(v)| dv dy

≤ ‖φ‖∞
(ˆ

Rn

ˆ ρ(x)2

0

+

ˆ

Rn

ˆ ∞

ρ(x)2

)∣∣∣∣
∂

∂v

(
WL

v (x, y)−Wv(x, y)
)∣∣∣∣ |f(y)| dv dy

= B1(x) + B2(x).
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According to [8, (2.7)] we get

(7) B2(x) ≤ C

ˆ

Rn

ˆ ∞

ρ(x)2

e−c
|x−y|2

v

v
n
2
+1

|f(y)| dv dy ≤ C

ρ(x)n
, x ∈ Rn.

Since 0 < ρ(x) < ∞, it follows that B2(x) < ∞, x ∈ Rn.
By proceeding as in [3, p. 15–17] we can obtain that

(8) B1(x) ≤ C‖f‖∞, x ∈ Rn.

Thus, we have proved (6). Moreover, by using [16, Lemma 1.4], (7) and (8) imply
also (5). Then (4) can be written

〈
TL

m(f), g
〉

=

ˆ ∞

0

φ(v)

(
− d

dv

) ˆ

Rn

ˆ

Rn

Wv(x, y)f(y) dy g(x) dx dv

+

ˆ

Rn

(
lim

ε→0+

ˆ

|x−y|>ε

(
KL

φ (x, y)−Kφ(x, y)
)
f(y) dy

)
g(x) dx,

(9)

where
KL

φ (x, y) = −
ˆ ∞

0

φ(v)
∂

∂v
WL

v (x, y) dv, x, y ∈ Rn, x 6= y,

and
Kφ(x, y) = −

ˆ ∞

0

φ(v)
∂

∂v
Wv(x, y) dv, x, y ∈ Rn, x 6= y.

On the other hand, as above we can see that

(10) 〈Tm(f), g〉 =

ˆ ∞

0

φ(v)

(
− d

dv

) ˆ

Rn

ˆ

Rn

Wv(x, y)f(y) dy g(x) dx dv.

where Tm represents the spectral multiplier associated with −∆ defined by m. More-
over, we can write

(11) Tm(f)(x) = lim
ε→0+

(
α(ε)f(x) +

ˆ

|x−y|>ε

Kφ(x, y)f(y) dy

)
, a.e. x ∈ Rn.

where

(12) α(ε) =
1

Γ(n
2
)

ˆ ∞

0

φ
( ε2

4u

)
e−uu

n
2
−1 du, ε > 0.

Also, if there exists the limit limt→0+ φ(t) = φ(0+), then limε→0+ α(ε) = φ(0+), and

(13) Tm(f)(x) = φ(0+)f(x) + lim
ε→0+

ˆ

|x−y|>ε

Kφ(x, y)f(y) dy, a.e. x ∈ Rn.

Although we are sure that the properties (11) and (13) are known, we include in
the appendix complete proofs for these properties of Tm, for the sake the interested
reader.

By combining (9), (10), (11) and (13) we obtain that

TL
m(f)(x) = lim

ε→0+

(
α(ε) f(x) +

ˆ

|x−y|>ε

KL
φ (x, y)f(y) dy

)
, a.e. x ∈ Rn,

and

TL
m(f)(x) = φ(0+) f(x) + lim

ε→0+

ˆ

|x−y|>ε

KL
φ (x, y)f(y) dy, a.e. x ∈ Rn,



216 Jorge J. Betancor, Raquel Crescimbeni, Juan C. Fariña and Lourdes Rodríguez-Mesa

provided that there exists the limit φ(0+) = limt→0+ φ(t).

3. Proof of Theorems 2, 3 and 4

Guerre-Delabrière [11, Theorem, p. 402] established that a Banach space B is

UMD if, only if, for every γ ∈ R, the operator
(
− d2

dx2

)iγ

can be extended to
Lp(R, B) into itself, for some (equivalently, for any) 1 < p < ∞. In the proof of [11,
Theorem, p. 402] a vector valued version of a classical transference result was used.

Assume that B is a Banach space and γ ∈ R. The operator
(
− d2

dx2

)iγ

takes the
form (

− d2

dx2

)iγ

f = (|y|2iγ f̂ )̌, f ∈ L2(R),

where f̂ denotes the Fourier transform of f and f̌ the inverse Fourier transform of
f . If f ∈ L1(R) we define

f̂(y) =

ˆ

R

e−ixyf(x) dx, y ∈ R,

and
f̌(y) =

1

2π

ˆ

R

eixyf(x) dx, y ∈ R.

As it is well known the Fourier transform can be extended from L1(R) ∩ L2(R)
to L2(R) as a bijective bounded operator from L2(R) into itself. The operator(
− d2

dx2

)iγ

is bounded from Lp(R) into itself, for every 1 < p < ∞. If 1 < p < ∞ and
f ∈ Lp(R)⊗B, that is, f =

∑r
j=1 βjfj, where βj ∈ B, fj ∈ Lp(R), j = 1, . . . , r ∈ N,

we define, as usual,
(
− d2

dx2

)iγ

(f) =
r∑

j=1

βj

(
− d2

dx2

)iγ

(fj).

We also consider the operator
(
− d2

dx2

)iγ

|T
, where T = [0, 2π) denotes the one-

dimensional torus, defined by
(
− d2

dx2

)iγ

|T
(g)(x) =

∑

j∈Z, j 6=0

|j|2iγcj(g)eijx, x ∈ (0, 2π) and g ∈ Lp(T), 1 < p < ∞,

being cj(g) =
1

2π

ˆ 2π

0

g(θ)e−ijθ dθ, j ∈ Z. The operator
(
− d2

dx2

)iγ

|T
is bounded

from Lp(T) into itself, 1 < p < ∞. If 1 < p < ∞ and g ∈ Lp(T) ⊗ B, that is,
g =

∑r
j=1 βjgj, where βj ∈ B, gj ∈ Lp(T), j = 1, . . . , r ∈ N, we define

(
− d2

dx2

)iγ

|T
(g) =

r∑
j=1

βj

(
− d2

dx2

)iγ

|T
(gj).

Guerre-Delabrière ([11, p. 402]) showed that if
(
− d2

dx2

)iγ

|T
can be extended to

L2(T, B) as a bounded operator from L2(T, B) into itself, then B is UMD. Moreover,
she used a vector valued transference result (see [7] for the scalar result) that implies
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that
(
− d2

dx2

)iγ

|T
can be extended to L2(T, B) as a bounded operator from L2(T, B)

into itself, provided that
(
− d2

dx2

)iγ

can be extended to L2(R, B) as a bounded
operator from L2(R, B) into itself. Note that, by using vector valued Calderón–

Zygmund theory ([15]) we can see that
(
− d2

dx2

)iγ

can be extended to Lp(R, B) as
a bounded operator from Lp(R, B) into itself, for some 1 < p < ∞, if and only if(
− d2

dx2

)iγ

can be extended to L2(R, B) as a bounded operator from L2(R, B) into
itself.

The operators (−∆)iγ (respectively, (−∆)iγ
|Tn) are defined on Lp(Rn) and Lp(Rn)

⊗B (respectively, on Lp(Tn) and Lp(Tn)⊗B), 1 < p < ∞, in the natural way.

3.1. Proof of Theorem 4. (i)⇒ (ii). It is a consequence of [21, Proposition 3].
(ii) ⇒ (i). We show this part by adapting standard transference arguments to a

vector valued setting. For the sake of completeness we include the proof.
Let γ ∈ R and 1 < p < ∞. Suppose that the operator (−∆)iγ can be extended

to Lp(Rn, B) as a bounded operator from Lp(Rn, B) into itself. We choose an even
smooth function on R such that φ(x) = 1, |x| ≤ 1/4, and φ(x) = 0, |x| ≥ 1/2. We
split the operator (−∆)iγ as follows

(−∆)iγ(f) = (φ(|x|2)|x|2iγ f̂ )̌ + ((1− φ(|x|2))|x|2iγ f̂ )̌

= A1(f) + A2(f), f ∈ C∞
c (Rn)⊗B.

Here, ĥ denotes the Fourier transform of h and ȟ the inverse Fourier transform of h
in Rn, defined, for every h ∈ L1(Rn), by

ĥ(y) =

ˆ

Rn

e−ixyh(x) dx, y ∈ Rn,

and

ȟ(y) =
1

(2π)n

ˆ

Rn

eixyh(x) dx, y ∈ Rn.

Also, we consider the function ϕ(x) = φ(|x|2), x ∈ Rn, and the Fourier multiplier Tϕ

defined by
Tϕ(f) = (ϕf̂ )̌, f ∈ C∞

c (Rn)⊗B,

in a natural way. Since ϕ̂ ∈ L1(Rn), Tϕ can be extended to Lp(Rn, B) as a bounded
operator from Lp(Rn, B) into itself. Then, A1 and therefore A2 can be extended to
Lp(Rn, B) as a bounded operator from Lp(Rn, B) into itself.

We denote by P(Tn, X) the space of trigonometric polynomials of period 2π on
Tn with coefficients in a Banach space X. Let P ∈ P(Tn, B) and Q ∈ P(Tn, B′),
where B′ is the dual space of B. Since A2 can be extended to Lp(Rn, B) as a bounded
operator from Lp(Rn, B) into itself, by proceeding as in the proof of [18, Theorem 3.8,
p. 260] we have that

∣∣∣
ˆ

Tn

〈(−∆)iγ
|Tn(P )(x), Q(x)〉 dx

∣∣∣ ≤ C‖P‖Lp(Tn,B)‖Q‖Lp′ (Tn,B′),

where p′ is the exponent conjugated to p.
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By using [10, Lemma 2.3] we get

‖(−∆)iγ
|Tn(P )‖Lp(Tn,B) ≤ C‖P‖Lp(Tn,B).

Hence, (−∆)iγ
|Tn can be extended to Lp(Tn, B) as a bounded operator from Lp(Tn, B)

into itself.
In order to see that the operator

(
− d2

dx2

)iγ

|T
can be extended to Lp(T, B) as

a bounded operator from Lp(T, B) into itself, it is sufficient to use that (−∆)iγ
|Tn

can be extended to Lp(Tn, B) as a bounded operator from Lp(Tn, B) into itself,
and to extend every function f ∈ Lp(T) to Tn in the natural way, that is, defining
f̃(x1, . . . , xn) = f(x1), (x1, . . . , xn) ∈ Tn.

According to [11, Theorem, p. 402] the above arguments allow us to conclude
that (ii) ⇒ (i).

(ii) ⇔ (iii) ⇒ (iv). These properties are true because, for every γ ∈ R, the
operator (−∆)iγ is a Calderón–Zygmund operator (see [15]).

(iv) ⇒ (iii) and (iv) ⇒ (v). Assume that (iv) holds. Let γ ∈ R. For every
0 < ε < 1, we define the operator (−∆)iγ

(ε,1/ε) on L1(Rn, B) by

(−∆)iγ
(ε,1/ε)(f)(x) = α(ε)f(x) +

ˆ

ε<|x−y|<1/ε

Kφγ (x, y)f(y) dy, f ∈ L1(Rn, B),

that is bounded from L1(Rn, B) into itself. By using (iv) and continuity Banach
principle ([9, Proposition 1.4, p. 529]) the maximal operator (−∆)iγ

∗∗ defined by

(−∆)iγ
∗∗(f) = sup

ε∈(0,1)

‖(−∆)iγ
(ε,1/ε)(f)‖B, f ∈ L1(Rn, B),

is continuous from L1(Rn, B) into L0(Rn), where the space L0(Rn) of all measurable
functions is endowed with the local convergence in measure ([9, p. 528]). Since the
function α is given by (12), the maximal operator (−∆)iγ

∗ is dilation and translation
invariant. Moreover, by taking into account that |Kφγ (x, y)| ≤ C|x−y|−n, x, y ∈ Rn,
x 6= y, (−∆)iγ

∗ is bounded from L1(Rn, B) into L0(Rn). Then, since every Banach
space is of Rademacher type 1, according to [14, Lemma 7.3], we deduce that (−∆)iγ

∗
is bounded from L1(Rn, B) into L1,∞(Rn).

For every f ∈ C∞
c (Rn) ⊗ B, there exists the limit limε→0+(−∆)iγ

ε (f)(x), a.e.
x ∈ Rn. Since C∞

c (Rn)⊗B is a dense subspace of L1(Rn, B), for every f ∈ L1(Rn, B),
there exists the limit limε→0+(−∆)iγ

ε (f)(x), a.e. x ∈ Rn, and (−∆)iγ can be extended
to L1(Rn, B) as a bounded operator from L1(Rn, B) into L1,∞(Rn, B).

(v) ⇒ (iv). It is clear. ¤
3.2. Proof of Theorem 3. (i)⇒ (ii) and (i)⇒ (iii). Let γ ∈ R. The imaginary

power Liγ of L (respectively, (−∆)iγ of −∆) is the spectral multiplier associated with
L (respectively, −∆) defined by the function mγ(λ) = λiγ, λ ∈ (0,∞). Note that
mγ(λ) = λ

´∞
0

e−λtφγ(t) dt, λ ∈ (0,∞), where φγ(t) = t−iγ

Γ(1−iγ)
, t ∈ (0,∞).

Assume that B is a Banach space and that f =
∑d

j=1 βjfj, where fj ∈ C∞
c (Rn)

and βj ∈ B, j = 1, . . . , d. By Theorem 1 and (11), we have that

TL
mγ

(f)(x) =
d∑

j=1

βj lim
ε→0+

(
α(ε)fj(x) +

ˆ

|x−y|>ε

KL
φγ

(x, y)fj(y) dy

)
, a.e. x ∈ Rn,
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and

Tmγ (f)(x) =
d∑

j=1

βj lim
ε→0+

(
α(ε)fj(x) +

ˆ

|x−y|>ε

Kφγ (x, y)fj(y) dy

)
, a.e. x ∈ Rn.

We split the operator Tmγ as follow

Tmγ = Tmγ ,g + Tmγ ,`,

where Tmγ ,g(f)(x) =
´
|x−y|≥ρ(x)

Kφγ (x, y)f(y) dy, x ∈ Rn.
The operator Smγ = TL

mγ
− Tmγ ,` can be extended to Lp(Rn, B) as a bounded

operator from Lp(Rn, B) into itself, for every 1 < p < ∞. Indeed, we can write

Smγ (f)(x) = lim
ε→0+

ˆ

ε<|x−y|<ρ(x)

f(y)
(
KL

φγ
(x, y)−Kφγ (x, y)

)
dy

−
ˆ

|x−y|≥ρ(x)

f(y)

ˆ ∞

0

φγ(t)
∂

∂t
WL

t (x, y) dt dy

= Smγ ,1(f)(x) + Smγ ,2(f)(x).

By proceeding as in [3, p. 15–17] we can get

‖Smγ ,1(f)(x)‖B ≤
ˆ

|x−y|<ρ(x)

‖f(y)‖B

∣∣∣KL
φγ

(x, y)−Kφγ (x, y)
∣∣∣ dy ≤ CM(‖f‖)(x),

x ∈ Rn, and

‖Smγ ,2f(x)‖B ≤
ˆ

|x−y|≥ρ(x)

‖f(y)‖B

ˆ ρ(x)2

0

|φγ(t)|
∣∣∣∣
∂

∂t
WL

t (x, y)

∣∣∣∣ dt dy

+

ˆ

|x−y|≥ρ(x)

‖f(y)‖B

ˆ ∞

ρ(x)2
|φγ(t)|

∣∣∣∣
∂

∂t
WL

t (x, y)

∣∣∣∣ dt dy

≤ CM(‖f‖B)(x), x ∈ Rn,

because ‖φγ‖∞ = 1/|Γ(1 − iγ)|. Here and in the sequel M denotes the Hardy–
Littlewood maximal function. Hence, by using the well known Maximal Theorem we
conclude that the operator Smγ can be extended to Lp(Rn, B) as a bounded operator
from Lp(Rn, B) into itself, for every 1 < p < ∞.

Suppose now that B is a UMD Banach space. According to Theorem 4 the
operator Tmγ can be extended to Lp(Rn, B) as a bounded operator from Lp(Rn, B)
into itself, for every 1 < p < ∞, and to L1(Rn, B) as a bounded operator from
L1(Rn, B) into L1,∞(Rn, B). For every f ∈ L∞c (Rn)⊗B we have that

Tmγ (f)(x) =

ˆ

Rn

Kφγ (x, y)f(y) dy, a.e. x /∈ supp f.

Moreover, Kφγ is a standard Calderón–Zygmund kernel, that is, there exists C > 0
such that

|Kφγ (x, y)| ≤ C

|x− y|n , x 6= y,

and
n∑

j=1

(∣∣∣∣
∂Kφγ (x, y)

∂xj

∣∣∣∣ +

∣∣∣∣
∂Kφγ (x, y)

∂yj

∣∣∣∣
)
≤ C

|x− y|n+1
, x 6= y.
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Then, by proceeding as in the scalar case (see [17, p. 34]), we can show that the
maximal operator

T ∗
mγ

(f)(x) = sup
ε>0

∥∥∥∥
ˆ

|x−y|>ε

Kφγ (x, y)f(y) dy

∥∥∥∥
B

,

is bounded from Lp(Rn, B) into Lp(Rn), for every 1 < p < ∞, and from L1(Rn, B)
into L1,∞(Rn).

It is clear that ‖Tmγ ,g(f)(x)‖B ≤ T ∗
mγ

(f)(x), x ∈ Rn. Then, Tmγ ,g is bounded
from Lp(Rn, B) into itself, for every 1 < p < ∞, and from L1(Rn, B) into L1,∞(Rn, B).
Hence, since Tmγ ,` = Tmγ − Tmγ ,g, we conclude that, Tmγ ,`, and then also TL

mγ
, are

bounded from Lp(Rn, B) into itself, for every 1 < p < ∞, and from L1(Rn, B) into
L1,∞(Rn, B).

(ii) ⇒ (i) and (iii) ⇒ (i). Assume firstly that for a certain 1 < p < ∞ and every
γ ∈ R the operator TL

mγ
can be extended to Lp(Rn, B) as a bounded operator from

Lp(Rn, B) into itself. Then, for every γ ∈ R the operator Tmγ ,` can be extended to
Lp(Rn, B) as a bounded operator from Lp(Rn, B) into itself. According to Theorem
4 in order to show that B is a UMD Banach space it is sufficient to see that for every
γ ∈ R, Tmγ can be extended to Lp(Rn, B) as a bounded operator from Lp(Rn, B)
into itself.

Let γ ∈ R. Suppose that f ∈ C∞
c (Rn) and supp f ⊂ B(0,M) for a certain

M > 0. For every R > 0 we define fR(x) = f(
√

Rx), x ∈ Rn. It is clear that,
supp fR ⊂ B(0, M√

R
), R > 0.

In the following our arguments are inspired in the ones developed by Abu-
Falahah, Stinga and Torrea in [1]. We are going to show that for every λ > 0 there
exists R > 0 such that supp fR ⊂ B( x

R
, ρ( x

R
)), provided that |x| < λ. According to

[16, Lemma 1.1] there exists C1 > 0 for which

1

C1

ρ(y) ≤ ρ(x) ≤ C1ρ(y), |x− y| ≤ ρ(x).

Let λ > 0. From [1, Lemma 3.5] we can find Rλ > 0 such that |y − x
R
| < ρ( x

R
),

when |y| < C2
1ρ(0)

2
, |x| < λ and R ≥ Rλ. We can take R ≥ max{Rλ,

(
2M

ρ(0)C2
1

)2

}. Then
supp fR ⊆ B( x

R
, ρ( x

R
)), |x| < λ.

We can write, for every R > 0,

Tmγ (fR)

(
x√
R

)

= lim
ε→0+

(
α(ε)fR

(
x√
R

)
+

ˆ

| x√
R
−y|>ε

fR(y)

ˆ ∞

0

φγ(t)

(
− ∂

∂t

)
Wt

(
x√
R

, y

)
dt dy

)

= lim
ε→0+

(
α(ε)f(x) +

ˆ

|x−u|>ε
√

R

f(u)

ˆ ∞

0

φγ(t)

(
− ∂

∂t

)
Wt

(
x√
R

,
u√
R

)
dt

du

Rn/2

)

= lim
ε→0+

(
α(ε)f(x) + R

ˆ

|x−u|>ε
√

R

f(u)

ˆ ∞

0

φγ(t)

(
− ∂

∂s
Ws(x, u)

)∣∣∣∣
s=Rt

dt du

)

= lim
ε→0+

(
α(ε)f(x) +

ˆ

|x−u|>ε
√

R

f(u)

ˆ ∞

0

φγ

( s

R

) (
− ∂

∂s

)
Ws(x, u) ds du

)
,
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a.e. x ∈ Rn. Here α(ε) =
1

Γ(n
2
)

ˆ ∞

0

e−uu
n
2
−1φγ

(
ε2

4u

)
du, ε ∈ (0, 1).

Since φγ(as) = a−iγφγ(s), a, s > 0, it follows that, for every R > 0,

Tmγ (fR)

(
x√
R

)

= Riγ lim
ε→0+

(
α(ε

√
R)f(x) +

ˆ

|x−u|>ε
√

R

f(u)

ˆ ∞

0

φγ(s)

(
− ∂

∂s

)
Ws(x, u) ds du

)

= RiγTmγ (f)(x), a.e. x ∈ Rn.

As it was proved above, for every N ∈ N, there exists RN > 0 such that
supp fRN

⊆ B
(

x
RN

, ρ( x
RN

)
)
, |x| ≤ N , and RN ≤ RN+1. Then, it follows that

Tmγ (f)(x) = R−iγ
N Tmγ

(
fRN

χB( x
RN

,ρ( x
RN

))

) (
x√
RN

)

= R−iγ
N Tmγ ,`(fRN

)

(
x√
RN

)
, |x| ≤ N, N ∈ N.

(14)

We deduce that,
ˆ

B(0,N)

|Tmγ (f)(x)|p dx ≤ R
n/2
N

ˆ

Rn

|Tmγ ,`(fRN
)(x)|p dx

≤ CR
n/2
N

ˆ

Rn

|fRN
(x)|p dx ≤ C‖f‖p

p, N ∈ N.

Note that C does not depend on N .
We conclude that

(15) ‖Tmγ (f)‖p ≤ C‖f‖p.

Also, (15) holds for every f ∈ C∞
c (Rn)⊗B. Hence, Tmγ can be extended to Lp(Rn, B)

as a bounded operator from Lp(Rn, B) into itself.
Suppose now that for every γ ∈ R the operator TL

mγ
can be extended to L1(Rn, B)

as a bounded operator from L1(Rn, B) into L1,∞(Rn, B). Then, for every γ ∈ R, the
operator Tmγ ,` can be extended to L1(Rn, B) as a bounded operator from L1(Rn, B)
into L1,∞(Rn, B).

Let γ ∈ R and f ∈ C∞
c (Rn)⊗B. By (14), for every N ∈ N, there exists RN > 0

such that

Tmγ (f)(x) = R−iγ
N Tmγ ,`(fRN

)

(
x√
RN

)
, |x| ≤ N.

Hence, for every N ∈ N and λ > 0, we get
∣∣{x ∈ B(0, N) : ‖Tmγ (f)(x)‖B > λ}

∣∣ ≤ R
n/2
N

∣∣{x ∈ Rn : ‖Tmγ ,`(fRN
)(x)‖B > λ}

∣∣

≤ C
R

n/2
N

λ

ˆ

Rn

‖fRN
(x)‖B dx

≤ C
1

λ

ˆ

Rn

‖f(x)‖B dx.
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Then, by letting N →∞, we deduce that

|{x ∈ Rn : ‖Tmγ (f)(x)‖B > λ}| ≤ C
1

λ

ˆ

Rn

‖f(x)‖B dx, λ > 0.

Since C∞
c (Rn) ⊗ B is dense in L1(Rn, B), Tmγ can be extended to L1(Rn, B) as a

bounded operator from L1(Rn, B) into L1,∞(Rn, B), and by Theorem 4 we conclude
that B is UMD.

(i) ⇔ (iv). Let f ∈ L1(Rn, B). For every x ∈ Rn and 0 < ε < ρ(x) we can write
ˆ

|x−y|>ε

f(y)KL
φγ

(x, y) dy −
ˆ

|x−y|>ε

f(y)Kφγ (x, y) dy

=

ˆ

ε<|x−y|<ρ(x)

f(y)(KL
φγ

(x, y)−Kφγ (x, y)) dy

+

ˆ

|x−y|≥ρ(x)

f(y)KL
φγ

(x, y) dy −
ˆ

|x−y|≥ρ(x)

f(y)Kφγ (x, y) dy

= Hε
mγ ,1(f)(x) + Hmγ ,2(f)(x) + Hmγ ,3(f)(x).

By proceeding as above we have that

‖Hε
mγ ,1(f)(x)‖B ≤ CM(‖f‖B)(x), 0 < ε < ρ(x), x ∈ Rn,

and
‖Hmγ ,2(f)(x)‖B ≤ CM(‖f‖B)(x), x ∈ Rn.

Also, since |Kφγ (x, y)| ≤ C|x− y|−n, x, y ∈ Rn, x 6= y, it follows that

‖Hmγ ,3(f)(x)‖B ≤ C

ˆ

|x−y|≥ρ(x)

‖f(y)‖B

|x− y|n dy ≤ C
1

ρ(x)n

ˆ

Rn

‖f(y)‖Bdy, x ∈ Rn.

Moreover, if x ∈ Rn and ε ≥ ρ(x), we have
∥∥∥
ˆ

|x−y|>ε

f(y)KL
φγ

(x, y) dy −
ˆ

|x−y|>ε

f(y)Kφγ (x, y) dy
∥∥∥

B

≤
ˆ

|x−y|≥ρ(x)

‖f(y)‖B|KL
φγ

(x, y)| dy +

ˆ

|x−y|≥ρ(x)

‖f(y)‖B|Kφγ (x, y)| dy

≤ C
(
M(‖f‖B)(x) +

1

ρ(x)n

ˆ

Rn

‖f(y)‖B dy
)
.

Putting together all the above estimations we deduce that

|Liγ
∗ (f)(x)− (−∆)iγ

∗ (f)(x)| < ∞, a.e. x ∈ Rn.

Hence, Liγ
∗ (f)(x) < ∞, a.e. x ∈ Rn, if and only if, (−∆)iγ

∗ (f)(x) < ∞, a.e. x ∈ Rn,
and Theorem 4 implies that (i) ⇔ (iv).

(i)⇒ (v). By Theorems 1 and 2, for every f ∈ L1(Rn)⊗B, there exists the limit

lim
ε→0+

Liγ
ε (f)(x), a.e. x ∈ Rn.

Assume that B is UMD. According to Theorem 4 the maximal operator (−∆)iγ
∗ is

bounded from L1(Rn, B) into L1,∞(Rn, B). By proceeding as above we get

Liγ
∗ (f)(x) ≤ C(M(‖f‖B)(x) + ‖f(x)‖B + (−∆)iγ

∗ (f)(x)), a.e. x ∈ Rn.
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The Maximal Theorem allows us to conclude that Liγ
∗ is bounded from L1(Rn, B)

into L1,∞(Rn, B). Then, since C∞
c (Rn) ⊗ B is dense in L1(Rn, B), for every f ∈

L1(Rn, B), there exists the limit

lim
ε→0+

Liγ
ε (f)(x), a.e. x ∈ Rn.

(v) ⇒ (iv). It is clear. ¤
3.3. Proof of Theorem 2. This proof follows the same way that the one of the

Lp-boundedness of the imaginary power Liγ of L, γ ∈ Rn, when B is a UMD space.
Suppose that m(λ) = λ

´∞
0

e−λtφ(t) dt, λ ∈ (0,∞), where φ ∈ L∞(0,∞). Let
f ∈ C∞

c (Rn). According to Theorem 1

TL
m(f)(x) = lim

ε→0+

(
α(ε)f(x) +

ˆ

|x−y|>ε

f(y)KL
φ (x, y) dy

)
, a.e. x ∈ Rn.

Also, by (11),

Tm(f)(x) = lim
ε→0+

(
α(ε)f(x) +

ˆ

|x−y|>ε

f(y)Kφ(x, y) dy

)
, a.e.x ∈ Rn.

Here α ∈ L∞(0,∞).
The operator Tm is bounded from Lp(Rn) into itself, for every 1 < p < ∞, and

from L1(Rn) into L1,∞(Rn). Moreover Tm is a Calderón–Zygmund operator. Hence,
the maximal operator T ∗

m defined by

T ∗
m(f)(x) = sup

ε>0

∣∣∣∣
ˆ

|x−y|>ε

f(y)Kφ(x, y) dy

∣∣∣∣
is bounded from Lp(Rn) into itself, for every 1 < p < ∞, and from L1(Rn) into
L1,∞(Rn). Also, the same Lp-boundedness properties are satisfied by the operators

Tm,`(f)(x) = lim
ε→0

(
α(ε)f(x) +

ˆ

ε<|x−y|<ρ(x)

f(y)Kφ(x, y) dy

)

and
Tm,g(f)(x) =

ˆ

|x−y|≥ρ(x)

f(y)Kφ(x, y) dy.

The difference TL
m(f)− Tm,`(f) can be written as

TL
m(f)(x)− Tm,`(f)(x)

=

ˆ

|x−y|<ρ(x)

(KL
φ (x, y)−Kφ(x, y))f(y) dy +

ˆ

|x−y|≥ρ(x)

KL
φ (x, y)f(y) dy.

By proceeding as in the proof of Theorem 3 we can see that the operator TL
m − Tm,`

is bounded from Lp(Rn) into itself, for every 1 < p < ∞, and from L1(Rn) into
L1,∞(Rn).

Hence we conclude that TL
m can be extended to Lp(Rn), 1 < p < ∞, as a

bounded operator from Lp(Rn) into itself, for every 1 < p < ∞, and from L1(Rn)
into L1,∞(Rn).

Moreover, we can deduce that the maximal operator

TL,∗
m (f)(x) = sup

ε>0

∣∣∣∣
ˆ

|x−y|>ε

KL
φ (x, y)f(y) dy

∣∣∣∣ , x ∈ Rn,
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is bounded from Lp(Rn) into itself, for every 1 < p < ∞, and from L1(Rn) into
L1,∞(Rn).

Hence, for every f ∈ Lp(Rn), 1 ≤ p < ∞, there exists the limit

lim
ε→0+

(
f(x)α(ε) +

ˆ

|x−y|>ε

f(y)KL
φ (x, y) dy

)
, a.e. x ∈ Rn,

and, for every f ∈ L2(Rn),

TL
m(f)(x) = lim

ε→0+

(
f(x)α(ε) +

ˆ

|x−y|>ε

f(y)KL
φ (x, y) dy

)
, a.e. x ∈ Rn.

We conclude that the operator TL
m can be extended from L2(Rn)∩Lp(Rn) to Lp(Rn),

1 ≤ p < ∞, as a bounded operator from Lp(Rn) into itself, for every 1 < p < ∞ and
from L1(Rn) into L1,∞(Rn).

4. Appendix

In this section we present a pointwise representation of the multiplier Tm. We
establish the properties (11) and (13).

For every f ∈ L2(Rn) we have that

Tm(f) = (m(|y|2)f̂ )̌.

Let f ∈ C∞
c (Rn). We can write

Tm(f)(x) =
1

(2π)n

ˆ

Rn

eixym(|y|2)f̂(y) dy

=
1

(2π)n

ˆ

Rn

eixyf̂(y)|y|2
ˆ ∞

0

φ(t)e−t|y|2 dt dy

=
1

(2π)n

ˆ ∞

0

φ(t)

ˆ

Rn

eixy|y|2e−t|y|2 f̂(y) dy dt, x ∈ Rn.

The interchange in the order of integration is justified becauseˆ

Rn

|f̂(y)‖y|2
ˆ ∞

0

e−t|y|2|φ(t)| dt dy ≤ ‖φ‖∞
ˆ

Rn

|f̂(y)| dy < ∞.

Then,

Tm(f)(x) =
1

(2π)n

ˆ ∞

0

φ(t)

ˆ

Rn

eixye−t|y|2 ̂(−∆)f(y) dy dt

=
−1

(2π)n

ˆ ∞

0

φ(t)

ˆ

Rn

∆f(z)

ˆ

Rn

e−iy(z−x)e−t|y|2 dy dz dt

= −
ˆ ∞

0

φ(t)

ˆ

Rn

∆f(z)Wt(x, z) dz dt, x ∈ Rn.

We have taken into account thatˆ

Rn

ˆ

Rn

|∆f(z)|e−t|y|2 dz dy < ∞, t > 0,

and that ˆ

Rn

e−iyze−t|y|2 dy =
(π

t

)n
2
e−

|z|2
4t .
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Since
ˆ

Rn

∆f(z) dz = ∆̂f(0) = −|y|2f̂(y)|y=0 = 0, we can write

Tm(f)(x) = −
ˆ ∞

0

φ(t)

ˆ

Rn

∆f(z)

(
Wt(x, z)− χ(1,∞)(t)

(4πt)
n
2

)
dz dt, x ∈ Rn.

It is not hard to see that∣∣∣∣Wt(x, z)− 1

(4πt)
n
2

∣∣∣∣ ≤ C
|x− z|2

t
n+2

2

, x, z ∈ Rn and t > 0.

Hence it follows that
ˆ ∞

0

ˆ

Rn

|∆f(z)|
∣∣∣∣Wt(x, z)− χ(1,∞)(t)

(4πt)
n
2

∣∣∣∣ dz dt

≤ C

(ˆ 1

0

ˆ

Rn

Wt(x, z) dz dt +

ˆ ∞

1

ˆ

suppf

|x− z|2
t

n+2
2

dz dt

)
≤ C(1 + |x|2), x ∈ Rn.

Then,

Tm(f)(x) = − lim
ε→0+

ˆ ∞

0

φ(t)

ˆ

|x−z|>ε

∆f(z)

(
Wt(x, z)− χ(1,∞)(t)

(4πt)
n
2

)
dz dt, x ∈ Rn.

Let 0 < ε < 1. The Green formula leads to,
ˆ

|x−z|>ε

∆f(z)

(
Wt(x, z)− χ(1,∞)(t)

(4πt)
n
2

)
dz

=

ˆ

|x−z|>ε

f(z)∆zWt(x, z)dz +

ˆ

|x−z|=ε

∂nf(z)

(
Wt(x, z)− χ(1,∞)(t)

(4πt)
n
2

)
dσ(z)

−
ˆ

|x−z|=ε

f(z)∂n,zWt(x, z) dσ(z), x ∈ Rn and t > 0.

Here ∂n represents the derivative in the direction normal exterior to the sphere Sε =
{z ∈ Rn : |z − x| = ε}.

By using [19, Lemma 2.1] we have that
∣∣∣∣
ˆ ∞

0

φ(t)

ˆ

|x−z|=ε

∂nf(z)

(
Wt(x, z)− χ(1,∞)(t)

(4πt)
n
2

)
dσ(z) dt

∣∣∣∣

≤ C

ˆ

|x−z|=ε

(ˆ 1

0

e−
|x−z|2

4t

t
n
2

dt +

ˆ ∞

1

|x− z|2
t

n
2
+1

dt

)
dσ(z)

≤ C

ˆ

|x−z|=ε

(
1

|x− z|n−2
+ |x− z|2

)
dσ(z) ≤ Cε, x ∈ Rn.

If n(z) denotes a unitary vector in the direction exterior normal in z ∈ Sε, we obtain

∂n,zWt(x, z) = 〈∇zWt(x, z), n(z)〉 = Wt(x, z)〈x− z

2t
, n(z)〉

= Wt(x, z)
|x− z|

2t
=

e−
ε2

4t ε

2(4π)
n
2 t

n
2
+1

, z ∈ Sε.
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Moreover, σ(Sε) = 2εn−1 π
n
2

Γ(n
2
)
. Then we have that

ˆ ∞

0

ˆ

|x−z|=ε

f(z)∂n,zWt(x, z) dσ(z) φ(t) dt

= ε

ˆ

|x−z|=ε

f(z)

ˆ ∞

0

e−
ε2

4t

2(4π)
n
2

φ(t)

t
n
2
+1

dt dσ(z)

=
1

εn−12π
n
2

ˆ

|x−z|=ε

f(z)

ˆ ∞

0

φ

(
ε2

4u

)
e−uu

n
2
−1 du dσ(z)

=
1

εn−12π
n
2

ˆ

|x−z|=ε

(f(z)− f(x))

ˆ ∞

0

φ

(
ε2

4u

)
e−uu

n
2
−1 du dσ(z) + f(x)α(ε),

x ∈ Rn, where α(ε) =
1

Γ(n
2
)

ˆ ∞

0

φ

(
ε2

4u

)
e−uu

n
2
−1 du, 0 < ε < 1.

Since f is a continuous function we get

lim
ε→0+

1

εn−12π
n
2

ˆ

|x−z|=ε

(f(z)− f(x))

ˆ ∞

0

φ

(
ε2

4u

)
e−uu

n
2
−1 du dσ(z) = 0.

It is clear that α is a bounded function on (0,∞). Moreover, if there exists φ(0+) =
limt→0+ φ(t), by using the dominated convergence theorem we obtain

lim
ε→0+

α(ε) = φ(0+).

Since ∆zWt(x, z) = ∂
∂t

Wt(x, z), x, z ∈ Rn and t > 0, the above arguments allow us
to establish (11) and (13). ¤
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